Configurando a redundância de IPSec sobre ISDN usando relógio de discador

Contents

Introduction Prerequisites Requirements Componentes Utilizados Conventions Configurar Diagrama de Rede Configurações Verificar Exemplo de saída do comando Troubleshoot Comandos para Troubleshooting Informações Relacionadas

Introduction

Este documento fornece uma configuração de exemplo de como criptografar o tráfego da rede atrás do Roteador 1 para a rede atrás do Roteador 2 (os 0s de loopback são usados como redes neste exemplo). Se o enlace primário (Ethernet) entre o Roteador 1 e o Roteador 2 cair, o tráfego de Segurança IP (IPSec) continuará a fluir através do enlace secundário (ISDN). Existem várias formas de alcançar este objetivo; você pode usar dialer watch, interface de backup, circuito de demanda e estática flutuante. Esse exemplo de configuração demonstra o mecanismo do relógio do discador. Para obter informações sobre outros recursos, consulte <u>Avaliando interfaces de backup, rotas estáticas flutuantes e relógio de discador para backup de DDR</u>.

Prerequisites

Requirements

Não existem requisitos específicos para este documento.

Componentes Utilizados

As informações neste documento são baseadas nestas versões de software e hardware:

- Cisco 2621 e 3640 Routers
- Software Cisco IOS® versão 12.3(3)

As informações neste documento foram criadas a partir de dispositivos em um ambiente de laboratório específico. All of the devices used in this document started with a cleared (default) configuration. Se sua rede estiver ativa, certifique-se de que você entendeu o impacto potencial de qualquer comando antes de usá-lo.

Conventions

For more information on document conventions, refer to the Cisco Technical Tips Conventions.

Configurar

Nesta seção, você encontrará informações para configurar os recursos descritos neste documento.

Observação: para encontrar informações adicionais sobre os comandos usados neste documento, use a <u>ferramenta Command Lookup Tool</u> (somente clientes <u>registrados</u>).

Diagrama de Rede

Este documento usa a configuração de rede mostrada no diagrama aqui:

Configurações

Este documento utiliza as configurações mostradas aqui:

- Roteador 1 (2621)
- Roteador 2 (3640)

Roteador 1 (2621)

