Procedimento ELAM do módulo Nexus 7000 F2

Contents

Introduction <u>Topologia</u> <u>Determine o mecanismo de encaminhamento de entrada</u> <u>Configurar o disparador</u> <u>Iniciar a captura</u> <u>Interpretar os resultados</u> <u>Verificação adicional</u>

Introduction

Este documento descreve as etapas usadas para executar um ELAM em um módulo F2 do Cisco Nexus 7000 (N7K), explica as saídas mais relevantes e descreve como interpretar os resultados.

Tip: Consulte o documento ELAM Overview para obter uma visão geral sobre ELAM.

Topologia

Neste exemplo, um host na VLAN 10 (10.1.1.101 com endereço MAC 0050.56a1.1a01), a porta Eth6/4 envia uma solicitação do Internet Control Message Protocol (ICMP) a um host que também está na VLAN 10 (10.1.1.10 2 com endereço MAC 0050.56a1.1aef), porta Eth6/3. ELAM é usado para capturar esse único quadro de 10.1.1.101 a 10.1.1.102. É importante lembrar que o ELAM permite capturar apenas um único quadro.

Para executar um ELAM no N7K, você deve primeiro se conectar ao módulo apropriado (isso requer o privilégio de administrador de rede):

```
N7K# attach module 6
Attaching to module 6 ...
To exit type 'exit', to abort type '$.'
module-6#
```

Determine o mecanismo de encaminhamento de entrada

Espera-se que o tráfego ingresse no switch na porta **Eth6/4**. Ao verificar os módulos no sistema, você verá que o **Módulo 6** é um módulo F2. É importante lembrar que o N7K é totalmente distribuído e que os módulos, não o supervisor, tomam as decisões de encaminhamento para o tráfego de dataplane.

N7K#	show mo	odule 6		
Mod	Ports	Module-Type	Model	Status
6	48	1/10 Gbps Ethernet Module	N7K-F248XP-25E	ok

Para os módulos F2, execute o ELAM no FE (L2) com **Clipper** de nome de código interno. Observe que o L2 FE Data Bus (DBUS) contém as informações originais do cabeçalho antes das pesquisas de L2 e Camada 3 (L3), e o RBUS (Result Bus) contém os resultados após as pesquisas de L3 e L2.

O N7K F2 tem 12 FEs por módulo, portanto você deve determinar o **Clipper** ASIC usado para o FE na porta **Eth6/4**. Insira este comando para verificar:

module-0	6# show	hardware	interna	l dev-po	ort-map			
CARD_TYI >Front 1	PE: Panel po	48 po rts:48	ort 10G					
Device 1	name		Dev rol	e	A	bbr num	_inst:	
>Clippe:	r FWD		DEV_LAY	ER_2_LOC)KUP	L2LKP	12	
+		++FROI	NT PANEL	PORT TC	ASIC IN	STANCE	<u>MAP+++</u>	
FP port	PHYS	MAC_0	L2LKP	L3LKF	P QUEUE	SWICH	F	
3	0	0	0	0	0	0		
4	0	0	0	0	0	0		
_						-		

Na saída, você pode ver que a porta Eth6/4 está na instância do Clipper (L2LKP)0.

```
module-6# elam asic clipper instance 0
module-6(clipper-elam)# layer2
module-6(clipper-l2-elam)#
```

Configurar o disparador

O **Clipper** ASIC suporta acionadores ELAM para vários tipos de quadros. O gatilho ELAM deve ser alinhado com o tipo de quadro. Se o quadro for um quadro IPv4, o disparador também deve ser IPv4. Um quadro IPv4 não é capturado com um *outro* acionador. A mesma lógica se aplica ao IPv6.

module-	6(clipper-12-elam)# trigger dbus
arp	ARP Frame Format
fc	Fc hdr Frame Format
ipv4	IPV4 Frame Format
ipv6	IPV6 Frame Format
other	L2 hdr Frame Format
pup	PUP Frame Format
rarp	Rarp hdr Frame Format
valid	On valid packet

Com o Nexus Operating Systems (NX-OS), você pode usar o caractere de ponto de interrogação para separar o disparador ELAM. Há várias opções disponíveis para ELAM no módulo F2:

?

```
module-6(clipper-l2-elam)# trigger dbus ipv4 ingress if ?
  <CR>
  destination-ipv4-address destination ipv4 address
  destination-mac-address Inner destination mac address
  source-index Source index
  source-ipv4-address source ipv4 address
  source-mac-address Inner source mac address
  vlan vlan
  etc?
```

Para este exemplo, o quadro é capturado com base nos endereços IPv4 origem e destino, portanto, somente esses valores são especificados.

O cliente exige que os disparadores sejam definidos para o DBUS e o RBUS. Isso difere dos módulos M-Series, pois não há requisito para especificar uma instância de Buffer de Pacotes (PB). Isso simplifica o disparo RBUS.

