포인트-투-포인트(1+1) 컨피그레이션을 2파이버 BLSR으로 변환

목차

<u>소개</u> <u>사전 요구 사항</u> <u>요구 사항</u> <u>사용되는 구성 요소</u> <u>표기 규칙</u> <u>배경 정보</u> <u>포인트-투-포인트(1+1)를 BLSR으로 변환</u> <u>관련 정보</u>

<u>소개</u>

이 문서에서는 ONS 15454 네트워크에서 2개의 노드가 있는 point-to-point(1+1) 컨피그레이션을 2개의 파이버 BLSR(bidirection line switching ring)으로 업그레이드하는 절차에 대해 설명합니다.

<u>사전 요구 사항</u>

<u>요구 사항</u>

다음 주제에 대한 지식을 보유하고 있으면 유용합니다.

• CISCO ONS 15454

<u>사용되는 구성 요소</u>

이 문서의 정보는 다음 소프트웨어 및 하드웨어 버전을 기반으로 합니다.

- CISCO ONS 15454 버전 4: 모두
- CISCO ONS 15454 버전 3: 3.3.0 이상

이 문서의 정보는 특정 랩 환경의 디바이스를 토대로 작성되었습니다. 이 문서에 사용된 모든 디바 이스는 초기화된(기본) 컨피그레이션으로 시작되었습니다. 현재 네트워크가 작동 중인 경우, 모든 명령어의 잠재적인 영향을 미리 숙지하시기 바랍니다.

<u>표기 규칙</u>

문서 규칙에 대한 자세한 내용은 <u>Cisco 기술 팁 표기 규칙을 참고하십시오.</u>

<u>배경 정보</u>

이 문서에서는 두 노드(Node1 및 Node2)가 있는 랩 설정을 사용합니다(<u>그림 1</u> 참조).

현재 설정은 포인트 투 포인트(1+1) 컨피그레이션입니다. 라인 용량은 OC-48입니다. 작동/활성 및 보호/대기 포트는 각각 슬롯 5와 슬롯 6에 있습니다(<u>그림 2</u> 참조).

그림 2 - Point-to-Point(1+1) 구성

Alarms Conditions	History Circuits Provisioning Inventory	Maintenance
Database	Protection Groups	Selected Group
Ether Bridge	: ds3	slot 6 (OC48), port 1, Protect/Standby, IS
Protection	I+I slot 6 (OC48), port 1	slot 5 (OC48), port 1, Working/Active, IS
BLSR		
Software		

현재 두 개의 회로가 있습니다(<u>그림 3</u> 참조).

그림 3 - 회로 2개

Alarms Cor	ditions	History	Circuits P	rovisioning	Inventor	/ Maintenance	
Circuit Nar	ne Type	e Size	Protection	Dir	Status	Source	Destination
circuit one	STS	STS-1	1+1	2-way	ACTIVE	15454 Node 1 West/s2/p1/S1	15454 Node 2 West/s
circuit two	STS	STS-1	1+1	2-way	ACTIVE	15454 Node 1 West/s2/p2/S1	15454 Node 2 West/s

<u>포인트-투-포인트(1+1)를 BLSR으로 변환</u>

포인트-투-포인트(1+1) 컨피그레이션을 2파이버 BLSR 링으로 변환하려면 다음 단계를 완료하십시 오.

- 1. 두 노드 중 하나에 로그인합니다.
- 2. Alarms and **Conditions** 탭을 확인하여 네트워크에 대한 활성 알람 또는 조건이 없는지 확인합 니다. 계속하기 전에 네트워크 관련 경보를 모두 해결합니다.
- 3. 회선 탭을 클릭합니다(<u>그림 4</u>의 화살표 A 참조).**그림 4 CTC 데이터 내보내기: 회로**

