

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

Cisco IOS Release 12.2(28)SV CTC and Documentation Release 7.0

Customer Order Number: DOC-J-7817207= Text Part Number: 78-17207-01-J このマニュアルに記載されている仕様および製品に関する情報は、予告なしに変更されることがあります。このマニュアルに記載されている表現、情報、 および推奨事項は、すべて正確であると考えていますが、明示的であれ黙示的であれ、一切の保証の責任を負わないものとします。このマニュアルに記 載されている製品の使用は、すべてユーザ側の責任になります。

対象製品のソフトウェア ライセンスおよび限定保証は、製品に添付された『Information Packet』に記載されています。添付されていない場合には、代理 店にご連絡ください。

FCC クラス A 適合装置に関する記述:この装置はテスト済みであり、FCC ルール Part 15 に規定された仕様のクラス A デジタル装置の制限に適合してい ることが確認済みです。これらの制限は、商業環境で装置を使用したときに、干渉を防止する適切な保護を規定しています。この装置は、無線周波エネ ルギーを生成、使用、または放射する可能性があり、この装置のマニュアルに記載された指示に従って設置および使用しなかった場合、ラジオおよびテ レビの受信障害が起こることがあります。住宅地でこの装置を使用すると、干渉を引き起こす可能性があります。その場合には、ユーザ側の負担で干渉 防止措置を講じる必要があります。

FCC クラス B 適合装置に関する記述:このマニュアルに記載された装置は、無線周波エネルギーを生成および放射する可能性があります。シスコシステムズの指示する設置手順に従わずに装置を設置した場合、ラジオおよびテレビの受信障害が起こることがあります。この装置はテスト済みであり、FCC ルール Part 15 に規定された仕様のクラス B デジタル装置の制限に適合していることが確認済みです。これらの仕様は、住宅地で使用したときに、このような干渉を防止する適切な保護を規定したものです。ただし、特定の設置条件において干渉が起きないことを保証するものではありません。

シスコシステムズの書面による許可なしに装置を改造すると、装置がクラス A またはクラス B のデジタル装置に対する FCC 要件に適合しなくなること があります。その場合、装置を使用するユーザの権利が FCC 規制により制限されることがあり、ラジオまたはテレビの通信に対するいかなる干渉もユー ザ側の負担で矯正するように求められることがあります。

装置の電源を切ることによって、この装置が干渉の原因であるかどうかを判断できます。干渉がなくなれば、シスコシステムズの装置またはその周辺機 器が干渉の原因になっていると考えられます。装置がラジオまたはテレビ受信に干渉する場合には、次の方法で干渉が起きないようにしてください。

・干渉がなくなるまで、テレビまたはラジオのアンテナの向きを変えます。

・テレビまたはラジオの左右どちらかの側に装置を移動させます。

・テレビまたはラジオから離れたところに装置を移動させます。

・テレビまたはラジオとは別の回路にあるコンセントに装置を接続します(装置とテレビまたはラジオがそれぞれ別個のプレーカーまたはヒューズで制御されるようにします)。

米国シスコシステムズ社では、この製品の変更または改造を認めていません。変更または改造した場合には、FCC認定が無効になり、さらに製品を操作 する権限を失うことになります。

シスコシステムズが採用している TCP ヘッダー圧縮機能は、UNIX オペレーティング システムの UCB (University of California, Berkeley) パブリック ド メイン バージョンの一部として、UCB が開発したプログラムを最適化したものです。All rights reserved. Copyright © 1981, Regents of the University of California.

ここに記載されている他のいかなる保証にもよらず、各社のすべてのマニュアルおよびソフトウェアは、障害も含めて「現状のまま」として提供されま す。シスコ システムズおよびこれら各社は、商品性や特定の目的への適合性、権利を侵害しないことに関する、または取り扱い、使用、または取り引き によって発生する、明示されたまたは黙示された一切の保証の責任を負わないものとします。

いかなる場合においても、シスコシステムズおよびその代理店は、このマニュアルの使用またはこのマニュアルを使用できないことによって起こる制約、 利益の損失、データの損傷など間接的で偶発的に起こる特殊な損害のあらゆる可能性がシスコシステムズまたは代理店に知らされていても、それらに対 する責任を一切負いかねます。

CCSP、CCVP、Cisco Square Bridge のロゴ、Follow Me Browsing、StackWise は、Cisco Systems, Inc. の商標です。Changing the Way We Work, Live, Play, and Learn、iQuick Study は、Cisco Systems, Inc. のサービスマークです。Access Registrar、Aironet、BPX、Catalyst、CCDA、CCDP、CCIE、CCIP、CCNA、 CCNP、Cisco、Cisco Certified Internetwork Expert のロゴ、Cisco IOS、Cisco Press、Cisco Systems、Cisco Systems Capital、Cisco Systems のロゴ、Cisco Unity、 Enterprise/Solver、EtherChannel, EtherFast, EtherSwitch, Fast Step, FormShare, GigaDrive, GigaStack, HomeLink, Internet Quotient, IOS、IP/TV、iQ Expertise、 iQ のロゴ、iQ Net Readiness Scorecard、LightStream、Linksys、MeetingPlace、MGX、Networkers のロゴ、Networking Academy、Network Registrar, *Packet*, PIX、Post-Routing、Pre-Routing、ProConnect、RateMUX、ScriptShare、SlideCast、SMARTnet、The Fastest Way to Increase Your Internet Quotient、TransPath は、米国および一部の国における Cisco Systems, Inc. または関連会社の登録商標です。

このマニュアルまたは Web サイトで言及している他の商標はいずれも、それぞれの所有者のものです。「パートナー」という用語を使用していても、シスコシステムズと他社とのパートナー関係を意味するものではありません。(0601R)

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド Copyright © 2000–2005 Cisco Systems, Inc. All rights reserved.

