Verificar atribuições de ASR9000 VQI no CEF

Contents

Introduction Informações de Apoio Verificar atribuições de VQI

Introduction

Este documento descreve como verificar Índices de Filas Virtuais (VQIs) e atribuí-los corretamente no Cisco Express Forwarding (CEF) em um Roteador de Serviços Agregados 9000 (ASR9K).

Informações de Apoio

Para que os pacotes sejam encaminhados de uma interface para outra em um ASR9K, os pacotes devem atravessar a estrutura. Não há switching local em um ASR9K. Porém, como um pacote vai de uma interface a outra? Isso é feito com o uso de VQIs que são atribuídos a cada interface. Dessa forma, a estrutura sabe qual placa de linha (LC) e processador de rede (NP) rotear o pacote.

Às vezes, no entanto, como no caso de <u>CSCvc83681</u>, um VQI incorreto pode ser atribuído e o tráfego pode ser bloqueado dentro do roteador.

Verificar atribuições de VQI

Consulte esta seção para verificar as atribuições de VQI.

Primeiro, identifique as interfaces de entrada e saída do fluxo, do endereço IP (Internet Protocol) de origem e de destino, com o comando show **cef <prefix> detail**.

Isso ajuda a identificar quais LCs precisam ser examinadas para as atribuições de VQI.

Aqui está o endereço de origem:

via 10.94.1.182/32, TenGigE0/1/0/5, 6 dependencies, weight 0, class 0 [flags 0x0] path-idx 0 NHID 0x0 [0x7181cfc4 0x0] next hop 10.94.1.182/32 remote adjacency local label 24088 labels imposed {86} via 10.94.1.150/32, TenGigE0/1/0/7, 6 dependencies, weight 0, class 0 [flags 0x0] path-idx 1 NHID 0x0 [0x7181d018 0x0] next hop 10.94.1.150/32 remote adjacency local label 24088 labels imposed {86} Load distribution: 0 1 (refcount 2) Hash OK Interface Address 0 Y TenGigE0/1/0/5 remote 1 Y TenGigE0/1/0/7 remote Aqui está o endereço destino:

RP/0/RSP0/CPU0:ASR9006-H#show cef 123.29.62.1 detail Tue May 1 10:53:14.531 EDT 123.29.62.1/32, version 334286, internal 0x1000001 0x0 (ptr 0x74bfla04) [1], 0x0 (0x73ffbeb0), 0xa20 (0x75e310d4) Updated May 1 10:53:12.459 remote adjacency to TenGigE0/0/0/2 Prefix Len 32, traffic index 0, precedence n/a, priority 1 gateway array (0x74c025ec) reference count 27, flags 0x68, source lsd (5), 1 backups [19 type 4 flags 0x8401 (0x7216f390) ext 0x0 (0x0)] LW-LDI[type=1, refc=1, ptr=0x73ffbeb0, sh-ldi=0x7216f390] gateway array update type-time 1 Apr 30 17:03:05.246 LDI Update time Apr 30 17:03:05.246 LW-LDI-TS Apr 30 17:03:05.247 via 10.94.0.10/32, TenGigE0/0/0/2, 4 dependencies, weight 0, class 0 [flags 0x0] path-idx 0 NHID 0x0 [0x7181ce20 0x7181d06c] next hop 10.94.0.10/32 remote adjacency local label 24012 labels imposed {ImplNull} via 10.94.2.9/32, TenGigE0/0/0/3, 4 dependencies, weight 0, class 0 [flags 0x0] path-idx 1 NHID 0x0 [0x7181ce74 0x7181d0c0] next hop 10.94.2.9/32 remote adjacency local label 24012 labels imposed {ImplNull} Load distribution: 0 1 (refcount 19) Hash OK Interface Address Ο Y TenGigE0/0/0/2 remote 1 Y TenGigE0/0/0/3 remote

A partir dessas saídas, você verá que LC 1 é o LC de entrada e LC 0 é o LC de saída, ambos têm duas portas para fazer o balanceamento de carga do tráfego.

Em seguida, você precisa identificar quantos NPs estão no LC de entrada e saída com o comando **show controller np ports all loc <LC>**.

O LC de entrada tem 8 NPs:

```
Node: 0/1/CPU0:
```

NP	Bridge	Fia	Ports			
0		0	TenGigE0/1/0/0 - TenGigE0/1/0/2			
1		0	TenGigE0/1/0/3 - TenGigE0/1/0/5			
2		1	TenGigE0/1/0/6 - TenGigE0/1/0/8			
3		1	TenGigE0/1/0/9 - TenGigE0/1/0/11			
4		2	TenGigE0/1/0/12 - TenGigE0/1/0/14			
5		2	TenGigE0/1/0/15 - TenGigE0/1/0/17			
6		3	TenGigE0/1/0/18 - TenGigE0/1/0/20			
7		3	TenGigE0/1/0/21 - TenGigE0/1/0/23			
O LC de saída tem 2 NPs:						

RP/0/RSP0/CPU0:ASR9006-H#show controller np ports all loc 0/0/cPU0 Tue May 1 10:55:27.661 EDT

Node: 0/0/CPU0:

NP	Bridge	Fia	Ports
0		0	TenGigE0/0/0/0 - TenGigE0/0/0/3
1		1	TenGigE0/0/1/0 - TenGigE0/0/1/3

Em seguida, verifique o LC de ingresso com o comando **show cef <destination prefix> hardware ingress detail loc <ingress lc> | O** comando **I vqi** e o LC de saída com o comando **show cef <dst prefix> hardware egress detail loc <egress lc> | vqi**.