4. 일부 회로를 삭제하고 나중에 다시 생성해야 하므로 참조용으로 CTC(회로) 데이터를 내보냅 니다. 다음 단계를 완료하십시오.File(**파일) > Export(내보내기**)를 선택합니다(<u>그림 4</u>의 화살표 B 참조).EXPORT(내보내기) 대화 상자에서 데이터 형식을 선택합니다(<u>그림 5</u> 참조). 세 가지 옵션이 있습니다.HTML로(As HTML) - 이 옵션은 데이터를 그래픽 없이 간단한 HTML 테이블 파일로 저장합니다. Netscape Navigator, Microsoft Internet Explorer와 같은 응용 프로그램이 나 HTML 파일을 열 수 있는 다른 응용 프로그램으로 파일을 보거나 편집할 수 있습니다 .CSV로—이 옵션은 CTC 테이블을 쉼표로 구분된 값(CSV)으로 저장합니다.TSV로—이 옵션 은 CTC 테이블을 탭으로 구분된 값(TSV)으로 저장합니다.**그림 5 - EXPORT 대화 상자**

파일을 저장할 디렉토리로 이동합니다.**확**

인을 클릭합니다.

5. 로그인한 노드 옆의 범위를 마우스 오른쪽 버튼으로 클릭하고 단축 메뉴**에서 회선**을 클릭합니 다(<u>그림 6 참조</u>).**그림 6 - 바로 가기 메뉴에서 회선 선택** Span:15454 Node 1 West/s5/p1 - 15454 Node 2 West/s5/p1 (1+1 OC48)

_<u>C</u>ircuits 🚺

Go To 15454 Node 2 West/s5/p1

Go To 15454 Node 1 West/s5/p1

Circuits

on Span 창이 나타납니다(<u>그림 7</u> 참조).**그림 7 - 스팬 회로**

🞇 Ciro	🞇 Circuits on Span 15454 Node 1 West/s5/p1 - 15454 Node 2 West/s5/p1 (💶 🗖 🗙								
<u>F</u> ile									
STS	VT	Circuit							
1		circuit one							
2		circuit two							
3-48		unused	Available Bandwidth						

- 6. 활성 STS(Synchronous Transport Signal) 회로의 총 수가 스팬 대역폭의 50%를 초과하지 않는지 확인합니다. 4단계에서 내보낸 회로 목록을 사용하여 스팬의 대역폭의 상위 50%에 해당하는 회로를 확인합니다. 이러한 회로를 삭제하고 나중에 다시 생성해야 합니다.Circuit 열에 Unused(미사용)라는 블록이 나타납니다(그림 7 참조). 이 숫자는 스팬 대역폭의 50%를 초과해야 합니다. OC-48의 경우 스팬에서 24개 이상의 STS를 프로비저닝할 수 없습니다. OC-12의 경우 스팬에서 6개 이상의 STS를 프로비저닝할 수 없습니다.
- 7. 포인트 투 포인트 BLSR 변환과 관련된 각 노드에 대해 3단계와 4단계를 반복합니다.
- 8. 1+1 작업 슬롯이 BLSR으로 변환하려는 범위의 양쪽 끝에서 모두 활성화되어 있는지 확인합 니다. 12단계에서 작동하는 슬롯과 참조할 수 있는 보호 포트를 기록해 둡니다. 다음 단계를 완료합니다.노드 보기**에서 Maintenance(유지 관리)** > Protection(보호)을 클릭합니다 .Selected Group(선택한 그룹) 창의 작업 슬롯/포트가 Selected Group(선택한 그룹) 섹션 아래 에 Working/Active(작업 중/활성)로 표시되는지 확인합니다(<u>그림 2</u> 참조).
- 9. 포인트 투 포인트 범위를 지원하는 각 노드에서 보호 그룹을 삭제합니다. 다음 단계를 완료하 십시오.노드 보기에서 Provisioning(프로비저닝) > Protection(보호) 탭을 클릭합니다.삭제할 보호 그룹을 선택하고 삭제를 클릭합니다(그림 8 참조).그림 8 - 보호 그룹 삭제 Alarms Conditions History Circuits Provisioning Inventory Maintenance