このマニュアルについて xix マニュアルの目的 xx 対象読者 xx マニュアルの構成 xxi 関連資料 xxiii 表記法 xxiv 安全性および警告に関する情報の入手先 xxiv マニュアルの入手方法 xxv Cisco.com xxv Product Documentation DVD xxv シスコ光ネットワーキング製品の Documentation CD-ROM xxv マニュアルの発注方法 xxv シスコ製品のセキュリティ xxvi シスコ製品のセキュリティ問題の報告 xxvi テクニカル サポート xxvii Cisco Technical Support & Documentation Web サイト xxvii Japan TAC Web サイト xxvii Service Request ツールの使用 xxviii 問題の重大度の定義 xxviii その他の資料および情報の入手方法 xxix ML シリーズ カードの概要 1-1 ML シリーズ カードの説明 1-2 ML シリーズ カードの機能一覧 1-3 ML シリーズ カードの主な機能 1-6 Cisco IOS 1-6 DRPRI 1-6 EoMPLS 1-6

GFP-F フレーミング 1-6 リンク集約(FEC、GEC、および POS) 1-7 RPR 1-7

CHAPTER 1

TL1 1-7 VRF Lite 1-7

2-1

CTC の動作 CHAPTER 2

> ML シリーズの POS およびイーサネット統計情報の CTC への表示 2-2 ML シリーズ イーサネット ポートのプロビジョニング情報の CTC への表示 2-3 ML シリーズ POS ポートのプロビジョニング情報の CTC への表示 2-4 フレーミング モードのプロビジョニング 2-5 SONET/SDH アラームの管理 2-5 FPGA 情報の表示 2-6 SONET/SDH 回線のプロビジョニング 2-7 J1 パス トレース 2-7

初期設定 CHAPTER 33-1

> ハードウェアの設置 3-2 ML シリーズ カード上の Cisco IOS 3-3 CTC を使用して Cisco IOS セッションを開く方法 ノードの IP アドレスとスロット番号に Telnet 接続する方法 管理ポートへの Telnet 接続 3-5 ML シリーズの IOS CLI コンソール ポート 3-6 RJ-11/RJ-45 コンソール ケーブル アダプタ 3-6 PC または端末からコンソール ポートへの接続 スタートアップ コンフィギュレーション ファイル 3-8

シリアル コンソール ポートを使用して手動でスタートアップ コンフィギュ レーション ファイルを作成する方法 3-9

3-3

3-6

3-4

- パスワード 3-9
- 管理ポートの設定 3-9
- ホスト名の設定 3-10
- CTC とスタートアップ コンフィギュレーション ファイル 3-11

CTC での Cisco IOS スタートアップ コンフィギュレーション ファイルの ロード 3-11

- スタートアップ コンフィギュレーション ファイルのデータベースの復元 3-13
- 複数のマイクロコード イメージ 3-14
- 使用中のマイクロコード イメージの変更 3-15
- Cisco IOS のコマンド モード 3-16
- コマンド モードの使用 3-18
 - 終了 3-18
 - ヘルプの利用方法 3-18

CHAPTER 4

CHAPTER 5

_____ インターフェイスの設定 4-1

- インターフェイスの一般的な注意事項 4-2
 - MAC アドレス 4-2
 - インターフェイス ポート ID 4-3
- インターフェイスの基本設定 4-4
- ファスト イーサネット、ギガビット イーサネット、および POS インターフェイ スの基本設定 4-6
 - ファスト イーサネット インターフェイスの設定(ML100T-12) 4-6
 - ファスト イーサネット インターフェイスの設定(ML100X-8) 4-7
 - ギガビット イーサネット インターフェイスの設定(ML1000-2) 4-8
 - POS インターフェイスの設定(ML100T-12、ML100X-8、および ML1000-2) 4-9

ファスト イーサネット インターフェイスとギガビット イーサネット インター フェイスのモニタリング操作 4-11

_____ POS の設定 5-1

ML シリーズ カード上の POS 5-2 ML シリーズの SONET および SDH の回線サイズ 5-2 VCAT 5-3 SW-LCAS 5-4 フレーミング モード、カプセル化、および CRC のサポート 5-4 POS インターフェイス フレーミング モード の設定 5-5 POS インターフェイス カプセル化タイプの設定 5-5 HDLC フレーミングの POS インターフェイス CRC サイズの設定 5-6 MTU サイズの設定 5-6 キープアライブ メッセージの設定 5-7 SONET/SDH アラーム 5-7 SONET/SDH アラームの設定 5-7 SONET/SDH 遅延トリガーの設定 5-8 C2 バイトとスクランブリング 5-9 サード パーティ製 POS インターフェイスの C2 バイトおよびスクランブ リングの値 5-10 SPE スクランブリングの設定 5-10 POS のモニタリングと確認 5-11 POS の設定例 5-13 ML シリーズ カード間の設定 5-13 ML シリーズ カードと Cisco 12000 GSR シリーズ ルータ間の設定 5-14 ML シリーズ カードと G シリーズ カード間の設定 5-16 ML シリーズ カードと ONS 15310 ML-100T-8 カード間の設定 5-16

