Catalyst 9000 스위치의 출력 삭제 문제 해결

목차	
<u>소개</u>	
<u>사전 요구 사항</u>	
요구 사항	
<u>사용되는 구성 요소</u>	
<u>배경 정보</u>	
<u> 출력 삭제란?</u>	
<u>혼잡 유형</u>	
<u>낮은 처리량으로 인한 혼잡</u>	
<u>버퍼 혼잡 유효성 검사</u>	
<u>출력 삭제를 확인하기 위한 버퍼 수정</u>	
<u>SoftMax 승수</u>	
<u>큐별 버퍼 수정</u>	
<u>혼잡 관리를 위한 대체 방법</u>	
<u>Wireshark로 출력 삭제 분석</u>	
<u>I/O 비율 보기</u>	
<u>입출력 속도(밀리초) 보기</u>	

소개

이 문서에서는 Catalyst 9000 Series 플랫폼의 출력 삭제 문제를 해결하는 방법에 대해 설명합니다.

사전 요구 사항

요구 사항

Catalyst 9000 Series 플랫폼의 QoS(Quality of Service) 문제를 해결하려면 다음을 이해해야 합니다.

- 표준 QoS 개념
- 모듈형 QoS CLI(Command Line Interface)

사용되는 구성 요소

이 문서의 정보는 이 하드웨어 및 소프트웨어 버전을 기반으로 하지만 방법론과 대부분의 명령은 다른 코드의 다른 Catalyst 9000 Series 스위치에 적용할 수 있습니다.

- Cisco Catalyst 9300
- Cisco IOS® XE 16.12.3

이 문서의 정보는 특정 랩 환경의 디바이스를 토대로 작성되었습니다. 이 문서에 사용된 모든 디바 이스는 초기화된(기본) 컨피그레이션으로 시작되었습니다. 현재 네트워크가 작동 중인 경우 모든 명령의 잠재적인 영향을 미리 숙지하시기 바랍니다.

✤ 참고: 다른 Cisco 플랫폼에서 이러한 기능을 활성화하는 데 사용되는 명령은 해당 설정 가이 드를 참조하십시오.

배경 정보

기본 QoS 컨피그레이션, 대기열 구조 및 버퍼 설명이 포함된 Catalyst 9000 Series 플랫폼의 QoS에 대한 자세한 설명은 Catalyst 9000 QoS 및 <u>Queueing 백서</u> 권장 릴리스 가이드를 검토하여 플랫폼 에 권장되는 최신 소프트웨어를 사용하는지 확인하십시오. 이러한 권장 사항은 소프트웨어가 지원 되는지 확인하고 이전 코드에서 알려진 버그를 방지하는 데 도움이 됩니다. <u>촉매용 권장 릴리스</u>

출력 삭제란?

버퍼 할당에 대한 지식은 버퍼 혼잡으로 인해 출력 드랍이 발생하는 방식을 이해하는 데 도움이 됩 니다. 목적지 인터페이스에 출력 속도를 초과하는 패킷 수가 있을 경우 혼잡이 발생합니다. 이러한 패킷은 전송할 수 있을 때까지 버퍼에 저장해야 합니다. 이러한 스위치에는 ASIC당 최대 36MB의 버퍼가 있으며, 이 버퍼는 ASIC의 모든 포트에 공유됩니다. 이그레스 인터페이스는 라인 레이트로 해당 버퍼를 비울 수 있지만 패킷이 더 빠른 속도로 버퍼링되도록 하는 시나리오에서는 혼잡이 발 생할 수 있습니다. 트래픽 버스트가 1초의 일부만 지속되는 경우에도 혼잡이 발생할 수 있으며, 해 당 버퍼가 완전히 채워지면 트래픽에 레이턴시가 발생하거나 출력이 감소할 수 있습니다.

참고: show interface에 표시되는 출력 삭제 카운터는 기본적으로 바이트 단위로 표시됩니다. 릴리스 16.9.3 이상에서는 이러한 카운터가 기본적으로 패킷입니다.

혼잡 유형

Image 1에서 보는 바와 같이 혼잡에는 두 가지 유형이 있다.

이미지 1. 혼잡 유형

이미지 1에 표시된 두 가지 혼잡 유형은 다음과 같습니다.

