Procedimento de ELAM do Catalyst 6500 Series Switches com mecanismo de supervisão 2T

Contents

Introduction <u>Topologia</u> <u>Determine o mecanismo de encaminhamento de entrada</u> <u>Configurar o disparador</u> <u>Iniciar a captura</u> <u>Interpretar os resultados</u>

Introduction

Este documento descreve as etapas usadas para executar um ELAM nos switches Cisco Catalyst 6500 Series que executam o Supervisor Engine 2T (Sup2T), explica as saídas mais relevantes e descreve como interpretar os resultados. Este exemplo também se aplica a placas de linha habilitadas para DFC4.

Tip: Consulte o documento ELAM Overview para obter uma visão geral sobre ELAM.

Topologia

Neste exemplo, um host na VLAN 10 (**10.1.117.231**), a porta **G5/3** envia uma solicitação ICMP (Internet Control Message Protocol) a um host na VLAN 20 (**10.1.117.1**), porta **G5/2**. O ELAM é usado para capturar esse único pacote de **10.1.117.231** a **10.1.117.1**. É importante lembrar que o ELAM permite capturar um único quadro.

Note: Para Sup2T, cada comando ELAM começa com esta sintaxe: **show platform capture elam**.

Determine o mecanismo de encaminhamento de entrada

Espera-se que o tráfego ingresse no switch na porta **G5/3**. Ao verificar os módulos no sistema, você verá que o **módulo 5** é o supervisor **ativo**. Portanto, você deve configurar o ELAM no **módulo 5**.

Sup	ZI# sno	w module 5							
Mod	Ports	Card Type						Model	Serial No.
5	5	Supervisor	Engine	2т	10GE	w/	CTS	(Active)VS-SUP2T-10G	SAL15056BKR

Para o Sup2T, execute o ELAM no Mecanismo de Encaminhamento de Camada 2 (L2) (FE) com o codinome interno **Eureka**. Observe que o L2 FE Data Bus (DBUS) contém informações originais do cabeçalho antes das consultas de L2 e Camada 3 (L3), e o RBUS (Result Bus) contém os resultados após as pesquisas de L3 e L2. A pesquisa L3 é realizada pelo FE L3/Layer 4 (L4) com o codinome interno **Lamira**.

```
Sup2T(config)#service internal
Sup2T# show platform capture elam asic eureka slot 5
Assigned asic_desc=eu50
```

Note: O comando **service internal** é necessário para executar um ELAM em Sup2T. Essa configuração simplesmente desbloqueia os comandos ocultos.

Configurar o disparador

Que Omushers medule F

O **Eureka** ASIC suporta acionadores ELAM para IPv4, IPv6 e outros. O gatilho ELAM deve ser alinhado com o tipo de quadro. Se o quadro for um quadro IPv4, o disparador também deve ser IPv4. Um quadro IPv4 não é capturado com um *outro* acionador. A mesma lógica se aplica ao IPv6. Os acionadores mais comumente usados de acordo com o tipo de quadro são mostrados nesta tabela:

IPv4	IPv6	Todos os tipos de quadros
• SMAC	• SMAC	• VLAN
• DMAC	• DMAC	SRC_IN
• IP_SA	• IP6_SA	DEX
• IP_DA	• IP6_DA	DST_IND
• IP_TTL	• IP6_TTL	EX
• IP_TOS	 IP6_CLASS 	
 L3_PT (ICMP,IGMP,TCP,UDP) TCP_SPORT, 	• L3_PT (ICMP, IGMP,	
TCP_DPORTUDP_DPORT,	TCP, UDP)	
UDP_SPORTICMP_TYPE	IP6_L4DATA	

A maior parte destes domínios deveria ser autoexplicativa. Por exemplo, SMAC e **DMAC** referemse ao endereço MAC de origem e ao endereço MAC de destino, **IP_SA** e **IP_DA** referem-se ao endereço IPv4 de origem e ao endereço IPv4 de destino, e **L3_PT** refere-se ao protocolo L3, que pode ser o Internet Control Message Protocol (ICMP), Internet Group Management Protocol (TCP), ou UDP.

Note: Um *outro* acionador exige que o usuário forneça os dados e máscara hexadecimais exatos para o quadro em questão e está fora do escopo deste documento.

Para este exemplo, o quadro é capturado de acordo com o endereço IPv4 origem e destino. Lembre-se de que os acionadores ELAM permitem vários níveis de especificidade. Portanto, você pode usar campos adicionais, como Time To Live (TTL), Type of Service (TOS) e Layer3 Protocol Type (L3_PT), se necessário.

Eureka exige que os disparadores sejam configurados para o DBUS e o RBUS. Há dois buffers de pacote (PB) diferentes nos quais os dados de RBUS podem residir. A determinação da instância de PB correta depende do tipo exato de módulo e da porta de entrada. Normalmente, é recomendável configurar PB1 e, se o RBUS não disparar, repita a configuração com PB2. Se nenhum disparador RBUS for fornecido, o Cisco IOS[®] cria automaticamente um disparador no PB1.