CHAPTER 6	 プリッジの設定 6-1
	基本的なブリッジングの概要 6-2
	基本的なブリッジングの設定 6-3
	基本的なブリッジングのモニタリングと確認 6-5
	トランスペアレント ブリッジング モードの動作 6-6
	IP routing モード 6-6
	no IP routing モード 6-8
	bridge CRB モード 6-8
	bridge IRB モード 6-10
CHAPTER 7	 STP および RSTP の設定 7-1
	STP の機能 7-2
	STP の概要 7-2
	サポートされている STP インスタンス 7-3
	BPDU 7-3
	ルート スイッチの選出 7-4
	ブリッジ ID、スイッチ プライオリティ、および拡張システム ID 7-4
	スパニングツリー タイマー 7-5
	スパニングツリー トポロジーの形成 7-5
	スパニングツリー インターフェイスのステート 7-6
	ブロッキング ステート 7-7
	リスニング ステート 7-7
	ラーニング ステート 7-7
	フォワーディング ステート 7-8
	ディセーブル ステート 7-8
	スパニングツリー アドレスの管理 7-8
	STP および IEEE 802.1Q トランク 7-8
	スパニングツリーおよび冗長接続 7-8
	接続を維持するためのエージングの加速 7-9
	RSTP 7-10
	サポートされている RSTP インスタンス 7-10
	ポートの役割およびアクティブ トポロジー 7-10
	高速コンバージェンス 7-11
	ポートの役割の同期化 7-13
	BPDU の形式と処理 7-14
	優位な BPDU 情報の処理 7-14
	下位 BPDU 情報の処理 7-15
	TC 7-15

I

IEEE802.1D STP との相互運用性 7-15 STP および RSTP 機能の設定 7-16 STP および RSTP のデフォルト設定 7-16 STP および RSTP のディセーブル化 7-17 ルート スイッチの設定 7-17 ポート プライオリティの設定 7-18 パス コストの設定 7-18 ブリッジ グループのスイッチ プライオリティの設定 7-19 Hello タイムの設定 7-20 ブリッジ グループの転送遅延時間の設定 7-21 ブリッジ グループの最大エージング タイムの設定 7-21 STP および RSTP のステータスの確認とモニタリング 7-22 VLAN の設定 8-1 VLAN の概要 8-2 IEEE 802.1Q VLAN のカプセル化の設定 8-3 IEEE 802.1Q VLAN の設定 8-4 VLAN 動作のモニタリングと確認 8-6 IEEE 802.1Q および レイヤ 2 プロトコル のトンネリング設定 9-1 IEEE 802.1Q トンネリングの概要 9-2 IEEE 802.1Q トンネリングの設定 9-5 IEEE 802.1Q トンネリングおよび他の機能との互換性 9-5 IEEE 802.1Q トンネル ポートの設定 9-5 IEEE 802.1Q の例 9-7 VLAN 透過サービスおよび VLAN 固有サービスの概要 9-8 VLAN 透過サービスおよび VLAN 固有サービスの設定例 9-9

レイヤ 2 プロトコル トンネリングの概要 9-13 レイヤ 2 プロトコル トンネリングの設定 9-14 レイヤ 2 プロトコル トンネリングのデフォルト設定 9-14 レイヤ 2 プロトコル トンネリングの設定に関する注意事項 9-14 ポートのレイヤ 2 トンネリングの設定 9-15 VLAN 単位のレイヤ 2 トンネリングの設定 9-16 トンネリング ステータスのモニタリングと確認 9-16

 CHAPTER 10
 リンク集約の設定
 10-1

 リンク集約の概要
 10-2

EtherChannel の設定 10-3 EtherChannel の設定例 10-4

CHAPTER 8

CHAPTER 9

CHAPTER 11

POS チャネルの設定 10-6 POS チャネルの設定例 10-7 EtherChannel または POS チャネルでのカプセル化の概要 10-9 EtherChannel または POS チャネルでのカプセル化の設定 10-9 EtherChannel でのカプセル化の例 10-9 EtherChannel と POS のモニタリングと確認 10-12 ネットワーク プロトコルの設定 11-1 IP ルーティング プロトコルの基本設定 11-2 RIP 11-2 EIGRPEIGRP 11-3 OSPF 11-3 BGP 11-4 IP ルーティングのイネーブル化 11-4 IP ルーティングの設定 11-5 RIP の設定 11-5 RIP 認証 11-8 サマリー アドレスとスプリット ホライズン 11-9 OSPF の設定 11-10 OSPF インターフェイス パラメータ 11-14 OSPF エリア パラメータ 11-16 OSPF のその他の動作パラメータ 11-18 LSA グループ ペーシングの変更 11-19 ループバック インターフェイス 11-20 OSPF のモニタリング 11-21 EIGRP の設定 11-21 EIGRP ルータ モード コマンド 11-24 EIGRP インターフェイス モード コマンド 11-25 EIGRP ルート認証の設定 11-26 EIGRP のモニタリングとメンテナンス 11-27 BGPとCIDR 11-28 BGP の設定 11-29 BGP 設定の確認 11-29 IS-IS の設定 11-31 IS-IS 設定の確認 11-32 スタティック ルートの設定 11-33 スタティック ルートのモニタリング 11-34 IP ネットワークのモニタリングとメンテナンス 11-35 IP マルチキャスト ルーティングの概要 11-36