r1#**show running-config**

```
Building configuration ...
Current configuration : 2244 bytes
1
version 12.3
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
1
hostname r1
1
boot-start-marker
boot-end-marker
username r2 password 0 cisco
!--- This is the username for remote router (Router 2)
!--- and shared secret. Shared secret (used for
Challenge Handshake !--- Authentication Protocol [CHAP])
must be the same on both sides. no aaa new-model ip
subnet-zero ip tcp synwait-time 5 ! ! no ip domain
lookup ! ip audit notify log ip audit po max-events 100
ip ssh break-string no ftp-server write-enable ! ! !
crypto isakmp policy 10
hash md5
authentication pre-share
crypto isakmp key cisco address 222.222.222.222
crypto ipsec transform-set abc esp-des esp-md5-hmac
1
crypto map cisco local-address Loopback1
crypto map cisco 10 ipsec-isakmp
set peer 222.222.222.222
!--- Peer address, Loopback 1 of Router 2 set transform-
set abc
match address 101
!--- Networks to encrypt (Loopback 0 on both ends) !
isdn switch-type basic-ts013 ! ! ! ! ! ! ! ! no voice
hpi capture buffer no voice hpi capture destination ! !
! ! ! ! interface Loopback0 !--- Network to encrypt ip
address 11.11.11.11 255.255.255.0 ! interface Loopback1
!--- Used for peer address for IPSec ip address
111.111.111.111 255.255.255.0 ! interface
FastEthernet0/0 !--- Primary link ip address 10.1.1.1
255.255.255.0 no ip route-cache
!--- Enable process switching no ip mroute-cache duplex
auto speed auto crypto map cisco
!--- Apply crypto map on primary interface ! interface
BRI0/0 no ip address encapsulation ppp no ip route-cache
no ip mroute-cache dialer pool-member 1 isdn switch-type
basic-ts013 no cdp enable ! interface Dialer1 !---
Backup link ip address 20.1.1.1 255.255.255.0
encapsulation ppp no ip route-cache
!--- Enable process switching ip ospf cost 9999
!--- Increase the cost so that when primary comes up
again, !--- Open Shortest Path First (OSPF) routes are
!--- preferred using the primary link (due to better
cost). no ip mroute-cache
dialer idle-timeout 180
dialer pool 1
dialer string 94134028
dialer watch-group 1
!--- Enable dialer watch on this backup interface. !-
```

```
Watch the route specified with the dialer watch-list 1
command.
dialer-group 1
!--- Apply interesting traffic defined in dialer list 1.
no peer neighbor-route ppp authentication chap crypto
map cisco
!--- Apply crypto map on backup interface. ! router ospf
1
!--- OSPF advertising Loopback 0, Loopback 1, !---
primary, and secondary links. log-adjacency-changes
network 10.1.1.0 0.0.0.255 area 0
network 11.11.11.0 0.0.0.255 area 0
network 20.1.1.0 0.0.0.255 area 0
network 111.111.111.0 0.0.0.255 area 0
ip http server
no ip http secure-server
ip classless
1
access-list 101 permit ip host 11.11.11.11 host
22.22.22.22
!--- Access control list (ACL) 101 is the !--- IPSec
traffic used in match address. access-list 110 deny
                                                      ip
any any
!--- ACL 110 is for the dialer list to mark !--- all IP
traffic uninteresting. The dialer watch will !---
trigger the ISDN backup when the route is lost. dialer
watch-list 1 ip 222.222.222.222 255.255.255.255
!--- This defines the route(s) to be watched. !--- This
exact route (including subnet mask) !--- must exist in
the routing table. !--- Use the dialer watch-group 1
command to apply this !--- list to the backup interface.
dialer watch-list 1 delay route-check initial 10
dialer-list 1 protocol ip list 110
!--- Interesting traffic is defined by ACL 110. !---
This is applied to Dialer1 using dialer group 1. ! ! !
dial-peer cor custom ! ! ! ! line con 0 exec-timeout 0
0 logging synchronous escape-character 27 line aux 0
line vty 0 4 login ! end
Roteador 2 (3640)
r2#show running-config
Building configuration...
Current configuration : 2311 bytes
1
version 12.3
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname r2
boot-start-marker
boot-end-marker
username r1 password 0 cisco
!--- This is the username for remote router (Router 1)
!--- and shared secret. Shared secret (used for CHAP) !-
```

```
must be the same on both sides. no aaa new-model ip
subnet-zero ip tcp synwait-time 5 ! ! no ip domain
lookup ! ip audit notify log ip audit po max-events 100
ip ssh break-string no ftp-server write-enable ! ! !
crypto isakmp policy 10
hash md5
authentication pre-share
crypto isakmp key cisco address 111.111.111.111
crypto ipsec transform-set abc esp-des esp-md5-hmac
crypto map cisco local-address Loopback1
crypto map cisco 10 ipsec-isakmp
set peer 111.111.111.111
!--- Peer address, Loopback 1 of Router 1 set
transform-set abc
match address 101
!--- Networks to encrypt (Loopback 0 on both ends) !
isdn switch-type basic-ts013 ! ! ! ! ! ! ! ! no voice
hpi capture buffer no voice hpi capture destination ! !
! ! ! ! interface Loopback0 ip address 22.22.22.22
255.255.255.0 !--- Network to encrypt ! interface
Loopback1 ip address 222.222.222.222 255.255.255.0 !---
Used for peer address for IPSec. ! interface BRI0/0 no
ip address encapsulation ppp no ip route-cache no ip
mroute-cache dialer pool-member 1 isdn switch-type
basic-ts013 ! interface Ethernet0/0 !--- Primary link ip
address 10.1.1.2 255.255.255.0 no ip route-cache
!--- Enable process switching. no ip mroute-cache half-
duplex crypto map cisco
!--- Apply crypto map on primary interface. ! interface
Dialer1 ip address 20.1.1.2 255.255.255.0 encapsulation
ppp no ip route-cache ip ospf cost 9999
no ip mroute-cache
dialer pool 1
dialer idle-timeout 600
dialer remote-name r1
!--- Dialer for the BRI interface of the remote router
!--- without a dial string. dialer-group 1 !--- Apply
interesting traffic defined in dialer list 1. ppp
authentication chap crypto map cisco
!--- Apply crypto map on backup interface. ! router ospf
1
log-adjacency-changes
network 10.1.1.0 0.0.0.255 area 0
network 20.1.1.0 0.0.0.255 area 0
network 22.22.22.0 0.0.0.255 area 0
network 222.222.222.0 0.0.0.255 area 0
no ip http server
no ip http secure-server
ip classless
1
1
access-list 101 permit ip host 22.22.22.22 host
11.11.11.11
access-list 110 deny ospf any any
!--- Mark OSPF as uninteresting. !--- This will not
allow OSPF hellos !--- to try to bring the link up.
access-list 110 permit ip any any
dialer-list 1 protocol ip list 110
!--- Interesting traffic is defined by ACL 110. !---
```