- 다대일: 여러 소스 포트에서 동시에 단일 대상으로 트래픽을 전송할 경우 여러 소스에서 수신 한 트래픽의 양에 따라 대상 포트가 혼잡해질 수 있습니다.
- 속도 불일치: 속도가 더 높은 포트가 속도가 더 낮은 포트(예: 10Gbps~1Gbps)로 전송되는 경 우 패킷이 이그레스 포트에서 빠져나가는 데 시간이 걸려야 하며, 이로 인해 지연 및/또는 패 킷 손실이 발생할 수 있습니다.

낮은 처리량으로 인한 혼잡

인터페이스 출력 속도가 최대 인터페이스 용량보다 상당히 낮은 경우에도 트래픽 버스트로 인해 출 력이 감소할 수 있습니다. 기본적으로 show interface 명령의 출력 속도는 5분 동안 평균화되어 짧 은 버스트를 캡처하는 데 적합하지 않습니다. 이 시나리오에서도 밀리초 동안의 트래픽 버스트로 인해 30초 평균 속도가 증가하지 않는 출력 저하가 발생할 수 있지만, 30초 동안의 평균 속도는 30초 동안 평균하는 것이 가장 좋습니다. 이 문서는 Catalyst 9000 Series 스위치에 표시되는 기타 혼잡 문제를 해결하는 데 사용할 수 있습니다.

버퍼 혼잡 유효성 검사

버퍼 혼잡의 유효성을 검사하는 데 사용되는 두 가지 명령이 있습니다. 첫 번째 명령은 show platform hardware fed switch active qos queue config interface <interface>입니다. 이 명령을 사용 하면 이미지 2에 표시된 것처럼 포트의 현재 버퍼 할당을 볼 수 있습니다.

<#root>

9300#

show platform hardware fed switch active qos queue config interface gigabitEthernet 1/0/48

Asic:0 Core:0 DATA Port:47 GPN:48 LinkSpeed:0x1 AFD:Disabled FlatAFD:Disabled QoSMap:0 HW Queues: 376 - 383 DrainFast:Disabled PortSoftStart:2 - 1800 DTS

Hardmax

Softmax

	Port	SMi	n Glbl	SMi	n Por	tStE	nd				
-											
0	1	6	200	7	800	19	475	0	0	3	2400
1	1	5	0	8	1200	19	712	8	300	3	2400
2	1	5	0	6	0	0	0	0	0	3	2400
3	1	5	0	6	0	0	0	0	0	3	2400
4	1	5	0	6	0	0	0	0	0	3	2400
5	1	5	0	6	0	0	0	0	0	3	2400
6	1	5	0	6	0	0	0	0	0	3	2400
7	1	5	0	6	0	0	0	0	0	3	2400

이미지 2. 대기열 버퍼 할당

특히 Hardmax 및 Softmax 열을 보면 대기열에 사용 가능한 버퍼 수가 표시됩니다. 이러한 버퍼가 무엇이며 기본적으로 할당되는 방법에 대한 자세한 내용은 Catalyst 9000 QoS 및 대기열 <u>관리 백서</u> <u>를 참조하십시오</u>.

두 번째 명령은 show platform hardware fed switch active qos queue stats interface <interface>입 니다. 이 명령을 사용하면 인터페이스에 대한 대기열별 통계를 볼 수 있습니다. 여기에는 버퍼에 삽 입된 바이트 수, 사용 가능한 버퍼 부족으로 인해 삭제된 바이트 수가 포함됩니다.

<#root>

9300#

show platform hardware fed switch active qos queue stats interface Gig 1/0/1

DAIA	1010.0	Enqueue counte							
Q Buffers (Count)		Enqueue-THO (Bytes)		Enqueue-TH1 (Bytes)		Enqueue-TH2 (Bytes)	2 Q)	policer (Bytes)	
0	0		0		0				
3842	51797								
		0							
1	0		0		0				
4883	93930284	1							
		0							
2	0		0		0	()	0	
3	0		0		0	(0	0	
4	0		0		0	(0	0	
5	0		0		0	(0	0	
6	0		0		0	(0	0	
7	0		0		0	(0	0	
DATA	Port:0	Drop Counters							
Q		Drop-TH0		Drop-TH1		Drop-TH2	SBufDrop		QebD
		(Bytes)		(Bytes)		(Bytes)	(Bytes)		(Byt
0		0		0		0	0		
1		0		0					
1923	08101								
		0		0		0			
2		0		0		0	0		
3		0		0		0	0		
4		0		0		0	0		
5		0		0		0	0		
6		0		0		0	0		
7		0		0		0	0		

DATA Port:0 Enqueue Counters

이미지 3. 삭제 대기열 버퍼 통계

이미지 3에서 볼 수 있듯이, 대기열 0과 대기열 1은 모두 바이트를 큐에 넣었지만, Drop-TH2 열에서 삭제를 경험하는 것은 대기열 1입니다. 이 정보는 대기열 0 트래픽이 이 혼잡의 영향을 받지 않았음 을 나타내며, 혼잡의 원인은 특히 대기열 1 트래픽입니다.