IP マルチキャスト ルーティングの設定 11-37 IP マルチキャスト動作のモニタリングと確認 11-37

CHAPTER 12 IRB の設定 12-1 IRB の概要 12-2 IRB の設定 12-3 IRB の設定例 12-5 IRB のモニタリングと確認 12-7

CHAPTER 13 VRF Lite の設定 13-1 VRF Lite の概要 13-2 VRF Lite の設定 13-3 VRF Lite の設定例 13-4 VRF Lite のモニタリングと確認 13-9

CHAPTER 14 QoS の設定 14-1

QoS の概要 14-2 IP およびイーサネットのプライオリティ メカニズム 14-2 IP 優先順位および DSCP 14-2 イーサネット CoS 14-3 ML シリーズの QoS 14-4 分類 14-5 ポリシング 14-5 ポリシング機能によるマーキングおよび廃棄 14-6 キューイング 14-6 スケジューリング 14-7 制御パケットとL2 トンネリング プロトコル 14-8 出力プライオリティ マーキング 14-8 入力プライオリティ マーキング 14-9 QinQ 実装 14-9 フロー制御ポーズと QoS 14-10 RPR の QoS 14-11 QoS の設定 14-13 トラフィック クラスの作成 14-13 トラフィック ポリシーの作成 14-14 インターフェイスへのトラフィック ポリシーの適用 14-18 CoS ベース QoS の設定 14-18 QoS 設定のモニタリングおよび確認 14-19 QoS の設定例 14-20

トラフィック クラスの定義例 14-20 トラフィック ポリシーの作成例 14-20 class-map match-any および class-map match-all コマンドの例 14-21 match spr1 インターフェイスの例 14-22 ML シリーズ の VoIP の例 14-22 ML シリーズのポリシングの例 14-23 ML シリーズの CoS ベース QoS の例 14-23 マルチキャスト QoS およびプライオリティ マルチキャスト キューイングの概要 14-25 デフォルトのマルチキャスト QoS 14-26 マルチキャスト プライオリティ キューイング QoS の制限 14-26 マルチキャスト プライオリティ キューイング QoS の設定 14-27 CoS ベース パケットの統計情報の概要 14-28 CoS ベース パケット統計情報の設定 14-29 IP SLA の概要 14-31 ML シリーズ カードの IP SLA 14-31 ML シリーズ カードでの IP SLA の制限事項 14-31

SDM の設定 CHAPTER 15 15-1 SDM の概要 15-2 SDM 領域の概要 15-2 SDM の設定 15-3 SDM 領域の設定 15-3 TCAM の ACL のサイズ設定 15-3 SDM のモニタリングと確認 15-4 ACL の設定 CHAPTER 16 16-1 ACL の概要 16-2 ML シリーズにおける ACL サポート 16-2 IP ACL 16-2 名前付き IP ACL 16-3 ユーザの注意事項 16-3 IP ACL の作成 16-3 番号付き標準および拡張 IP ACL の作成 16-3 名前付き標準 IP ACL の作成 16-4 名前付き拡張 IP ACL の作成(制御プレーン専用) 16-5 インターフェイスへの ACL の適用 16-5

ACL TCAM サイズの変更 16-6

CHAPTER 17

I

RPR の設定 17-1 RPR の概要 17-2 SONET/SDH 回線の役割 17-2 パケット処理動作 17-2 リング ラッピング 17-3 RPR フレーミング プロセス 17-5 MAC アドレスと VLAN サポート 17-6 RPR QoS 17-6 CTM および RPR 17-6 RPR の設定 17-7 ML シリーズ カードとポイントツーポイント STS/STM 回線の接続 17-7 RPR の CTC 回線の設定 17-7 RPR の CTC 回線の設定例 17-8 ML シリーズ カード上の RPR 特性と SPR インターフェイスの設定 17-12 ML シリーズ カードの POS ポートの SPR インターフェイスへの割り当て 17-14 ブリッジ グループの作成とイーサネットおよび SPR インターフェイスの割 り当て 17-16 RPR Cisco IOS の設定例 17-17 RPR イーサネット アクセス ポート間のイーサネット接続の確認 17-19 RPR のモニタリングおよび確認 17-19 ML シリーズ カードの RPR への追加 17-20 ML シリーズ カードの RPR への追加 17-22 RPR からの ML シリーズ カードの削除 17-25 RPR からの ML シリーズ カードの削除 17-27 RPR LFP の概要 17-30 LFP シーケンス 17-31 伝播遅延 17-31 LFP の設定 17-32 LFP の設定要件 17-33 LFP のモニタリングおよび確認 17-33 デュアル RPR 相互接続の概要 17-34 DRPRI の設定 17-36 DRPRI IOS の設定例 17-37 DRPRIのモニタリングおよび確認 17-42 EoMPLS の設定 18-1 EoMPLS の概要 18-2