Verificar

Esta seção fornece informações que você pode usar para confirmar se sua configuração funciona corretamente.

Exemplo de saída do comando

A <u>Output Interpreter Tool (somente clientes registrados) oferece suporte a determinados</u> comandos show, o que permite exibir uma análise da saída do comando show.

• Tabela de roteamento do roteador 1 (2621)—link primário ativo

```
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
I - IS-IS, su - IS-IS summary, L1 - IS-IS level-1,
L2 - IS-IS level-2, ia - IS-IS inter area,
* - candidate default, U - per-user static route,
o - ODR, P - periodic downloaded static route
```

Gateway of last resort is not set

```
222.222.222.0/32 is subnetted, 1 subnets
       222.222.222.222 [110/2] via 10.1.1.2, 00:00:25, FastEthernet0/0
0
     20.0.0/24 is subnetted, 1 subnets
С
       20.1.1.0 is directly connected, Dialer1
    22.0.0.0/32 is subnetted, 1 subnets
ο
       22.22.22.22 [110/2] via 10.1.1.2, 00:00:25, FastEthernet0/0
    111.0.0.0/24 is subnetted, 1 subnets
С
       111.111.111.0 is directly connected, Loopback1
    10.0.0/24 is subnetted, 1 subnets
С
       10.1.1.0 is directly connected, FastEthernet0/0
     11.0.0.0/24 is subnetted, 1 subnets
        11.11.11.0 is directly connected, Loopback0
C
```

• Tabela de roteamento do roteador 2 (3640)—link primário ativo r2#show ip route

```
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
I - IS-IS, su - IS-IS summary, L1 - IS-IS level-1,
L2 - IS-IS level-2, ia - IS-IS inter area,
* - candidate default, U - per-user static route,
o - ODR, P - periodic downloaded static route
```

Gateway of last resort is not set.

```
C 222.222.222.0/24 is directly connected, Loopback1
20.0.0.0/24 is subnetted, 1 subnets
C 20.1.1.0 is directly connected, Dialer1
22.0.0.0/24 is subnetted, 1 subnets
C 22.22.22.0 is directly connected, Loopback0
```

```
111.0.0.0/32 is subnetted, 1 subnets
         111.111.111.111 [110/11] via 10.1.1.1, 00:06:22, Ethernet0/0
 0
      10.0.0/24 is subnetted, 1 subnets
 С
         10.1.1.0 is directly connected, Ethernet0/0
      11.0.0.0/32 is subnetted, 1 subnets
         11.11.11.11 [110/11] via 10.1.1.1, 00:06:23, Ethernet0/0
 0

    Vizinho OSPF do Roteador 1 (2621)—link primário ativo

 rl#show ip ospf neighbor
 Neighbor ID
              Pri State
                                  Dead Time
                                              Address
                                                         Interface
 222.222.222.222 1 FULL/DR
                                              10.1.1.2 FastEthernet0/0
                                 00:00:33

    Vizinho OSPF do Roteador 2 (3640)—link primário ativo

 r2#show ip ospf neighbor
 Neighbor ID
              Pri State
                                  Dead Time
                                              Address
                                                         Interface
 111.111.111.111 1 FULL/BDR
                                  00:00:31
                                              10.1.1.1
                                                         Ethernet0/0

    Tabela de roteamento do roteador 1 (2621)—link primário inativo

 rl#show ip route
 Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
        D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
        N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
        I - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2,
        ia - IS-IS inter area, * - candidate default,
        U - per-user static route, o - ODR,
        P - periodic downloaded static route
 Gateway of last resort is not set.
      222.222.222.0/32 is subnetted, 1 subnets
 0
         222.222.222.222 [110/10000] via 20.1.1.2, 00:00:09, Dialer1
      20.0.0/24 is subnetted, 1 subnets
         20.1.1.0 is directly connected, BRIO/0
 С
      20.0.0/24 is subnetted, 1 subnets
 С
         20.1.1.0 is directly connected, Dialer1
      22.0.0.0/32 is subnetted, 1 subnets
 0
         22.22.22.22 [110/10000] via 20.1.1.2, 00:00:09, Dialer1
      111.0.0.0/24 is subnetted, 1 subnets
        111.111.111.0 is directly connected, Loopback1
 С
      10.0.0/24 is subnetted, 1 subnets
 0
         10.1.1.0 [110/10009] via 20.1.1.2, 00:00:09, Dialer1
      11.0.0.0/24 is subnetted, 1 subnets
 С
         11.11.11.0 is directly connected, Loopback0

    Tabela de roteamento do roteador 2 (3640)—link primário inativo

 r2#show ip route
 Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
        D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
        N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
        I - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2,
        ia - IS-IS inter area, * - candidate default,
        U - per-user static route, o - ODR,
        P - periodic downloaded static route
```