출력 삭제를 확인하기 위한 버퍼 수정

SoftMax 승수

각 대기열이 공유 풀에서 요청할 수 있는 버퍼 수를 늘리려면 구성 qos 대기열-softmax-multiplier <100 - 1200>을 사용하여 SoftMax 임계값을 늘립니다. 최대값은 1200이고 단일 포트 대기열이 마 이크로 버스트를 흡수하는 능력을 12의 배수로 증가시킵니다. 이 명령은 포트 대기열이 공유 풀에 서 추가 버퍼 단위를 사용할 수 있도록 포트 대기열 임계값을 늘립니다. 이미지 4에서 보여주는 것 처럼, 컨피그레이션 및 증가된 버퍼 할당.

<#root>

9300(config)#

qos queue-softmax-multiplier 1200

9300#

show platform hardware fed switch active gos queue config interface

gigabitEthernet

1/0/48

```
Asic:0 Core:0 DATA Port:47 GPN:48 LinkSpeed:0x1
AFD:Disabled FlatAFD:Disabled QoSMap:0 HW Queues: 376 - 383
 DrainFast:Disabled PortSoftStart:3 - 14400
  DTS Hardmax Softmax
                  PortSMin GlblSMin PortStEnd
            -----
 _ _ _ _ _
     _____
                          _____
0
   16
        200
            9 9600
                   2
                      600
                          0
                              0
                                  1 15000
1
   15
        0 10 14400 2 900 1 450 1 15000
2
  15
              0 0
                     0 0
                              0 1 15000
         06
3
  15
         06
                 0 0
                      0 0
                              0 1 15000
                      0 0
4
  15
        06
               0 0
                              0 1 15000
                              0 1 15000
5
  1 5
         06
               0 0
                      0 0
         06
                       0 0
   15
               0 0
                              0 1 15000
6
               0 0
                      0 0 0
         06
7
   15
                                  1 15000
```

이미지 4. SoftMax 승수가 1200인 대기열 구성

이는 출력 삭제를 해결하는 빠른 방법으로 사용되는 일반적인 구성입니다. 이미지 4에서 이 컨피그 레이션은 모든 인터페이스에서 우선순위가 없는 모든 대기열에 적용됩니다. 버퍼 할당 자체에서는 모든 포트에서 동시에 마이크로 버스트가 발생하지 않는다고 가정합니다. 마이크로-버스트가 임의 의 순간에 발생하는 경우, 공유 버퍼는 이들을 흡수하기 위해 추가적인 버퍼 유닛을 전용할 수 있다 큐별 버퍼 수정

대기열별 버퍼 수정은 SoftMax 승수를 사용할 수 없는 경우 또는 트래픽 프로필에 맞게 버퍼를 미세 조정하려는 경우에 활용할 수 있습니다. 인터페이스별로 스위치인 대기열 버퍼 할당을 수정하려면 정책 맵을 사용해야 합니다. 대부분의 경우 인터페이스의 현재 정책 맵을 수정하고 클래스별로 버 퍼를 변경합니다.

이 예에서 인터페이스 GigabitEthernet1/0/48은 출력 삭제를 경험했습니다. 이미지 5와 같이 이 인 터페이스에 적용되는 이그레스 정책 맵입니다.

policy-map MYPOL class Voice priority level 1 percent 20 class Video priority level 2 percent 10 class Control bandwidth percent 10 class Data bandwidth percent 5 class class-default

이미지 5. 정책 맵 예

이 정책 맵에는 5개의 클래스 맵이 있으며, 이로 인해 인터페이스에 총 5개의 이그레스 큐가 생성됩 니다. 각 클래스에는 우선 순위 수준에 따라 할당되는 기본 버퍼 수가 있습니다.

이미지 6은 현재 버퍼 할당을 표시합니다.