EoMPLS のサポート 18-3

CHAPTER 18

CHAPTER 19

EoMPLS の制限 18-4 EoMPLS の QoS 18-4 EoMPLS の設定 18-6 EoMPLS 設定の注意事項 18-6 PE-CLE ポート上での VC タイプ 4 設定 18-6 PE-CLE ポート上での VC タイプ 5 設定 18-8 PE-CLE SPR インターフェイスでの EoMPLS 設定 18-10 MPLS クラウドに面しているポートでのブリッジ グループ設定 18-10 パケットのプライオリティと EXP の設定 18-11 EoMPLS の設定例 18-12 EoMPLS のモニタリングと確認 18-15 ML シリーズ カードのセキュリティ設定 19-1 セキュリティの概要 19-2 ML シリーズ カードの コンソール ポートのディセーブル化 19-2 ML シリーズ カードへのセキュアなログイン 19-2 ML シリーズ カードの SSH 19-3 SSH の概要 19-3 SSH の設定 19-3 設定の注意事項 19-4 SSH を実行するための ML シリーズ カードの設定 19-4 SSH サーバの設定 19-5 SSH 設定およびステータスの表示 19-6 ML シリーズ カード上の RADIUS 19-7 RADIUS リレー モード 19-7 RADIUS リレー モードの設定 19-8 RADIUS スタンドアロン モード 19-9 RADIUS の概要 19-9 RADIUS の設定 19-10 RADIUS のデフォルト設定 19-10 RADIUS サーバ ホストの特定 19-10 AAA ログイン認証の設定 19-13 AAA サーバ グループの定義 19-15 ユーザ イネーブル アクセスおよびネットワーク サービス用の RADIUS 許 可の設定 19-17 RADIUS アカウンティングの開始 19-18

RADIUS パケット内の nas-ip-address の設定 19-19

すべての RADIUS サーバに対する設定 19-20

ベンダー固有の RADIUS 属性用の ML シリーズ カードの設定 19-20

Contents

ベンダー固有の RAI 19-22	NUS サーバ通信用の ML シリーズ カードの設定
RADIUS 設定の表示	19-23

CHAPTER 20

_____ ONS イーサネット カード上の POS 20-1

POS の概要 20-2

POS 相互運用性 20-3

POS カプセル化タイプ 20-5

LEX 20-5

PPP/BCP 20-5

Cisco HDLC 20-6

Eシリーズ専用 20-6

POS フレーミング モード 20-7

HDLC フレーミング 20-7

GFP-F フレーミング 20-7

特定の ONS イーサネット カードの POS 特性 20-8

ONS 15327 E-10/100-4 フレーム化オプションとカプセル化オプション 20-8

ONS 15454 および ONS 15454 SDH E シリーズのフレーム化オプションとカ プセル化オプション 20-8

G シリーズのカプセル化およびフレーム化 20-9

ONS 15454、ONS 15454 SDH、ONS 15310-CL、および ONS 15310-MA CE シリーズ カードのカプセル化とフレーム化 20-10

ONS 15310 ML-100T-8 のカプセル化およびフレーム化 20-10

ONS 15454 および ONS 15454 SDH ML シリーズ プロトコルのカプセル化お よびフレーム化 20-10

イーサネットのクロッキングと SONET/SDH のクロッキング 20-12

CHAPTER 21 RMON の設定 21-1

RMON の概要 21-2

RMON の設定 21-3

RMON のデフォルト設定 21-3

RMON アラームおよびイベントの設定 21-3

インターフェイスでのグループ履歴統計情報の収集 21-5

インターフェイスでのグループ イーサネット統計情報の収集 21-6

ML シリーズ カードの CRC エラー スレッシュホールドの概要 21-7
 以前のアクションおよびトリガされたアクション 21-7
 CRC-ALARM の SONET/GFP 抑制 21-8
 CRC-ALARM のクリア 21-8

同期化のラップ解除 21-8

単一方向エラー 21-9 双方向エラー 21-11 ML シリーズ カードの CRC エラー スレッシュホールドの設定 21-14 クリア CRC エラー コマンドを使用した CRC-ALARM ラップの解除 21-15 CRC エラーの ML シリーズ カードの RMON の設定 21-16 ML シリーズ カードの CRC スレッシュホールドの設定の注意事項 21-16 SNMP を通じた CRC エラーへのアクセス 21-16 Cisco IOS を使用した CRC エラー スレッシュホールドの SNMP トラップの 設定 21-16 ML シリーズ カードの ifIndex 番号の判別 21-18 ML シリーズ カードでの手動による CRC エラー検証 21-20 RMON ステータスの表示 21-21

