Monitore a CPU ASR1000 através do utilitário SNMP

Contents

Introduction Prerequisites Requirements Componentes Utilizados Informações de Apoio Problema: Como correlacionar a saída dos comandos show com os resultados do SNMP para monitorar a CPU ASR1000? Solução Lista de comandos show para monitorar a CPU do ASR1000 Correlacionar OIDs SNMP com comandos show Summary

Introduction

Este documento descreve como monitorar a CPU do Roteador de Serviços de Agregação 1000 (ASR 1000) através do utilitário SNMP (Simple Network Management Protocol).

Prerequisites

Requirements

A Cisco recomenda que você tenha conhecimento da configuração SNMP.

Componentes Utilizados

As informações neste documento são baseadas nestas versões de software e hardware:

- Cisco IOS® XE
- ASR1000
- SNMP

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. Se a rede estiver ativa, certifique-se de que você entenda o impacto potencial de qualquer comando.

Informações de Apoio

Há várias maneiras e comandos disponíveis para monitorar a CPU ASR1000 e torna-se muito importante monitorá-la o tempo todo. O SNMP é um dos utilitários para monitorar a CPU dos sistemas ASR1000. Você pode encontrar vários resultados dos comandos show e da caminhada

Problema: Como correlacionar a saída dos comandos show com os resultados do SNMP para monitorar a CPU ASR1000?

Neste documento, você pode ver como monitorar a CPU de diferentes módulos, como Route Processor (RP), Extended Services Processor (ESP) e SPA Interface Processor (SIP), que residem no roteador ASR1000.

Solução

Há dois tipos de CPU para monitorar:

- 1. CPU do plano de controle disponível em RP, ESP e SIP.
- 2. CPU de plano de dados Disponível no processador de fluxo quântico (QFP) (reside em ESP)

Lista de comandos show para monitorar a CPU do ASR1000

CPU do plano de controle:

- show proc cpu sorted | ex 0,00
- show processes cpu platform sorted
- show platform software status control-processor brief
- show process cpu platform location <R0/F0/0>

CPU do plano de dados:

• show platform hardware qfp ative datapath usage

Correlacionar OIDs SNMP com comandos show

Quando você usa show proc cpu ordenado | ex 0.00, a saída gerada é a seguinte:

ASR1002#show proc cpu sorted | ex 0.00 CPU utilization for five seconds: 51%/0%; one minute: 44%; five minutes: 25% PID Runtime(ms) Invoked usecs 5Sec 1Min 5Min TTY Process 274 140997 2976 47378 50.55% 32.66% 17.41% 0 IP RIB Update 124 147354 10279 14335 0.64% 0.07% 0.01% 0 Per-minute Jobs 411 191924 4812122 39 0.08% 0.03% 0.05% 0 MMA DB TIMER This command only shows processes inside the IOS daemon. Please use 'show processes cpu platform sorted' to show processes from the underlying operating system. LAPTOP ~ % snmpwalk -v2c -c cisco 10.197.219.243 1.3.6.1.4.1.9.2.1.56 snmpwalk -v2c -c cisco 10.197.219.243 1.3.6.1.4.1.9.2.1.57 snmpwalk -v2c -c cisco 10.197.219.243 1.3.6.1.4.1.9.2.1.58 SNMPv2-SMI::enterprises.9.2.1.56.0 = INTEGER: 51 SNMPv2-SMI::enterprises.9.2.1.57.0 = INTEGER: 44 SNMPv2-SMI::enterprises.9.2.1.58.0 = INTEGER: 25 LAPTOP ~ %

Quando você usa show processes cpu platform ordenada, a saída gerada é esta:

```
49434624 hman ASR1006# LAPTOP ~ % snmpwalk -v2c -c cisco 10.197.219.245
1.3.6.1.4.1.9.9.109.1.1.1.1.3.7 snmpwalk -v2c -c cisco 10.197.219.245
1.3.6.1.4.1.9.9.109.1.1.1.1.4.7 snmpwalk -v2c -c cisco 10.197.219.245
1.3.6.1.4.1.9.9.109.1.1.1.1.5.7 SNMPv2-SMI::enterprises.9.9.109.1.1.1.1.3.7 = Gauge32: 51
SNMPv2-SMI::enterprises.9.9.109.1.1.1.1.4.7 = Gauge32: 12 SNMPv2-
SMI::enterprises.9.9.109.1.1.1.1.5.7 = Gauge32: 6 LAPTOP ~ %
```

Quando você usa o **comando show platform software status control-processor brief**, a saída gerada é a seguinte:

ASR1006#show platform software status control-processor brief | sec Load Load Average Slot Status 1-Min 5-Min 15-Min RPO Healthy 0.49 0.26 0.09 ESPO Healthy 0.17 0.08 0.18 SIPO Healthy 0.00 0.00 ASR1006-1# LAPTOP ~ % snmpwalk -v2c -c cisco 10.197.219.245 1.3.6.1.4.1.9.9.109.1.1.1.1.24 snmpwalk -v2c -c cisco 10.197.219.245 1.3.6.1.4.1.9.9.109.1.1.1.1.25 snmpwalk -v2c -c cisco 10.197.219.245 1.3.6.1.4.1.9.9.109.1.1.1.1.26 SNMPv2-SMI::enterprises.9.9.109.1.1.1.1.24.1 = Gauge32: 0 SNMPv2-SMI::enterprises.9.9.109.1.1.1.1.24.7 = Gauge32: 49 SNMPv2-SMI::enterprises.9.9.109.1.1.1.1.24.9 = Gauge32: 17 SNMPv2-SMI::enterprises.9.9.109.1.1.1.25.1 = Gauge32: 0 SNMPv2-SMI::enterprises.9.9.109.1.1.1.25.7 = Gauge32: 26 SNMPv2-SMI::enterprises.9.9.109.1.1.1.1.25.9 = Gauge32: 8 SNMPv2-SMI::enterprises.9.9.109.1.1.1.26.1 = Gauge32: 0 SNMPv2-SMI::enterprises.9.9.109.1.1.1.26.7 = Gauge32: 9 SNMPv2-SMI::enterprises.9.9.109.1.1.1.26.9 = Gauge32: 18 LAPTOP ~ %

Aqui, ele busca a saída da CPU SIP/RP/ESP por 1 min, 5 min e 15 min. O pedido é SIP, RP e ESP.

Quando você usa show process cpu platform location <R0/F0/0>, a saída gerada é a seguinte:

Gauge32: 22 SNMPv2-SMI::enterprises.9.9.109.1.1.1.1.8.1 = Gauge32: 1 SNMPv2-SMI::enterprises.9.9.109.1.1.1.1.8.7 = Gauge32: 7 SNMPv2-SMI::enterprises.9.9.109.1.1.1.1.8.9 = Gauge32: 22 LAPTOP ~ %

Aqui, ele fornece a saída na ordem de SIP, RP e ESP por 5 segundos, 1 min e 5 min. Em plataformas RP/ESP duplas, você pode usar o RP/ESP ativo. Por exemplo, se o ESP1 estiver ativo, o comando deve ser **show process cpu platform location F1.** Você pode usar o comando **show process cpu platform location <RP/FP> ative** também, mas isso é apenas para RP/ESP. Para o SIP, você precisa mencionar especificamente o local (slot).

Quando você usa o **comando show platform hardware qfp ative datapath**, a saída gerada é a seguinte:

ASR1002#show platform hardware qfp active datapath utilization CPP 0: Subdev 0 5 secs 1 min 5 min 60 min Input: Priority (pps) 7 6 6 6 (bps) 3936 3832 3840 3384 Non-Priority (pps) 28241 28259 28220 6047 (bps) 14459200 14468448 14448584 3095664 Total (pps) 28248 28265 28226 6053

```
(bps) 14463136 14472280 14452424 3099048 Output: Priority (pps) 1 1 1 0 (bps) 1040 1056 1064 408
Non-Priority (pps) 27894 28049 17309 3372 (bps) 8484592 8539056 5276496 1034552 Total (pps)
27895 28050 17310 3372 (bps) 8485632 8540112 5277560 1034960 Processing: Load (pct) 1 1 1 0
ASR1002# LAPTOP ~ % snmpwalk -v2c -c cisco 10.197.219.243 1.3.6.1.4.1.9.9.715.1.1.6.1.14 SNMPv2-
SMI::enterprises.9.9.715.1.1.6.1.14.9027.1 = Gauge32: 1 SNMPv2-
SMI::enterprises.9.9.715.1.1.6.1.14.9027.2 = Gauge32: 1 SNMPv2-
SMI::enterprises.9.9.715.1.1.6.1.14.9027.3 = Gauge32: 1 SNMPv2-
SMI::enterprises.9.9.715.1.1.6.1.14.9027.4 = Gauge32: 0 LAPTOP ~ %
```

Nessa saída, se houver vários Subdevs, ele fornecerá a saída média de carga.

Summary

Comandos	OIDs SNMP
	1.3.6.1.4.1.9.2.1.56
show proc cpu sorted ex 0,00	1.3.6.1.4.1.9.2.1.57
	1.3.6.1.4.1.9.2.1.58
	1.3.6.1.4.1.9.9.109.1.1.1.1.3.7
show processes cpu platform sorted	1.3.6.1.4.1.9.9.109.1.1.1.1.4.7
	1.3.6.1.4.1.9.9.109.1.1.1.1.5.7
	1.3.6.1.4.1.9.9.109.1.1.1.1.24
show platform software status control-processor brief	1.3.6.1.4.1.9.9.109.1.1.1.1.25
	1.3.6.1.4.1.9.9.109.1.1.1.1.26
	1.3.6.1.4.1.9.9.109.1.1.1.1.6
show process cpu platform location <r0 0="" f0=""></r0>	1.3.6.1.4.1.9.9.109.1.1.1.1.7
	1.3.6.1.4.1.9.9.109.1.1.1.1.8
show platform hardware qfp ative datapath usage	1.3.6.1.4.1.9.9.715.1.1.6.1.14