Procedimento de ELAM do Catalyst 6500 Series Switches com Supervisor Engine 720

Contents

Introduction Topologia Determine o mecanismo de encaminhamento de entrada Configurar o disparador Iniciar a captura Interpretar os resultados Sistema de switching virtual

Introduction

Este documento descreve as etapas usadas para executar uma captura ELAM (Embedded Logic Analyzer Module) nos switches Cisco Catalyst 6500 Series (6500) que executam o Supervisor Engine 720 (Sup720), explica as saídas mais relevantes e descreve como interpretar os resultados. Este exemplo também se aplica a placas de linha habilitadas para DFC3.

Tip: Consulte o documento ELAM Overview para obter uma visão geral sobre ELAM.

Topologia

Neste exemplo, o 6500 atua como um *roteador em um stick* para rotear o tráfego entre os hosts na VLAN 10 e na VLAN 20. O ELAM é usado para validar que uma solicitação do ICMP (Internet Control Message Protocol) do host **10.1.1.100** recebido na porta **G5/3** da VLAN 10 foi roteada com êxito de volta para **20.1.1.100** na porta **G5/3** da VLAN 20.

Note: Para Sup720, cada comando ELAM começa com esta sintaxe: **show platform capture elam**.

Determine o mecanismo de encaminhamento de entrada

Espera-se que o tráfego ingresse no switch na porta **G5/3**. Ao verificar os módulos no sistema, você verá que o **módulo 5** é o supervisor **ativo**. Portanto, você deve configurar o ELAM no **módulo 5**.

Sup'	720# sł	now module !	5							
Mod	Ports	Gard Type					Μ	Iodel	Serial No.	
5	5	Supervisor	Engine	720	10GE	(Active)	VS	S-S720-10G	SAL1429N5ST	

Para Sup720, execute o ELAM no Mecanismo de Encaminhamento de Camada 2 (L2) (FE) com o nome de código interno **Superman**. Observe que o L2 FE Data Bus (DBUS) contém as informações originais do cabeçalho antes da pesquisa de L2 e Camada 3 (L3), e o RBUS (Result Bus) contém os resultados após as pesquisas de L3 e L2. A pesquisa L3 é realizada pelo L3 FE com o codinome interno **Tycho**.

Sup720(config)#service internal Sup720#show platform capture elam asic superman slot 5

Note: O comando service internal é necessário para executar um ELAM no Sup720. Essa

Configurar o disparador

O **Super-Homem** ASIC suporta acionadores ELAM para IPv4, IPv6 e outros. O gatilho ELAM deve ser alinhado com o tipo de quadro. Se o quadro for um quadro IPv4, o disparador também deve ser IPv4. Um quadro IPv4 não é capturado com um *outro* acionador. A mesma lógica se aplica ao IPv6. Os acionadores mais comumente usados de acordo com o tipo de quadro são mostrados nesta tabela:

IPv4	IPv6	Todos os tipos de quadros
• SMAC	• SMAC	• VLAN
• DMAC	• DMAC	 SRC_IN
• IP_SA	• IP6_SA	DEX
• IP_DA	• IP6_DA	 DST_IND
• IP_TTL	• IP6_TTL	EX
• IP_TOS	IP6_CLASS	
 L3_PT (ICMP,IGMP,TCP,UDP) TCP_SPORT, 	• L3_PT (ICMP, IGMP,	
TCP_DPORTUDP_DPORT,	TCP, UDP)	
UDP_SPORTICMP_TYPE	IP6_L4DATA	

A maior parte destes domínios deveria ser autoexplicativa. Por exemplo, SMAC e **DMAC** referemse ao endereço MAC de origem e ao endereço MAC de destino, **IP_SA** e **IP_DA** referem-se ao endereço IPv4 de origem e ao endereço IPv4 de destino, e **L3_PT** refere-se ao tipo de protocolo L3, que pode ser o Internet Control Message Protocol (ICMP), Internet Group Management Protocol (IGMP), TCP ou UDP.

Note: Um *outro* acionador exige que o usuário forneça os dados e máscara hexadecimais exatos para o quadro em questão e está fora do escopo deste documento.