Gateway of last resort is not set.

- C 222.222.222.0/24 is directly connected, Loopback1 20.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
- C 20.1.1.0/24 is directly connected, Dialer1

```
    C 20.1.1.1/32 is directly connected, Dialer1
22.0.0.0/24 is subnetted, 1 subnets
    C 22.22.22.0 is directly connected, Loopback0
111.0.0.0/32 is subnetted, 1 subnets
    O 111.111.111.111 [110/10000] via 20.1.1.1, 00:00:07, Dialer1
10.0.0.0/24 is subnetted, 1 subnets
    C 10.1.1.0 is directly connected, Ethernet0/0
11.0.0.0/32 is subnetted, 1 subnets
    O 11.1.11.111 [110/10000] via 20.1.1.1, 00:00:08, Dialer1
    Vizinho OSPF do Roteador 1 (2621)—enlace primário inativo
```

rl#show ip ospf neighbor						
Neighbor ID	Pri	State		Dead Time	Address	Interface
222.222.222.222	0	FULL/	-	00:00:32	20.1.1.2	Dialer1

• Vizinho OSPF do Roteador 2 (3640)—link primário inativo r2#show ip ospf neighbor Neighbor ID Pri State Dead Time Address Interface 111.111.111.111 0 FULL/ - 00:00:31 20.1.1.1 Dialer1

O **debug dialer** e várias saídas do comando **show** exibidas aqui mostram o link primário como falha, e o dialer watch reconhece a rota perdida. Em seguida, o roteador inicia o link de backup e o OSPF converge através do link secundário. Sempre que o timeout de ociosidade expira, o roteador verifica se o enlace principal está inativo. Se o enlace principal estiver ativo, o dialer watch desconectará o enlace de backup após o temporizador de desativação expirar e desligará a chamada, e o OSPF converge por meio do enlace principal como de costume.

Essas são as saídas dos comandos **debug** e **show** do Roteador 1 (2621), quando o enlace principal fica inativo e é ativado novamente.

```
rl#show debug
Dial on demand:
 Dial on demand events debugging is on
r1#
03:00:21: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0,
  changed state to down
!--- Primary link was brought down manually when you disable the switch ports. 03:00:21: %OSPF-
5-ADJCHG: Process 1, Nbr 222.222.222 on FastEthernet0/0
  from FULL to DOWN, Neighbor Down: Interface down or detached
!--- Primary link goes down. !--- OSPF loses neighbor adjacency. r1# !--- Dialer watch kicks in.
03:00:21: DDR: Dialer Watch: watch-group = 1
03:00:21: DDR: network 222.222.222.2255.255.255.255 DOWN,
03:00:21: DDR:
                 primary DOWN
03:00:21: DDR: Dialer Watch: Dial Reason: Primary of group 1 DOWN
03:00:21: DDR: Dialer Watch: watch-group = 1,
03:00:21: BR0/0 DDR: rotor dialout [best]
  least recent failure is also most recent failure
03:00:21: BR0/0 DDR: rotor dialout [best] also has most recent failure
03:00:21: BR0/0 DDR: rotor dialout [best]
03:00:21: DDR:
                 dialing secondary by dialer string 94134028 on Dil
03:00:21: BR0/0 DDR: Attempting to dial 94134028
03:00:21: DDR: Dialer Watch: watch-group = 1
r1#
03:00:21: DDR: network 222.222.222.222/255.255.255.255 DOWN,
03:00:21: DDR: primary DOWN
03:00:21: DDR: Dialer Watch: Dial Reason: Secondary of group 1 AVAILABLE
03:00:21: DDR: Dialer Watch: watch-group = 1,
03:00:21: DDR: Dialer Watch: watch-group = 1
```