CHAPTER 22 SNMP の設定 22-1

SNMP の概要 22-2 ML シリーズ カード上の SNMP 22-3 SNMP のバージョン 22-3 SNMP マネージャの機能 22-4 SNMP エージェントの機能 22-4 SNMP コミュニティ ストリング 22-5 SNMP による MIB 変数へのアクセス 22-5 サポート対象の MIB 22-6 SNMP 通知 22-6

SNMP の設定 22-7

SNMP のデフォルト設定 22-7 SNMP 設定時の注意事項 22-7 SNMP エージェントのディセーブル化 22-8 コミュニティ ストリングの設定 22-8 SNMP グループおよびユーザの設定 22-10 SNMP 通知の設定 22-11 エージェント コンタクトおよびロケーション情報の設定 22-14 SNMP 経由で使用する TFTP サーバの制限 22-14 SNMP の例 22-15 SNMP ステータスの表示 22-16

снартев 23 E シリーズおよび G シリーズ イーサネットの運用 23-1 G シリーズのアプリケーション 23-2 G1K-4 カードと G1000-4 カードの比較 23-3

G シリーズ カードの例 23-3

IEEE 802.3z のフロー制御とフレーム バッファリング 23-4 GEC/IEEE 802.3ad リンク集約 23-5 イーサネット リンク完全性のサポート 23-6 イーサネット ポートおよび SONET/SDH ポートの管理状態とサービス状態お よびソーク時間 23-7 G シリーズ カードの回線構成 23-8 G シリーズ カードのポイントツーポイント イーサネット回線 23-8 G シリーズ カードの手動クロスコネクト 23-9 G シリーズ ギガビット イーサネット トランスポンダ モード 23-10 2 ポート双方向トランスポンダ モード 23-12 1ポート双方向トランスポンダ モード 23-12 2 ポート単方向トランスポンダ モード 23-13 G シリーズ トランスポンダ モードの特性 23-13 Eシリーズ カードのアプリケーション 23-15 Eシリーズ カードのモード 23-15 Eシリーズのマルチカード EtherSwitch グループ 23-15 E シリーズ シングルカード EtherSwitch 23-16 ポートマップ(リニア マッパー) 23-17 Eシリーズ モードで使用可能な回線サイズ 23-18 Eシリーズ モードで使用可能な合計帯域幅 23-18 E シリーズ カードの IEEE 802.3z フロー制御 23-18 Eシリーズの VLAN サポート 23-19 E シリーズ カードの Q タギング(IEEE 802.1Q) 23-20 E シリーズ カードの優先キューイング(IEEE 802.1Q) 23-21 E シリーズのスパニングツリー(IEEE 802.1D) 23-23 Eシリーズ カードの複数インスタンス スパニングツリーと VLAN 23-24 回線単位のスパニングツリー 23-24 Eシリーズ カードのスパニングツリー パラメータ 23-24 Eシリーズ カードのスパニングツリー設定 23-25 Eシリーズ カードの回線構成 23-26 Eシリーズ カードの回線保護 23-26 Eシリーズ カードのポイントツーポイント イーサネット回線 23-27 Eシリーズ カードの共有パケット リング イーサネット回線 23-28 Eシリーズ カードのハブアンドスポーク イーサネット回線のプロビジョニン グ 23-28 Eシリーズ カードのイーサネット手動クロスコネクト 23-29 RMON 仕様アラーム スレッシュホールド 23-30

CE-100T-8 イーサネットの運用 CHAPTER $2\overline{4}$ 24-1 CE-100T-8 の概要 24-2 CE-100T-8 のイーサネットの機能 24-3 自動ネゴシエーション、フロー制御、およびフレーム バッファリング 24-3 イーサネット リンク完全性のサポート 24-4 イーサネット ポートおよび SONET/SDH ポートの管理状態とサービス状態お よびソーク時間 24-5 IEEE 802.1Q CoS および IP ToS キューイング 24-5 RMON および SNMP のサポート 24-7 統計情報およびカウンタ 24-7 CE-100T-8 の SONET/SDH 回線および機能 24-8 利用可能な回線サイズと組み合わせ 24-8 CE-100T-8 プール 24-12 STS/VT 割り当てタブまたは VC4/VC LO 割り当てタブでの CE-100T-8 プール情報の表示 24-12 CE-100T-8 プール割り当ての例 24-13 CE-100T-8 プール プロビジョニング規則 24-14 CE-100T-8 の VCAT の特性 24-14 CE-100T-8 の POS カプセル化、フレーム化、および CRC 24-14 CE-100T-8 のループバック、J1 パス トレース、および SONET/SDH アラー 6 24-15 CE-1000-4 イーサネットの動作 CHAPTER 25 25-1

CE-1000-4 の概要 25-2 CE-1000-4 イーサネットの機能 25-3 自動ネゴシエーションおよびフレーム バッファリング 25-3 フロー制御 25-3 フロー制御のスレッシュホールド プロビジョニング 25-4 イーサネット リンク完全性のサポート 25-5 イーサネット ポートおよび SONET/SDH ポートの管理状態とサービス状態お よびソーク時間 25-5 RMON および SNMP のサポート 25-6 統計情報およびカウンタ 25-6 CE-1000-4 の SONET/SDH 回線および機能 25-7 CE-1000-4 VCAT の特性 25-7 CE-1000-4 の POS カプセル化、フレーム化、および CRC 25-9 CE-1000-4 のループバック、J1 パス トレース、および SONET/SDH アラー Δ 25-9