General	Protection Groups	Selected Group
Ether Bridge	Esh Li	Name: slot 6 (OC48), port 1 Type: 1+1 (port)
Network	1+1 slot 6 (0C48) nort 1	
Protection		Protect Port: slot 6 (OC48), port 1
BLSR		Available Ports Working Ports
Security		slot 5 (OC48), port 1
SNMP		Recet
DCC/GCC		
Timing		
Alarm Behavior		Bidirectional switching
Defaults		
UCP	Create Delete	Revertive Reversion time (min): 0.5

보호 그룹 삭제 확인 메시지 상자에서 예를 클릭합니다. 그림 9 - 보호 그룹 삭제

	🎯 Delete Prote	ction Group
	Really	delete slot 6 (OC48), port 1 Protection Group?
		Yes No
		단계(a)에서 (d)까지 반복
	하여 범위 끝에 있	는 보호 그룹을 삭제합니다.
10	. 한쪽 엔드 노드의	김 보호 포트에서 다른 엔드 노드의 보호 포트로 파이버를 확인합니다.
11	. 8단계에서 기록	한 이전 보호 슬롯에 SONET SDCC(Data Communication Channel) 종료를
	생성합니다. 노드	- 1과 노드 2에서 다음 절차를 실행합니다.Node(노드) 보기에서 Circuits(회
	선) > DCC /GCC	(DCC/GC <u>C)를 클</u> 릭합니다(<u>그림 10</u> 참조). 그림 10 - SDCC 종료 생성
	Alarms Condition	ns History Circuits Provisioning Inventory Maintenance
	General	SDCC Terminations
	Ether Bridge	Port OSPF Disa Port State Port OSPF Disa Port St GCC Ra
	Network	
	Protection	
	BLSR	
	Security	
	SNMP	
	DCC/GCC	
	Timing	
	Alarm Behavior	
	Defaults	

Create를 클릭합니다. Create SDCC Terminations 대화 상자가 나타납니다(<u>그림 11</u> 참조).그 림 11 - Create SDCC Terminations 대화 상자

Edit...

Delete..

Create...

Edit... Delete..

Create...

UCP

SDCC 종료용 포트를 클릭합니

다. 둘 이상의 포트를 선택하려면 Shift 키 또는 Ctrl 키를 누릅니다.Port **State(포트** 상태) 영역 에서 Set to IS(IS로 설정) 라디오 버튼을 클릭합니다(<u>그림 11</u>의 화살표 A 참조).Disable OSPF on DCC **Link(DCC에서 OSPF 비활성화**) 확인란이 선택되지 않았는지 확인합니다(<u>그</u> <u>림 11</u>의 화살표 B 참조).**OK**(<u>그림 11</u>의 화살표 C 참조)를 클릭합니다.

- 12. 이제 보호 대역폭의 일부인 STS에 프로비저닝한 회로의 경우(OC12 BLSR의 경우 STS 7~12, OC-48 BLSR의 경우 STS 25~48, OC-192 BLSR의 경우 STS 97~192) 각 회로를 삭제 합니다. 6단계에서 회선 목록의 표기법을 참조하십시오.**참고:** 회로를 삭제하면 서비스에 영 향을 줄 수 있습니다.
- 13. 네트워크 보기**에서 Provisioning(프로비저닝) > BLSR**을 선택하고 Create BLSR(BLSR **생성**)을 클릭합니다(<u>그림 12 참조</u>).**그림 12 BLSR 생성**

Alarms Conditions	History	Circuits	Provi	isioning	Mainte	enance			
Security	Ring ID	Ring	Туре	Line Ra	te Sta	atus	Nodes	Ring Reversion	Span Reversion
Alarm Profiles									
BLSR									
Overhead Circuits									
			_						_
	Creat	e BLSR		Delete		Edit	Upg	rade to 4-Fiber	
	-								