network 222.222.222.222/255.255.255.255 DOWN, 03:00:21: DDR: 03:00:21: DDR: primary DOWN 03:00:21: DDR: Dialer Watch: Dial Reason: Secondary of group 1 AVAILABLE 03:00:21: DDR: Dialer Watch: watch-group = 1, 03:00:21: %ISDN-6-LAYER2UP: Layer 2 for Interface BR0/0, TEI 82 changed to up 03:00:94489280514: %LINK-3-UPDOWN: Interface BRI0/0:1, changed state to up 03:00:94489280516: BR0/0:1 DDR: Dialer Watch: resetting call in progress 03:00:94489280512: BR0/0:1: interface must be fifo queue, force fifo 03:00:94489280512: %DIALER-6-BIND: Interface BR0/0:1 bound to profile Dil r1# 03:00:22: BR0/0:1 DDR: Remote name for r2 03:00:22: BR0/0:1 DDR: dialer protocol up 03:00:23: %LINEPROTO-5-UPDOWN: Line protocol on Interface BRI0/0:1, changed state to up r1# 03:00:28: %ISDN-6-CONNECT: Interface BRI0/0:1 is now connected to 94134028 r2 !--- Backup link is now connected to Router 2. r1# 03:00:31: %OSPF-5-ADJCHG: Process 1, Nbr 222.222.222.222 on Dialer1 from LOADING to FULL, Loading Done !--- OSPF converges over the backup link. rl# rl#show dialer BRI0/0 - dialer type = ISDN Dial String Successes Failures Last DNIS Last status 0 incoming call(s) have been screened. 0 incoming call(s) rejected for callback. BRI0/0:1 - dialer type = ISDN Idle timer (180 secs), Fast idle timer (20 secs) Wait for carrier (30 secs), Re-enable (15 secs) Dialer state is data link layer up Dial reason: Dialing on watched route loss !--- Dial reason is the lost route. Interface bound to profile Dil Time until disconnect 154 secs !--- Idle timeout is ticking. Current call connected 00:00:25 Connected to 94134028 (r2) BRI0/0:2 - dialer type = ISDN Idle timer (120 secs), Fast idle timer (20 secs) Wait for carrier (30 secs), Re-enable (15 secs) Dialer state is idle Di1 - dialer type = DIALER PROFILE Idle timer (180 secs), Fast idle timer (20 secs) Wait for carrier (30 secs), Re-enable (15 secs) Dialer state is data link layer up Number of active calls = 1 Dial String Successes Failures Last DNIS Last status 94134028 45 24 00:00:27 successful Default r1#show isdn active _____ ISDN ACTIVE CALLS _____ Calling Call Called Remote Seconds Seconds Seconds Charges Number Number Name Used Left Idle Units/Currency Tvpe _____ ---N/A--- 94134028 r2 37 142 37 0 Out _____ r1#show dialer BRI0/0 - dialer type = ISDN Dial String Successes Failures Last DNIS Last status 0 incoming call(s) have been screened. 0 incoming call(s) rejected for callback. BRI0/0:1 - dialer type = ISDN Idle timer (180 secs), Fast idle timer (20 secs) Wait for carrier (30 secs), Re-enable (15 secs) Dialer state is data link layer up Dial reason: Dialing on watched route loss Interface bound to profile Dil Time until disconnect 47 secs !--- Idle timeout is ticking. Current call connected 00:02:12 Connected to 94134028 (r2)

