Usar o recurso de captura de pacote Ethernet para solucionar problemas de alta utilização da CPU

Contents

Introduction Prerequisites Requirements Componentes Utilizados Configuração inicial Configuração Capturas de dados comutados por processos Capturas de tráfego gerado localmente Capturas de tráfego apontado para CEF Verificar Troubleshoot

Introduction

Este documento descreve o uso do recurso Ethernet Packet Capture (EPC) para capturar pacotes que são comutados por processo, gerados localmente ou com impacto no Cisco Express Forwarding (CEF). A captura do analisador de porta do switch (SPAN) de banda interna da CPU não é suportada no mecanismo de supervisão 2T (Sup2T).

Note: O recurso EPC no Sup2T não pode capturar o tráfego que é comutado por hardware. Para capturar pacotes comutados por hardware, o recurso Mini Protocol Analyzer deve ser usado. Consulte a seção <u>Mini Protocol Analyzer</u> do *Guia de Configuração do Software Catalyst 6500 Release 12.2SX* para obter mais informações.

Prerequisites

Requirements

A Cisco recomenda que você tenha conhecimento do recurso EPC e alta utilização da CPU devido a interrupções nos switches Catalyst 6500 Series.

Componentes Utilizados

As informações neste documento são baseadas no switch Cisco Catalyst 6500 Series executado em um Sup2T.

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Configuração inicial

Aqui está a configuração inicial.

6500#monitor capture buffer CAP_BUFFER
! Create a capture buffer
6500#monitor capture point ip cef CEF_PUNT punt
! Create capture point for cef punted traffic
6500#monitor capture point ip process-switched PROCESS_SW both
! Create capture point for process switched traffic
6500#monitor capture point ip process-switched LOCAL_TRAFFIC from-us
! Create capture point for locally generated traffic
6500#monitor capture point associate PROCESS_SW CAP_BUFFER
6500#monitor capture point associate LOCAL_TRAFFIC CAP_BUFFER
6500#monitor capture point associate CEF_PUNT CAP_BUFFER
6500#monitor capture points to capture buffer
6500#monitor capture buffer
6500#moni

6500#monitor cap buffer CAP_BUFFER max-size 512 ! Set element size in bytes : 1024 bytes or less (default is 68 bytes)

Configuração

Está aqui a configuração:

6500 #show monitor capture buffer CAP_BUFFER parameters

Capture buffer CAP_BUFFER (linear buffer) Buffer Size : 131072 bytes, Max Element Size : 512 bytes, Packets : 0 Allow-nth-pak : 0, Duration : 0 (seconds), Max packets : 0, pps : 0 Associated Capture Points: Name : PROCESS_SW, Status : Inactive Name : LOCAL_TRAFFIC, Status : Inactive Name : CEF_PUNT, Status : Inactive Configuration: monitor capture buffer CAP_BUFFER size 128 max-size 512 monitor capture point associate PROCESS_SW CAP_BUFFER monitor capture point associate LOCAL_TRAFFIC CAP_BUFFER monitor capture point associate CEF_PUNT CAP_BUFFER

Capturas de dados comutados por processos

Use este procedimento para capturar dados de processo comutado:

1. Inicie o ponto de captura PROCESS_SW.

6500#monitor capture point start PROCESS_SW *Jun 1 06:26:51.237: %BUFCAP-6-ENABLE: Capture Point PROCESS_SW enabled.

2. Verifique a rapidez com que a contagem de pacotes aumenta.

6500#show monitor capture buffer CAP_BUFFER parameters Capture buffer CAP_BUFFER (linear buffer) Buffer Size : 131072 bytes, Max Element Size : 512 bytes, Packets : 20 Allow-nth-pak : 0, Duration : 0 (seconds), Max packets : 0, pps : 0 Associated Capture Points: Name : PROCESS_SW, Status : Active Name : LOCAL_TRAFFIC, Status : Inactive Name : CEF_PUNT, Status : Inactive Configuration: monitor capture buffer CAP_BUFFER size 128 max-size 512 monitor capture point associate PROCESS_SW CAP_BUFFER monitor capture point associate LOCAL_TRAFFIC CAP_BUFFER monitor capture point associate CEF_PUNT CAP_BUFFER

 Inspecione os pacotes capturados para verificar se são pacotes legítimos para switching de processo.