Essas informações nos fornecem informações sobre como cada NP é programado para acessar as interfaces de saída. Nesse caso, como há oito NPs no LC de ingresso e dois enlaces ECMP (Equal Cost Multi-Path) no LC de saída, há 16 entradas. As primeiras oito entradas são para o primeiro link ECMP e as próximas oito entradas são para o segundo link ECMP. Cada conjunto de oito deve coincidir, e isso significa que cada NP está programado para fazer o mesmo. Cada conjunto deve ser diferente, embora haja duas interfaces separadas. Se eles forem iguais, você pode estar tendo um problema de má programação VQI CEF.

```
RP/0/RSP0/CPU0:ASR9006-H#show cef 123.29.62.1 hardware ingress loc 0/1/CPU0 | i vqi
Tue May 1 10:56:27.064 EDT
  sfp/vqi : 0x58
  sfp/vqi
                : 0x58
                : 0x58
  sfp/vqi
  sfp/vqi
                : 0x58
                : 0x58
  sfp/vqi
                : 0x58
  sfp/vqi
  sfp/vqi
                 : 0x58
                : 0x58
  sfp/vqi
                : 0x59
  sfp/vqi
  sfp/vqi
  sfp/vqi
sfp/vqi
sfp/vqi
                 : 0x59
                 : 0x59
  sfp/vqi
                : 0x59
```

Verifique o LC de saída para garantir que ele esteja programado corretamente. Nesse caso, há dois NPs e dois links ECMP, portanto, há dois conjuntos de dois VQIs que precisam ser

```
RP/0/RSP0/CPU0:ASR9006-H#show cef 123.29.62.1 hardware egress loc 0/0/CPU0 | i vqi
Tue May 1 10:57:29.221 EDT
                                    match: 0
                                                    vqi/lag-id: 0x0
      out_lbl_invalid: 0
                                    match: 0
                                                    vqi/lag-id: 0x0
       out_lbl_invalid: 0
  sfp/vqi : 0x58
               : 0x58
  sfp/vqi
                                    match:0vqi/lag-id:0x0match:0vqi/lag-id:0x0
                                   match: 0
       out_lbl_invalid: 0
       out_lbl_invalid: 0
  sfp/vqi : 0x59
                 : 0x59
  sfp/vqi
```

A última coisa a verificar é a atribuição de VQI nas interfaces.

Aqui, você pode verificar a variável switch_fabric_port e converter de decimal para hexadecimal. 88 sendo 58 e 89 sendo 59, esses valores correspondem às atribuições de VQI desses comandos, o que significa que o CEF está programado corretamente para o transporte de VQI no ASR9K.

RP/0/RSP0/CPU0:ASR9006-H#show controller pm interface ten 0/0/0/2 Tue May 1 10:58:52.024 EDT Ifname(1): TenGigE0_0_0_2, ifh: 0x4000140 : iftype 0x1e egress_uidb_index 0x7, 0x7 ingress_uidb_index 0x7, 0x7 port_num 0x2 subslot_num 0x0 $0 \ge 0$ ifsubinst ifsubinst port 0x2 phy_port_num 0x2 channel_id 0x0channel_map 0x0lag_id 0x0virtual_port_id 0x0 switch_fabric_port 88 in_tm_qid_fid0 0x20002
in_tm_qid_fid1 0xfffffff in_qos_drop_base 0x690001 out_tm_qid_fid0 0x20022 out_tm_qid_fid1 0xfffffff np_port 0x6 out_qos_drop_base 0x6900a1 bandwidth 1000000 kbps ing_stats_ptrs 0x53016a, 0x0 egr_stats_ptrs 0x53017b, 0x0 12_transport 0x0 ac_count 0x0 ac_count 0x0parent_ifh 0x0parent_bundle_ifh 0x0 L2 protocols bmap 0x100000 Cluster interface 0 RP/0/RSP0/CPU0:ASR9006-H#show controller pm interface ten 0/0/0/3 Tue May 1 10:59:08.886 EDT Ifname(1): TenGigE0_0_0_3, ifh: 0x4000180 : iftype 0x1e

egress_uidb_index	0x8, 0x8
ingress_uidb_index	0x8, 0x8
port_num	0x3
subslot_num	0x0
ifsubinst	0x0
ifsubinst port	0x3
phy_port_num	0x3
channel_id	0x0
channel_map	0x0
lag_id	0x0
virtual_port_id	0x0
switch_fabric_port	89
in_tm_qid_fid0	0x30002
in_tm_qid_fid1	Oxfffffff
in_qos_drop_base	0x6e0001
out_tm_qid_fid0	0x30022
out_tm_qid_fid1	Oxfffffff
np_port	0x7
out_qos_drop_base	0x6e00a1
bandwidth	10000000 kbps
ing_stats_ptrs	0x530183, 0x0
egr_stats_ptrs	0x530194, 0x0
12_transport	0x0
ac_count	0x0
parent_ifh	0x0
parent_bundle_ifh	0x0
L2 protocols bmap	0x1000000
Cluster interface	0

Sobre esta tradução

A Cisco traduziu este documento com a ajuda de tecnologias de tradução automática e humana para oferecer conteúdo de suporte aos seus usuários no seu próprio idioma, independentemente da localização.

Observe que mesmo a melhor tradução automática não será tão precisa quanto as realizadas por um tradutor profissional.

A Cisco Systems, Inc. não se responsabiliza pela precisão destas traduções e recomenda que o documento original em inglês (link fornecido) seja sempre consultado.