BRI0/0:2 - dialer type = ISDN Idle timer (120 secs), Fast idle timer (20 secs) Wait for carrier (30 secs), Re-enable (15 secs) Dialer state is idle Di1 - dialer type = DIALER PROFILE Idle timer (180 secs), Fast idle timer (20 secs) Wait for carrier (30 secs), Re-enable (15 secs) Dialer state is data link layer up Number of active calls = 1 Dial String Successes Failures Last DNIS Last status 94134028 45 24 00:02:14 successful Default r1#show dialer

BRI0/0 - dialer type = ISDN

Dial String Successes Failures Last DNIS Last status
0 incoming call(s) have been screened.
0 incoming call(s) rejected for callback.

BRI0/0:1 - dialer type = ISDN Idle timer (180 secs), Fast idle timer (20 secs) Wait for carrier (30 secs), Re-enable (15 secs) Dialer state is data link layer up Dial reason: Dialing on watched route loss Interface bound to profile Di1

Time until disconnect 0 secs

!--- Idle timeout is ticking. Current call connected 00:02:59 Connected to 94134028 (r2)
BRI0/0:2 - dialer type = ISDN Idle timer (120 secs), Fast idle timer (20 secs) Wait for carrier
(30 secs), Re-enable (15 secs) Dialer state is idle Di1 - dialer type = DIALER PROFILE Idle
timer (180 secs), Fast idle timer (20 secs) Wait for carrier (30 secs), Re-enable (15 secs)
Dialer state is data link layer up Number of active calls = 1 Dial String Successes Failures
Last DNIS Last status 94134028 45 24 00:03:05 successful Default r1# 03:03:22: BR0/0:1 DDR: idle

timeout

!--- Idle timed out. !--- Dialer watch checks lost routes !--- again and reset the idle time since primary is not up yet. 03:03:22: DDR: Dialer Watch: watch-group = 1 03:03:22: DDR: network 222.222.222.222/255.255.255.255 UP, 03:03:22: DDR: primary DOWN !--- Primary link is still down. rl# rl#show dialer

BRI0/0 - dialer type = ISDN

Dial String Successes Failures Last DNIS Last status
0 incoming call(s) have been screened.
0 incoming call(s) rejected for callback.

BRI0/0:1 - dialer type = ISDN Idle timer (180 secs), Fast idle timer (20 secs) Wait for carrier (30 secs), Re-enable (15 secs) Dialer state is data link layer up Dial reason: Dialing on watched route loss Interface bound to profile Di1

Time until disconnect 154 secs

!--- Idle timeout was reset by dialer watch. Current call connected 00:03:25 Connected to
94134028 (r2) BRI0/0:2 - dialer type = ISDN Idle timer (120 secs), Fast idle timer (20 secs)
Wait for carrier (30 secs), Re-enable (15 secs) Dialer state is idle Di1 - dialer type = DIALER
PROFILE Idle timer (180 secs), Fast idle timer (20 secs) Wait for carrier (30 secs), Re-enable
(15 secs) Dialer state is data link layer up Number of active calls = 1 Dial String Successes
Failures Last DNIS Last status 94134028 45 24 00:03:28 successful Default r1# 03:04:59:
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0,

changed state to up

!--- Primary link was brought up manually when the switch ports are enabled. r1# r1# 03:05:50:
%OSPF-5-ADJCHG: Process 1, Nbr 222.222.222 on FastEthernet0/0