<#root>

9300#

show platform hardware fed switch active qos queue config interface gigabitEthernet 1/0/48

Asic:0 Core:0 DATA Port:47 GPN:48 LinkSpeed:0x1 AFD:Disabled FlatAFD:Disabled QoSMap:0 HW Queues: 376 - 383 DrainFast:Disabled PortSoftStart:3 - 600 DTS Hardmax Softmax PortSMin GlblSMin PortStEnd _____ _____ _____ _____ _____ 1 7 100 10 400 19

이미지 6. 예제 정책을 사용한 대기열 버퍼 구성

이 인터페이스에 출력 중단이 발생했으므로 인터페이스의 대기열 통계를 확인하여 혼잡이 발생한 위치를 확인합니다.

<#root>

9300#

show platform hardware fed switch active qos queue stats interface gigabitEthernet 1/0/48

Q BL	iffers Count)	Enqueue-T (Byte	HO Enqueue s) (By	-TH1 tes)	Enqueue-TH2 (Bytes)	Qpolice (Bytes	r)
0	0		0	0	489094		0
1	0		0	0	4846845		0
2	0		0	0	89498498		0
3	0		0	0			
2129	7827045						
		0					
4	0		0	0	74983184		0
5	0		0	0	0		0
6	0		0	0	0		0
7	0		0	0	0		0
DATA	Port:0	Drop Counters					
DATA Q	• Port:0	Drop Counters Drop-THO	Drop-TH1		Drop-TH2	SBufDrop	QebD
DATA Q	• Port:0	Drop Counters Drop-TH0 (Bytes)	Drop-TH1 (Bytes)		Drop-TH2 (Bytes)	SBufDrop (Bytes)	QebD (Byt
DATA Q 0	• Port:0	Drop Counters Drop-THO (Bytes) 0	Drop-TH1 (Bytes) 0		Drop-TH2 (Bytes) 0	SBufDrop (Bytes) 0	QebD (Byt
DATA Q 0 1	• Port:0	Drop Counters Drop-TH0 (Bytes) 0 0	Drop-TH1 (Bytes) 0 0		Drop-TH2 (Bytes) 0 0	SBufDrop (Bytes) 0 0	QebD (Byt
DATA Q 0 1 2	• Port:0	Drop Counters Drop-THO (Bytes) 0 0 0	Drop-TH1 (Bytes) 0 0 0		Drop-TH2 (Bytes) 0 0 0 0	SBufDrop (Bytes) 0 0 0	QebD (Byt
DATA Q 0 1 2 3	• Port:0	Drop Counters Drop-TH0 (Bytes) 0 0 0 0 0	Drop-TH1 (Bytes) 0 0 0 0 0		Drop-TH2 (Bytes) 0 0 0 0	SBufDrop (Bytes) 0 0 0	QebD (Byt
DATA Q 0 1 2 3 3854	A Port:0	Drop Counters Drop-TH0 (Bytes) 0 0 0 0	Drop-TH1 (Bytes) 0 0 0 0 0		Drop-TH2 (Bytes) 0 0 0	SBufDrop (Bytes) 0 0 0	QebD (Byt
DATA Q 0 1 2 3 3854	A Port:0	Drop Counters Drop-THO (Bytes) 0 0 0 0 0	Drop-TH1 (Bytes) 0 0 0 0 0		Drop-TH2 (Bytes) 0 0 0 0	SBufDrop (Bytes) 0 0 0	QebD (Byt
DATA Q 0 1 2 3 3854 4	A Port:0	Drop Counters Drop-THO (Bytes) 0 0 0 0 0 0	Drop-TH1 (Bytes) 0 0 0 0 0 0 0		Drop-TH2 (Bytes) 0 0 0 0 0	SBufDrop (Bytes) 0 0 0	QebD (Byt
DATA Q 0 1 2 3 3854 4 5	A Port:0	Drop Counters Drop-TH0 (Bytes) 0 0 0 0 0 0 0 0 0 0 0 0 0	Drop-TH1 (Bytes) 0 0 0 0 0 0 0 0		Drop-TH2 (Bytes) 0 0 0 0 0 0	SBufDrop (Bytes) 0 0 0 0	QebD (Byt
DATA Q 0 1 2 3 3854 4 5 6	484	Drop Counters Drop-TH0 (Bytes) 0 0 0 0 0 0 0 0 0 0 0 0 0	Drop-TH1 (Bytes) 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Drop-TH2 (Bytes) 0 0 0 0 0 0 0 0 0 0 0 0	SBufDrop (Bytes) 0 0 0 0 0	QebD (Byt

DATA Port:0 Engueue Counters

이미지 7. 정책 예제와 함께 삭제 대기열 버퍼 통계

이미지 7은 대기열 3에 다른 대기열보다 많은 트래픽이 대기열에 추가되어 있으며, 이 대기열 3에서 만 출력 삭제를 경험했음을 보여줍니다. 대기열 번호가 0에서 시작하므로 대기열 3은 네 번째 클래 스 맵인 클래스 데이터에 매핑됩니다.