Aqui está o gatilho do DBUS:

```
Sup2T# show platform capture elam trigger master eu50 dbus
dbi ingress ipv4 if ip_sa=10.1.117.231 ip_da=10.1.117.1
Aqui está o gatilho do RBUS:
```

```
Sup2T#show platform capture elam trigger slave eu50 rbus rbi pb2
New eu50 slave ELAM is RBI_PB2
Neste exemplo, eu50 é usado como o ELAM ASIC. Isso ocorre porque ASIC Eureka foi selecionado no slot 5, instância zero.
```

Além disso, o RBUS **PB2** foi selecionado porque, internamente, você sabe que o RBUS para este exemplo específico está em PB2. Se a instância incorreta for escolhida, o Cisco IOS fornecerá esta mensagem de erro quando você tentar visualizar o ELAM:

```
No SOP found or invalid Seq_Num. Pls try other PB interface: sh pla cap elam tri s eu50 r r pb2
```

Iniciar a captura

Agora que o FE de entrada está selecionado e você configurou o acionador, você pode iniciar a captura:

```
Sup2T#show platform capture elam start
Para verificar o status do ELAM, insira o comando status:
```

Supzi#	suom bi	Lation	m Ca	ipcure	eram :	scacus	5		
ID#	Role	ASIC		Slot	Inst	Ver	ELAM	Sta	atus
eu50	М	EURE	ζA	5	0	1.3	DBI_ING	In	Progress
eu50	S	EURE	ζA	5	0	1.3	RBI_PB2	In	Progress
ID#	ELAM		Trig	gger					
					-				
eu50	DBI_ING		FORMAT=IP L3_PROTOCOL=IPV4 IP_SA=10.1.117.231 IP_DA=10.1.1						0.1.117.231 IP_DA=10.1.117.1
eu50	RBI_PE	32	TRIC	3=1					

Quando o quadro que corresponde ao disparador é recebido pelo FE, o status do ELAM é mostrado como **concluído**:

Sup2T#	show pl	latform	n capture	elam	statu	5		
ID#	Role	ASIC	Slot	Inst	Ver	ELAM	Status	
eu50	М	EUREKA	5	0	1.3	DBI_ING	Capture	Completed
eu50	S	EUREKA	5	0	1.3	RBI_PB2	Capture	Completed
ID#	ELAM	1	rigger					
				-				
eu50	DBI_IN	IG I	'ORMAT=IP	L3_PR	OTOCO	L=IPV4 IP_S	A=10.1.1	17.231 IP_DA=10.1.117.1
eu50	RBI_PE	32 🗅	RIG=1					

Interpretar os resultados

Cup 2004 above platform conture along status

Para exibir os resultados do ELAM, insira o comando **data**. Aqui está um trecho da saída de dados ELAM que é mais relevante para este exemplo:

Sup2T#show platform capture elam data

(some output omitted)

DBUS:

VLAN	[12] = 10
SRC_INDEX	$[19] = 0 \times 102$
DMAC	= b414.8961.3780
SMAC	= 0025.84e6.8dc1
L3_PROTOCOL	[4] = 0 [IPV4]
L3_PT	[8] = 1 [ICMP]
IP_TTL	[8] = 255
IP_SA	= 10.1.117.231
IP DA	= 10.1.117.1

RBUS:

FLOOD	[1] = 0
DEST_INDEX	$[19] = 0 \times 101$
VLAN	[12] = 20
IP_TTL	[8] = 254
REWRITE_INFO	
i0 - replace bytes from ofs 0 to	ofs 11 with seq
'00 00 0C 07 AC CA B4 14 89 61 3	37 80'.

Com os dados **DBUS**, você pode verificar se o quadro é recebido na VLAN 10 com um endereço MAC de origem **0025.84e6.8dc1** e um endereço MAC de destino **b414.8961.3780**. Você também pode ver que esse é um quadro IPv4 originado de **10.1.117.231** e destinado a **10.1.117.1**.

Tip: Há vários outros campos úteis que não estão incluídos nessa saída, como valor TOS, sinalizadores IP, comprimento de IP e comprimento de quadro L2.

Para verificar em que porta o quadro é recebido, insira o comando **SRC_INDEX** (a LTL (Local Target Logic) de origem). Insira este comando para mapear um LTL para uma porta ou grupo de portas para Sup2T:

Sup2T#show platform hardware ltl index 0x102
LTL index 0x102 contain ports :

Gi5/3

A saída mostra que o SRC_INDEX de 0x102 mapeia para a porta G5/3. Isso confirma que o quadro é recebido na porta G5/3.

Com os dados RBUS, você pode verificar se o quadro é roteado para a VLAN 20 e se o TTL é decrementado de **255** nos dados **DBUS** para **254** no **RBUS**. O **REWRITE_INFO** da saída mostra que o FE substitui os bytes 0 a 11 (os primeiros 12 bytes) que representam a regravação do endereço MAC para os endereços MAC de destino e de origem. Além disso, você pode verificar a partir das informações **DEST_INDEX** (LTL de destino) onde o quadro é enviado.

Sup2T#show platform hardware ltl index 0x101
LTL index 0x101 contain ports :

Gi5/2

A saída mostra que o **DEST_INDEX** de **0x101** mapeia para a porta **G5/2**. Isso confirma que o quadro é enviado à porta **G5/2**.