from LOADING to FULL, Loading Done

r1#

rl#show ip ospf neigh

Neighbor ID Pri State Dead Time Address Interface 222.222.222.222 0 FULL/ - 00:00:02 20.1.1.2 Dialer1 !--- OSPF over secondary link is still up because !--- the call is not terminated yet, waiting for idle timeout. 222.222.222.222 1 FULL/DR 00:00:38 10.1.1.2 FastEthernet0/0 !--- OSPF is now starts to converge over primary link. rl# rl#show ip route 222.222.222 !--- The watched route is now learned through the primary link. !--- Check the cost. Routing

```
entry for 222.222.222.222/32
  Known via "ospf 1", distance 110, metric 2, type intra area
 Last update from 10.1.1.2 on FastEthernet0/0, 00:00:16 ago
 Routing Descriptor Blocks:
  * 10.1.1.2, from 222.222.222.222, 00:00:16 ago, via FastEthernet0/0
      Route metric is 2, traffic share count is
r1#
03:06:22: BR0/0:1 DDR: idle timeout
!--- Idle timed out. !--- Dialer watch checks lost routes. Since primary is up, !--- it tears
down the call. 03:06:22: DDR: Dialer Watch: watch-group = 1 03:06:22: DDR: network
222.222.222.222/255.255.255.255 UP, 03:06:22: DDR: primary UP
03:06:22: BR0/0:1 DDR: disconnecting call
03:06:22: BR0/0:1 DDR: Dialer Watch: resetting call in progress
03:06:22: DDR: Dialer Watch: watch-group = 1
03:06:22: DDR: network 222.222.222.222/255.255.255.255 UP,
03:06:22: DDR:
                primary UP
03:06:22: %ISDN-6-DISCONNECT: Interface BRI0/0:1
  disconnected from 94134028 r2,
   call lasted 360 seconds
03:06:96677768412: %LINK-3-UPDOWN: Interface BRI0/0:1, changed state to down
03:06:94489281195: BR0/0 DDR: has total 0 call(s), dial_out 0, dial_in 0
r1#
03:06:94489280544: %DIALER-6-UNBIND: Interface BR0/0:1
   unbound from profile Dil
03:06:23: %LINEPROTO-5-UPDOWN: Line protocol on Interface BRI0/0:1,
  changed state to down
r1#
03:06:37: %ISDN-6-LAYER2DOWN: Layer 2 for Interface BR0/0,
   TEI 82 changed to down
r1#
03:07:01: %OSPF-5-ADJCHG: Process 1, Nbr 222.222.222 on Dialer1
   from FULL to DOWN, Neighbor Down: Dead timer expired
!--- OSPF neighbor is down because the secondary link is down. !--- Dead timer has expired. r1#
rl#show ip ospf neigh
Neighbor IDPriStateDead TimeAddressInterface222.222.222.2221FULL/DR00:00:3810.1.1.2FastEthernet0/0
Neighbor ID
!--- OSPF neighbor is through the primary link only. r1#u all
```

Troubleshoot

r1#

Esta seção fornece informações que podem ser usadas para o troubleshooting da sua configuração. Para obter informações sobre como solucionar problemas gerais com as Camadas 1, 2 e 3 do ISDN, consulte <u>Using the show isdn status Command for BRI Troubleshooting</u>.

Comandos para Troubleshooting

All possible debugging has been turned off

A <u>Output Interpreter Tool (somente clientes registrados) oferece suporte a determinados</u> comandos show, o que permite exibir uma análise da saída do comando show.

Observação: antes de emitir comandos **debug**, consulte <u>Informações Importantes sobre</u> <u>Comandos Debug</u>.

Esses comandos debug podem ser executados em ambos os pares IPSec.

- debug crypto isakmp Exibe erros durante a Fase 1.
- debug crypto ipsec Exibe erros durante a Fase 2.

• debug crypto engine — Exibe informações a partir do cripto mecanismo.

Esses comandos **show** podem ser executados em ambos os pares de IPSec.

- show crypto isakmp sa Exibe todas as associações de segurança (SAs) atuais do Internet Key Exchange (IKE) em um peer.
- show crypto ipsec sa Exibe as configurações usadas pelas SAs [IPSec] atuais.
- show crypto engine connections ative —Exibe as conexões atuais e as informações sobre pacotes criptografados e descriptografados.

Esses comandos **clear** podem ser usados para limpar SAs.

- clear crypto isakmp Limpa as associações de segurança da Fase um.
- clear crypto sa Limpa as associações de segurança da Fase dois.

Informações Relacionadas

- Página de suporte do IPSec
- <u>Configurando e Troubleshooting de Backup DDR</u>
- Avaliação das interfaces de backup, rotas estáticas flutuantes e Dialer Watch para fazer o backup de chamadas DDR
- <u>Configuração do backup de discagem usando o Dialer Watch</u>
- Usando o Comando show isdn status para Troubleshooting de BRI
- <u>Suporte Técnico Cisco Systems</u>