이 대기열의 삭제를 줄이려면 대기열 3에 더 많은 버퍼를 할당합니다. 이 버퍼 할당을 변경하려면

정책 맵에서 queue-buffers ratio <0-100> 컨피그레이션을 사용합니다. 정책의 각 클래스에 구성된 경우 최대 100개를 추가해야 합니다. 이 명령으로 단일 클래스만 구성하는 경우 시스템은 다른 대기 열에서 버퍼를 균등하게 빼려고 시도합니다.

이미지 8에서 Data 클래스는 대기열-버퍼 비율 40으로 구성되었습니다.

<#root>

```
policy-map MYPOL
class Voice
priority level 1 percent 20
class Video
priority level 2 percent 10
class Control
bandwidth percent 10
class Data
bandwidth percent 5
```

queue-buffers ratio 40

이미지 8. 수정된 대기열 버퍼가 있는 정책 맵 예

이미지 9에서 Data 클래스에 인터페이스 버퍼의 40%, 총 800개의 버퍼가 있음을 확인할 수 있습니 다.

<#root>

9300#

show platform hardware fed switch active gos queue config interface gigabitEthernet 1/0/48

Asic:0 Core:0 DATA Port:47 GPN:48 LinkSpeed:0x1 AFD:Disabled FlatAFD:Disabled QoSMap:0 HW Queues: 376 - 383 DrainFast:Disabled PortSoftStart:3 - 1200 DTS Hardmax Softmax PortSMin GlblSMin PortStEnd ____ ____ _ _ _ _ _ _ _ _ _____ 0 10 3 1600 1 5 3 1600 3 1600

이미지 9. 업데이트된 예제 정책이 있는 대기열 버퍼 컨피그레이션

이렇게 하면 다른 대기열의 Softmax 버퍼도 줄어듭니다. 변경 사항이 다른 대기열의 출력 삭제를 초 래하지 않도록 하려면 이러한 버퍼를 작은 단위로 변경하는 것이 중요합니다.

변경된 경우 대기열 상태를 확인하고 이 대기열이나 다른 대기열에서 삭제는 계속 증가하는지 확인 합니다. 삭제를 계속하는 경우 출력 삭제를 확인할 때까지 대기열 버퍼 컨피그레이션을 추가로 수 정합니다.

혼잡 관리를 위한 대체 방법

QoS는 기본적으로 트래픽의 우선 순위를 지정하는 방법이며, 모든 출력 삭제 시나리오에 대한 솔 루션은 아닙니다. 대기열 버퍼를 수정해도 모든 출력 삭제를 해결하는 데 충분하지 않은 경우가 있 습니다. 이러한 시나리오에서는 여러 가지 다른 방법으로 혼잡을 관리할 수 있습니다.

• 초과 가입 비율 감소

여기에는 포트 채널 또는 ECMP(Equal Cost Multipath)와 같은 이그레스(egress) 대역폭을 늘리는 방법이 포함되지만, 트래픽 엔지니어링과 같은 더 많은 관련 컨피그레이션이 필요할 수도 있습니다

• 큐잉 스케줄러를 사용하여 트래픽의 우선 순위를 지정합니다.

대기열 스케줄러는 혼잡을 중지하지 않지만, 혼잡으로 인한 영향으로부터 중요한 트래픽을 보호합 니다

- WRED(Weighted Random Early Discard) 또는 WTD(Weighted Tail Drop)와 같은 혼잡 관리 알고리즘을 사용하여 일부 트래픽을 더 일찍 삭제합니다.
- 인그레스의 트래픽을 폴리싱하여 이그레스의 트래픽을 줄입니다.