06:26:52.121 UTC Jun 1 2000 : IPv4 Process : Gi1/3 None 01005E00 00020000 0C07AC02 0F6FE920: OF6FE930: 080045C0 00300000 00000111 CCF70A02 ... E@.0......Lw.. 0F6FE940: 0202E000 000207C1 07C1001C 95F60000 ..`...A.A...v.. OF6FE950: 10030A64 02006369 73636F00 00000A02 ...d..cisco..... 0F6FE960: 020100 . . . 06:26:52.769 UTC Jun 1 2000 : IPv4 Process : Gi1/3 None 01005E00 000A0019 AAC0B84B ..^....*@8K 0F6FE920: OF6FE930: 080045C0 00420000 00000158 83E8AC10 ...E@.B.....X.h,. OF6FE940: A8A1E000 000A0205 EDEB0000 00000000 (!`....mk..... OF6FE950: 00000000 0000000 00CA0001 000C0100J..... OF6FE960: 01000000 000F0004 00080C02 01020006 0F6FE970: 0006000D 00 <snip>

6500#show monitor capture buffer CAP_BUFFER dump

4. Pare o ponto de captura e limpe o buffer quando terminar a captura.

6500#monitor capture point stop PROCESS_SW *Jun 1 06:28:37.017: %BUFCAP-6-DISABLE: Capture Point PROCESS_SW disabled. 6500#monitor capture buffer CAP_BUFFER clear

Capturas de tráfego gerado localmente

Use este procedimento para capturar o tráfego gerado localmente:

1. Inicie o ponto de captura LOCAL_TRAFFIC.

6500#monitor capture point start LOCAL_TRAFFIC

*Jun 1 06:29:17.597: %BUFCAP-6-ENABLE: Capture Point LOCAL_TRAFFIC enabled.

2. Verifique a rapidez com que a contagem de pacotes aumenta.

```
6500#show monitor capture buffer CAP_BUFFER parameters
Capture buffer CAP_BUFFER (linear buffer)
Buffer Size : 131072 bytes, Max Element Size : 512 bytes, Packets : 5
Allow-nth-pak : 0, Duration : 0 (seconds), Max packets : 0, pps : 0
Associated Capture Points:
Name : PROCESS_SW, Status : Inactive
Name : LOCAL_TRAFFIC, Status : Active
Name : CEF_PUNT, Status : Inactive
Configuration:
monitor capture buffer CAP_BUFFER size 128 max-size 512
monitor capture point associate PROCESS_SW CAP_BUFFER
monitor capture point associate LOCAL_TRAFFIC CAP_BUFFER
monitor capture point associate CEF_PUNT CAP_BUFFER
```