Aqui está o gatilho do DBUS:

```
module-6(clipper-12-elam)# trigger dbus ipv4 ingress if source-ipv4-address
10.1.1.101 destination-ipv4-address 10.1.1.102
Aqui está o gatilho do RBUS:
```

module-6(clipper-l2-elam) # trigger rbus ingress if trig

Iniciar a captura

Agora que o FE de entrada está selecionado e você configurou o acionador, você pode iniciar a captura:

module-6(clipper-l2-elam)# start
Para verificar o status do ELAM, insira o comando status:

```
module-6(clipper-12-elam)# status
ELAM instance 0: L2 DBUS Configuration: trigger dbus ipv4 ingress if
source-ipv4-address 10.1.1.101 destination-ipv4-address 10.1.1.102
L2 DBUS Armed
```

ELAM instance 0: L2 RBUS Configuration: trigger rbus ingress if trig L2 RBUS $\ensuremath{\textbf{Armed}}$

Quando o quadro que corresponde ao disparador é recebido pelo FE, o status do ELAM é mostrado como **Disparado**:

module-6(clipper-l2-elam)# status
ELAM instance 0: L2 DBUS Configuration: trigger dbus ipv4 ingress if
 source-ipv4-address 10.1.1.101 destination-ipv4-address 10.1.1.102
L2 DBUS Triggered
ELAM instance 0: L2 RBUS Configuration: trigger rbus ingress if trig
L2 RBUS Triggered

Interpretar os resultados

Para exibir os resultados do ELAM, insira os comandos **show dbus** e **show rbus**. Aqui está o trecho dos dados ELAM mais relevantes para este exemplo (alguns resultados são omitidos):

module-6(clipper-12-elam)# show dbus _____ L2 DBUS CONTENT - IPV4 PACKET _____ . . . vlan: 0xasource-index: 0x3sequence-number: 0x3f destination-index : 0x0 bundle-port : 0x0 vl : 0x0 . . . source-ipv4-address: 10.1.1.101 destination-ipv4-address: 10.1.1.102 destination-mac-address: 0050.56a1.1aef source-mac-address: 0050.56a1.1a01 module-6(clipper-l2-elam) # show rbus _____ L2 RBUS INGRESS CONTENT _____ 12-rbus-trigger: 0x1sequence-number: 0x3fdi-ltl-index: 0x2l3-multicast-di: 0x0source-index: 0x3vlan-id: 0xa

Com os dados **DBUS**, você pode verificar se o quadro é recebido na VLAN 10 (**vlan: 0xa**) com um endereço MAC origem de **0050.56a1.1a01** e um endereço MAC destino de **0050.56a1.1aef**. Você também pode ver que esse é um quadro IPv4 originado de **10.1.1.101** e destinado a **10.1.1.102**.

Tip: Há vários outros campos úteis que não estão incluídos nessa saída, como o valor de Tipo de Serviço (TOS), flags IP, comprimento de IP e comprimento de quadro L2.

Para verificar em que porta o quadro é recebido, insira o comando **SRC_INDEX** (a LTL (Local Target Logic) de origem). Insira este comando para mapear um LTL para uma porta ou grupo de portas para o N7K:

N7K# show system internal pixm info ltl 0x3 Type LTL PHY_PORT Eth6/4

A saída mostra que um **índice de origem** de **0x3** mapeia para a porta **Eth6/4**. Isso confirma que o quadro é recebido na porta **Eth6/4**.

Com os **dados RBUS**, você pode verificar se o quadro está comutado na VLAN 10 (**vlan-id: 0xa**). Além disso, você pode confirmar a porta de saída do **diltl-index** (LTL de destino):

N7K# show system internal pixm info ltl 0x2 Type LTL

Type LTL

PHY_PORT Eth6/3

A saída mostra que um **diltl-index** de **0x2** mapeia para a porta **Eth6/3**. Isso confirma que o quadro é comutado da porta **Eth6/3**.

Verificação adicional

Para verificar como o switch aloca o pool LTL, insira o comando **show system internal pixm info ltlregion**. A saída desse comando é útil para entender a finalidade de um LTL se ele não for combinado a uma porta física. Um bom exemplo disso é um LTL **Drop**:

N7K# **show system internal pixm info ltl 0x11a0** 0x11a0 is not configured

N7K# show system internal pixm info lt	l-region	
LTL POOL TYPE	SIZE	RANGE
	=============	
DCE/FC Pool	1024	0x0000 to 0x03ff
SUP Inband LTL	32	0x0400 to 0x041f
MD Flood LTL	1	0x0420
Central R/W	1	0x0421
UCAST Pool	1536	0x0422 to 0x0a21
PC Pool	1720	0x0a22 to 0x10d9
LC CPU Pool	32	0x1152 to 0x1171
EARL Pool	72	0x10da to 0x1121
SPAN Pool	48	0x1122 to 0x1151
UCAST VDC Use Pool	16	0x1172 to 0x1181
UCAST Generic Pool	30	0x1182 to 0x119f
LISP Pool	4	0x1198 to 0x119b
Invalid SI	1	0x119c to 0x119c
ESPAN SI	1	0x119d to 0x119d
Recirc SI	1	0x119e to 0x119e
Drop DI	2	0x119f to 0x11a0
UCAST (L3_SVI_SI) Region	31	0x11a1 to 0x11bf
UCAST (Fex/GPC/SVI-ES) 3648	0x11c0 to	Ox1fff
UCAST Reserved for Future Use Region	2048	0x2000 to 0x27ff
============> UCAST MCAST BO	UNDARY <====	
VDC OMF Pool	32	0x2800 to 0x281f