Para este exemplo, o quadro é capturado de acordo com o endereço IPv4 origem e destino. Lembre-se de que os acionadores ELAM permitem vários níveis de especificidade. Portanto, você pode usar campos adicionais, como Time To Live (TTL), Type of Service (TOS) e Layer3 Protocol Type (L3_PT), se necessário. O gatilho **Super-Homem** para este pacote é:

Sup720# show platform capture elam trigger dbus ipv4
if ip_sa=10.1.1.100 ip_da=20.1.1.100

Iniciar a captura

Agora que o FE de entrada está selecionado e você configurou o acionador, você pode iniciar a captura:

Para verificar o status do ELAM, insira o comando status:

Quando o quadro que corresponde ao disparador é recebido pelo FE, o status do ELAM é mostrado como **concluído**:

Interpretar os resultados

Para exibir os resultados do ELAM, insira o comando **data**. Aqui está um trecho da saída de dados ELAM que é mais relevante para este exemplo:

Sup720#show platform capture elam	data
(some output omitted)	
DBUS:	
VLAN	[12] = 10
SRC_INDEX	$[19] = 0 \times 102$
L3_PROTOCOL	[4] = 0 [IPV4]
L3_PT	[8] = 1 [ICMP]
DMAC	= 0014.f179.b640
SMAC	= 0021.5525.423f
IP_TTL	[8] = 255
IP_SA	= 10.1.1.100
IP_DA	= 20.1.1.100

RBUS:

FLOOD	[1] = 1
DEST_INDEX	[19] = 0x14
VLAN	[12] = 20
IP_TTL	[8] = 254
REWRITE_INFO	
i0 - replace bytes from ofs 0 to	ofs 11 with seq
'00 05 73 A9 55 41 00 14 F1 79 B	B6 40'.

Com os dados **DBUS**, você pode verificar se o quadro é recebido na VLAN 10 com um endereço MAC origem **0021.5525.423f** e um endereço MAC destino **0014.f179.b640**. Você também pode ver que esse é um quadro IPv4 originado de **10.1.1.100** e destinado a **20.1.1.100**.

Tip: Há vários outros campos que não estão incluídos nessa saída, como valor TOS, sinalizadores IP, comprimento de IP e comprimento de quadro L2, que também são úteis.

Para verificar em que porta o quadro é recebido, insira o comando **SRC_INDEX** (a LTL (Local Target Logic) de origem). Insira este comando para mapear um LTL para uma porta ou grupo de portas para Sup720:

Sup720#remote command switch test mcast ltl-info index 102 index 0x102 contain ports 5/3 A saída mostra que o SRC_INDEX de 0x102 mapeia para a porta G5/3. Isso confirma que o quadro é recebido na porta G5/3.

Com os dados RBUS, você pode verificar se o quadro é roteado para a VLAN 20 e se o TTL é decrementado de **255** nos dados **DBUS** para **254** no **RBUS**. O **REWRITE_INFO** da saída mostra que o FE substitui os bytes 0 a 11 (os primeiros 12 bytes) que representam a regravação do endereço MAC para os endereços MAC de destino e de origem. Além disso, você pode verificar a partir das informações **DEST_INDEX** (LTL de destino) onde o quadro é enviado.

Note: O bit de inundação é definido no RBUS, então o **DEST_INDEX** muda de **0x14** para **0x8014**.

Sup720#remote command switch test mcast ltl-info index 8014
index 0x8014 contain ports 5/3

A saída mostra que o **DEST_INDEX** de **0x8014** também mapeia para a porta **G5/3**. Isso confirma que o quadro é enviado à porta **G5/3**.

Sistema de switching virtual

Para o Virtual Switching System (VSS), você deve correlacionar a porta física com o mapa de slots virtuais. Considere este exemplo, onde é feita uma tentativa de mapear as portas que encaminham quadros que são enviados para LTL **0xb42**.

VSS#remote command switch test mcast 1t1 index b42 index 0xB42 contain ports 20/1, 36/1 Podemos ver que o LTL mapeia para os números de slot virtuais 20 e 36. Para verificar o mapa de slot virtual, digite este comando:

VSS#show switch virtual slot-map Virtual Slot to Remote Switch/Physical Slot Mapping Table: Remote Physical Module Virtual Switch No Slot No Uptime Slot No <some output omitted> 20 1 4 1d07h 5 **4** 21 1 **36 2** 37 2 1d08h 20:03:19 **4** 20:03:1 5 20:05:44

A saída mostra que o Slot **20 mapeia para o Switch 1, Módulo 4 e que o Slot 36** mapeia para o **Switch 2**, **Módulo 4**. Portanto, o LTL **0xb42** mapeia para as portas **1/4/1** e **2/4/1**. Se essas portas forem membros de um canal de porta, somente uma das portas encaminhará o quadro de acordo

com o esquema de balanceamento de carga configurado.