3. Inspecione os pacotes capturados.

O tráfego encontrado aqui é gerado localmente pelo switch. Alguns exemplos de tráfego são protocolos de controle, Internet Control Message Protocol (ICMP) e dados do switch.

```
      6500#show monitor capture buffer CAP_BUFFER dump

      06:31:40.001 UTC Jun 1 2000 : IPv4 Process : None Gil/3

      5616A9A0: 00020000 03F42800 03800000 76000000 ....t(....v...

      5616A9B0: 00000000 00000000 00000000 ....t(....v...

      5616A9C0: 001D4571 AC412894 0FFDE940 08004500 ...Eq,A(...)i@..E.

      5616A9D0: 0064000A 0000FF01 29A8AC10 9215AC10 .d....)(,...,

      5616A9E0: A7B00800 2F230002 0000000 00000239 '0../#......9

      5616A9F0: 4CECABCD ABCDABCD ABCDABCD ABCDABCD Ll+M+M+M+M+M+M

      5616AA00: ABCDABCD ABCDABCD ABCDABCD ABCDABCD +M+M+M+M+M+M

      5616AA10: ABCDABCD ABCDABCD ABCDABCD ABCDABCD +M+M+M+M+M+M+M

      5616AA20: ABCDABCD ABCDABCD ABCDABCD ABCDABCD +M+M+M+M+M+M+M

      5616AA20: ABCDABCD ABCDABCD ABCDABCD ABCDABCD +M+M+M+M+M+M+M

      5616AA30: ABCDABCD ABCDABCD ABCDABCD ABCDABCD +M+M+M+M+M+M+M

      5616AA30: ABCD00 +M.
```

4. Pare o ponto de captura e limpe o buffer quando terminar a captura.

6500#monitor capture point stop LOCAL_TRAFFIC *Jun 1 06:33:08.353: %BUFCAP-6-DISABLE: Capture Point LOCAL_TRAFFIC disabled.

6500#monitor capture buffer CAP_BUFFER clear

Capturas de tráfego apontado para CEF

Use este procedimento para capturar o tráfego punido com CEF:

1. Inicie o ponto de captura CEF_PUNT.

6500#monitor capture point start CEF_PUNT *Jun 1 06:33:42.657: %BUFCAP-6-ENABLE: Capture Point CEF_PUNT enabled.

2. Verifique a rapidez com que a contagem de pacotes aumenta.

6500**#show monitor capture buffer CAP_BUFFER parameters**

Capture buffer CAP_BUFFER (linear buffer) Buffer Size : 131072 bytes, Max Element Size : 512 bytes, **Packets : 8** Allow-nth-pak : 0, Duration : 0 (seconds), Max packets : 0, pps : 0
Associated Capture Points:
Name : PROCESS_SW, Status : Inactive
Name : LOCAL_TRAFFIC, Status : Inactive
Configuration:
monitor capture buffer CAP_BUFFER size 128 max-size 512
monitor capture point associate PROCESS_SW CAP_BUFFER
monitor capture point associate LOCAL_TRAFFIC CAP_BUFFER
monitor capture point associate CEF_PUNT CAP_BUFFER

3. Inspecione os pacotes capturados.

Os pacotes encontrados aqui seriam direcionados para a CPU devido à adjacência punt programada para o fluxo. Verifique a adjacência do CEF e solucione os problemas da causa raiz.

6504-E#show monitor capture buffer CAP_BUFFER dump

06:47:21.417 UTC Jun 1 2000 : IPv4 CEF Punt : Gi1/1 None 5616B090: 01005E00 000A0019 AAC0B846 080045C0 ..^....*@8F..E@ 5616B0A0: 00420000 00000158 84E8AC10 A7A1E000 .B....X.h,.'!`. 5616B0B0: 000A0205 EDEB0000 00000000 00000000J..... 5616B0C0: 0000000 00CA0001 000C0100 01000000J..... 5616B0D0: 000F0004 00080C02 01020006 0006000D 5616B0E0: 00

4. Filtre os pacotes capturados conforme necessário.

6500#show monitor capture buffer CAP_BUFFER dump filter input-interface gi1/3

```
<snip>
```

5. Pare o ponto de captura e limpe o buffer quando terminar a captura.

```
6500#monitor capture point stop CEF_PUNT
*Jun 1 06:36:01.285: %BUFCAP-6-DISABLE: Capture Point CEF_PUNT disabled.
6500#monitor capture buffer CAP BUFFER clear
```

Verificar

Consulte as etapas de verificação listadas nos processos de configuração para confirmar se sua configuração funciona corretamente.

Troubleshoot

Atualmente, não existem informações disponíveis específicas sobre Troubleshooting para esta configuração.