78-17207-01-J

APPENDIX $\mathbf A$

コマンドリファレンス A-1

[no] bridge bridge-group-number protocol {drpri-rstp | ieee | rstp} A-2 [no] clock auto A-3 interface spr 1 Δ-4 [no] ip radius nas-ip-address {hostname | ip-address} A-5 microcode fail system reload A-6 [no] pos pdi holdoff time A-7 [no] pos report alarm A-8 [non] pos trigger defects condition A-9 [no] pos trigger delav time A-10 [no] pos scramble-spe A-11 [no] pos vcat defect {immediate | delayed} A-12 [no] pos vcat resequence {enable | disable} A-13 show controller pos interface-number [details] A-14 show interface pos interface-number A-17 show ons alarm A-18 show ons alarm defect eqpt A-19 show ons alarm defect port A-20 show ons alarm defect pos interface-number A-21 show ons alarm failure eqpt A-22 show ons alarm failure port A-22 show ons alarm failure pos interface-number A-23 spr drpri-id $\{0 \mid 1\}$ A-24 spr-intf-id shared-packet-ring-number A-25 [no] spr load-balance { auto | port-based } A-26 spr station-id station-id-number A-27 spr wrap { immediate | delayed } A-28 xconnect A-29

APPENDIX ${f B}$

____ サポートされていない CLI コマンド Β-1

サポートされていないイネーブル EXEC コマンド B-1
サポートされていないグローバル コンフィギュレーション コマンド B-2
サポートされていない POS インターフェイス コンフィギュレーション コマンド B-4
サポートされていないファースト イーサネットまたはギガビット イーサネット インターフェイス コンフィギュレーション コマンド B-6
サポートされていない Port-Channel インターフェイス コンフィギュレーション コマンド B-7
サポートされていない BVI インターフェイス コンフィギュレーション コマンド B-8

APPENDIX C

テクニカル サポートの利用方法 C-1 インターネットワーク情報の収集 C-2 ML シリーズ カードからのデータの取得 C-3 テクニカル サポート担当者へのデータの提供 C-3 I

78-17207-01-J

INDEX

索引

このマニュアルについて

ここでは、このマニュアルの目的、対象読者、構成について説明するとともに、本書で使用してい る表記法、およびその他の情報を記載しています。

ここでは、次の内容について説明します。

- マニュアルの目的
- 対象読者
- マニュアルの構成
- 関連資料
- 表記法
- 安全性および警告に関する情報の入手先
- マニュアルの入手方法
- シスコ製品のセキュリティ
- テクニカル サポート
- その他の資料および情報の入手方法

マニュアルの目的

このマニュアルでは、Cisco ONS 15454、Cisco ONS 15454 SDH、および Cisco ONS 15327 のイーサ ネットカードのソフトウェア機能と運用について説明します。また、ML シリーズカードの Cisco IOS ソフトウェアの機能および設定について説明します。ML シリーズカードは、Cisco ONS 15454 SONET または Cisco ONS 15454 SDH システムのモジュールです。さらに、E シリーズカード、G シリーズカード、CE シリーズカードの CTC ソフトウェアの機能および設定についても説明しま す。E シリーズカードおよび G シリーズカードは、Cisco ONS 15454、Cisco ONS 15454 SDH、お よび Cisco ONS 15327 のモジュールです。CE シリーズカードは、Cisco ONS 15454 のモジュールで す。また、CE-100T-8 カードは Cisco ONS 15310-CL のモジュールとしても使用できます。Cisco ONS 15310-CL バージョンのカードについては、ONS 15310-CL の『Cisco ONS 15310-CL and Cisco ONS 15310-MA Ethernet Card Software Feature and Configuration Guide』を参照してください。このマニュ アルは、関連資料に記載されている適切なマニュアルと併せて使用してください。

対象読者

このマニュアルの ML シリーズ カードに関する章の使用に際しては、Cisco IOS を十分に理解して いることが必要となります。また、ネットワーキングの技術的な基礎知識と経験があることが望ま れます。このマニュアルの E シリーズ カード、G シリーズ カード、および CE シリーズ カードに 関する章の使用に際しては、CTC を十分に理解していることが必要となります。また、ネットワー キングの技術的な基礎知識と経験があることが望まれます。

マニュアルの構成

この『Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィ ギュレーション ガイド』は、次の章で構成されています。