Wireshark로 출력 삭제 분석

Wireshark는 버퍼 혼잡 및 삭제를 유발하는 트래픽 버스트를 식별하는 데 유용한 툴입니다. 드랍이 발생하는 동안 이그레스 방향으로 인터페이스를 SPAN할 경우 Wireshark는 출력 속도를 그래프로 표시하여 드랍을 트리거한 시점과 트래픽을 확인할 수 있습니다. 이 기능은 낮은 처리량 시나리오 에서 출력 삭제를 식별할 때 특히 유용합니다.

I/O 비율 보기

Wireshark를 사용하여 SPAN 캡처를 연 다음 이미지 10에서 설명한 것처럼 Statistics, I/O Graph 순 으로 선택합니다.

Statistics	Telephony	Wireless	Tools	Help			
Captu	re File Propertie	es Ctrl	+Alt+Shi	ft+C			
Resolv	Resolved Addresses						
Protoc	Protocol Hierarchy						
Conve	Conversations						
Endpo	Endpoints						
Packet	Packet Lengths						
I/O Gr	I/O Graph						
Service	e Response Tim	ie		•			

이미지 10. I/O 그래프 선택

이 옵션을 선택하면 Wireshark는 초당 비트 단위의 트래픽 그래프를 생성합니다. 이미지 11은 출력 삭제를 경험한 인터페이스에 대한 그래프 예를 보여줍니다.

이미지 11. I/O 그래프 비트/밀리초

Image 11 그래프는 인터페이스의 최대 처리량이 80Mbps를 거의 초과하지 않음을 나타냅니다. 기 본 그래프 보기는 패킷 삭제를 유발하는 작은 트래픽 버스트를 식별할 수 있을 만큼 세분화되지 않 았습니다. 초당 트래픽 속도의 평균입니다. 이 속도가 버퍼 혼잡의 원인이 될 수 있는 방법을 알아보 려면 밀리초 단위의 처리량을 고려해 보십시오.

기가비트 인터페이스는 초당 1,000,000,000비트를 전달할 수 있습니다. 밀리초로 변환하면 밀리초 당 1,000,000비트(또는 10^6비트)가 됩니다.

인터페이스 속도가 인터페이스의 포워딩 속도를 초과할 경우 스위치에서 이러한 패킷을 버퍼링해 야 하므로 혼잡이 발생하고 출력이 중단됩니다.

입출력 속도(밀리초) 보기

Wireshark를 사용하면 입출력 속도를 밀리초 당 비트로 그래프화할 수 있습니다. 이렇게 하려면 Interval(간격)을 1초에서 1ms로 줄인 다음 Reset(재설정)을 클릭하여 그래프를 올바르게 표시합니 다. 이 단계는 이미지 12에 나와 있습니다.

이미지 12. 간격을 1ms로 줄이고 그래프 재설정

업데이트된 그래프는 인터페이스의 실제 I/O 속도를 더 정확하게 표시합니다. 속도가 10^6비트/밀 리초를 충족하거나 초과할 경우 스위치에서 정체 또는 출력 드랍이 발생합니다. 이미지 13은 출력 삭제를 경험한 인터페이스에 대한 업데이트된 I/O 그래프를 보여줍니다.

이미지 13. I/O 그래프 비트/밀리초

이미지 13은 10^6 임계값을 충족하거나 초과하는 여러 트래픽 피크가 있음을 보여줍니다. 트래픽은 버퍼링 대상이며 이그레스 버퍼 크기를 초과할 경우 삭제됩니다.

✤ 참고: SPAN 대상이 1Gbps 인터페이스로 연결된 경우, Wireshark의 I/O 속도는 소스 인터페이스 속도에 관계없이 밀리초 당 10^6비트를 초과할 수 없습니다. 대신 SPAN 대상 인터페이스에서 해당 패킷을 버퍼링하거나 삭제합니다. 최대 처리량에서 I/O 그래프가 고착되거나 평균 트래픽 속도가 더 높은 것으로 나타나는 것이 일반적입니다.

이 번역에 관하여

Cisco는 전 세계 사용자에게 다양한 언어로 지원 콘텐츠를 제공하기 위해 기계 번역 기술과 수작업 번역을 병행하여 이 문서를 번역했습니다. 아무리 품질이 높은 기계 번역이라도 전문 번역가의 번 역 결과물만큼 정확하지는 않습니다. Cisco Systems, Inc.는 이 같은 번역에 대해 어떠한 책임도 지지 않으며 항상 원본 영문 문서(링크 제공됨)를 참조할 것을 권장합니다.