14. BLSR 생성 대화 상자에서 BLSR 속성을 설정합니다(<u>그림 13</u> 참조).**벨소리 유형**: BLSR 링 유 형(2파이버 또는 4파이버)을 선택합니다.**속도:** BLSR 벨소리 속도 선택**벨소리 ID**: 벨소리 ID를 할당합니다. 값은 0에서 9999 사이여야 합니다.**복귀 시간**(링 복귀 또는 범위 복귀): 링 스위치 후 트래픽이 원래 작업 경로로 복원되기 전에 경과해야 하는 시간을 설정합니다. 기본 값은 5분입니다.**그림 13 - BLSR 특성**

BLSR Creation				×
Ring Type: 2-Fiber Speed: 0C48 Bing ID: -1	BLSR Attributes			
Ring Reversion: 5.0	Туре:	2 Fiber	C 4 Fiber	
	Speed:	OC48 💌	_	
	Ring ID:	9999		
	Ring Reversion:	5.0 💌		
	Span Reversion:	5.0		
		<back< th=""><th>Next> Finish</th><th>Cancel</th></back<>	Next> Finish	Cancel

15. Next(**다음)를 클릭합니다**. 네트워크 그래픽이 나타납니다(<u>그림 14</u> 참조).**그림 14 - BLSR 토** 폴로지

BLSR Creation		×
Ring Type: 2-Fiber	Create BLSR	
Speed: 0C48 Ring ID: 9999 Ring Reversion: 5.0	s5/p1/W s5/p1/E	
	s6/p1/W 15454 Node 2 West*(0) 15454 Node 2 West*(0)	
		•
	Selected Link: 15454 Node 1 West/s5/p1 - 15454 Node 2 West/s5/p1 (Unprotected C)C48)
	Add Span Remove Span Reverse Span	
	Excluded Nodes	
	<back can<="" finish="" next≥="" td=""><td>cel</td></back>	cel

- 16. 네트워크 그래픽에서 BLSR 스팬 라인을 두 번 클릭합니다. 스팬 라인이 전체 링을 구성하는 다른 BLSR 카드에 연결된 DCC인 경우 선이 파란색으로 바뀌고 Finish 버튼이 나타납니다. 회선이 전체 링을 형성하지 않으면 전체 링 양식을 작성할 때까지 스팬 라인을 두 번 클릭합니다.
- 17. Finish(마침)를 클릭하여 두 개의 파이버 BLSR 생성을 완료합니다. BLSR이 나타납니다(<u>그림</u> <u>15 참조</u>).**그림 15 - 2개의 파이버 BLSR 생성 확인**

Alarms Conditions History Circuits			Provisioning	Maintenand	e	
Security	Ring ID	Ring Ty	/pe Line Ra	te Status	Nodes	Ring Reversion
Alarm Profiles	9999	2-Fibe	er OC48	COMP	15454 Node 2 West(0),	5.0
BLSR					15454 Node 1 West(1)	
Overhead Circuits						

- 18. 12단계에서 삭제한 회로를 다시 생성합니다.
- 19. 네트워크 보기에서 회로를 **클릭합니다**. Protection(보호) 열에서 두 회로에 2F-BLSR이 표시 됩니다(<u>그림 16</u> 참조). 변환 전에 두 회로는 1+1을 보여줍니다(<u>그림 3</u> 참조).**그림 16 - 회로**

Alarms Cond	ditions	Histo	y Circuits	Provisi	Provisioning Maintenance									
Circuit Name	Туре	Size	Protection	Dir	Status	Source				Destination				
circuit two	STS	STS-1	2F-BLSR	2-way	ACTIVE	15454	Node	1	West/s2/	p2/S1	15454	Node	2	West/s
circuit one	STS	STS-1	2F-BLSR	2-way	ACTIVE	15454	Node	1	West/s2/	p1/S1	15454	Node	2	West/s

<u>관련 정보</u>

- <u>Cisco ONS 15454 절차 가이드</u> <u>기술 지원 및 문서 Cisco Systems</u>