- 第1章「MLシリーズカードの概要」では、MLシリーズカード、機能一覧、主要機能について説明します。
- 第2章「CTC の動作」では、ML シリーズカードで Cisco Transport Controller(CTC)ソフトウェアを使用するための詳細と手順について説明します。
- 第3章「初期設定」では、ML シリーズ カードにアクセスし、起動設定ファイルを作成および 管理するための手順について説明します。
- 第4章「インターフェイスの設定」では、MLシリーズカードのインターフェイスの詳細および基本手順について説明します。
- 第5章「POSの設定」では、MLシリーズカードのPOSインターフェイスの詳細および高度な 手順について説明します。
- 第6章「ブリッジの設定」では、MLシリーズカードのブリッジングの例および手順について 説明します。
- 第7章「STP および RSTP の設定」では、ML シリーズ カードのスパニング ツリーと高速スパニング ツリーの例、および手順について説明します。
- 第8章「VLAN の設定」では、ML シリーズ カードの VLAN (仮想 LAN)の例および手順につ いて説明します。
- 第9章「IEEE 802.1Q および レイヤ 2 プロトコル のトンネリング設定」では、ML シリーズ カードのトンネリングの例および手順について説明します。
- 第 10章「リンク集約の設定」では、MLシリーズカードの EtherChannel と Packet-over-SONET/SDH (POS)チャネルの例、および手順について説明します。
- 第 11 章「ネットワーク プロトコルの設定」では、ML シリーズ カードのネットワーク プロト コルの例および手順について説明します。
- 第 12 章「IRB の設定」では、ML シリーズ カードの Integrated Routing and Bridging (IRB; 統合 ルーティングおよびブリッジング)の例および手順について説明します。
- 第13章「VRF Lite の設定」では、ML シリーズカードの VPN Routing and Forwarding Lite (VRF Lite)の例および手順について説明します。
- 第 14 章「QoS の設定」では、ML シリーズ カードの Quality of Service (QoS; サービス品質)の 例および手順について説明します。
- 第 15 章「SDM の設定」では、ML シリーズ カードのスイッチング データベース マネージャの 例および手順について説明します。
- 第 16 章「ACL の設定」では、ML シリーズカードの Access Control List (ACL; アクセス制御リ スト)の例および手順について説明します。
- 第 17 章「RPR の設定」では、ML シリーズ カードの Resilient Packet Ring (RPR; 復元パケット リング)の例および手順について説明します。
- 第 18 章 EoMPLS の設定」では、ML シリーズカードの Ethernet over Multiprotocol Label Switching (EoMPLS)の例および手順について説明します。
- 第 19章「MLシリーズカードのセキュリティ設定」では、MLシリーズカードのセキュリティ 機能について説明します。
- 第 20 章「ONS イーサネット カード上の POS」では、イーサネット カード上の POS について詳細に説明します。また、イーサネット カードの相互運用性についても詳細に説明します。
- 第 21 章「RMON の設定」では、ML シリーズカード上での Remote Network Monitoring(RMON)の設定方法について説明します。
- 第 22 章「SNMPの設定」では、MLシリーズカードとSNMP(簡易ネットワーク管理プロトコル)を連携させるための設定方法について説明します。

- 第 23 章「EシリーズおよびGシリーズイーサネットの運用」では、ONS 15454、ONS 15454 SDH、 ONS 15327 プラットフォームでのEシリーズおよびGシリーズイーサネットカードの機能と 運用について詳細に説明します。
- 第 24 章「CE-100T-8 イーサネットの運用」では、CE-100T-8 イーサネット カードの機能と運用 について詳細に説明します。
- 第 25 章「CE-1000-4 イーサネットの動作」では、CE-1000-4 カードの運用について説明します。
- 付録 A「コマンド リファレンス」では、ML シリーズ カード固有の Cisco IOS コマンドをアル ファベット順に記載し、各コマンドの定義と例について説明します。
- 付録 B「サポートされていない CLI コマンド」では、ML シリーズ カードでサポートされてい ない Cisco IOS コマンドを分類し、アルファベット順に記載しています。
- 付録 C[「]テクニカル サポートの利用方法」では、ML シリーズ カードで問題が発生した場合に、 シスコの Technical Assistance Center (TAC)を利用する方法について説明します。

関連資料

この『Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィ ギュレーション ガイド』は、次の ONS 15454 または ONS 15454 SDH システムの一般的なマニュア ルと併せて使用してください。

- 『Cisco ONS 15454 Procedure Guide』 Cisco ONS 15454 ノードとネットワークの設置、ターンアップ、プロビジョニング、および保 守の方法について説明しています。
- 『Cisco ONS 15454 SDH Procedure Guide』 Cisco ONS 15454 SDH ノードとネットワークの設置、ターンアップ、プロビジョニング、および保守の方法について説明しています。
- 『Cisco ONS 15454 Reference Manual』 カードの詳細仕様、ハードウェアおよびソフトウェア機能の説明、ネットワークトポロジー情報、およびネットワーク要素のデフォルトについて説明します。
- 『Cisco ONS 15454 SDH Reference Manual』 カードの詳細仕様、ハードウェアおよびソフトウェア機能の説明、ネットワークトポロジー情報、およびネットワーク要素のデフォルトについて説明します。
- 『Cisco ONS 15454 Troubleshooting Guide』 アラームの説明、アラームおよび一般的なトラブルシューティング手順、エラー メッセージ、 パフォーマンス モニタリングと SNMP パラメータについて説明します。
- 『Cisco ONS 15454 SDH Troubleshooting Guide』
 一般的なトラブルシューティング手順、アラームの説明とトラブルシューティング手順、エラーメッセージ、およびパフォーマンスモニタリングと SNMP パラメータに関する情報を提供します。
- 『Cisco ONS SONET TL1 Command Guide』 Cisco ONS 15454、ONS 15327、ONS 15600、ONS 15310-CL、および ONS 15310-MA システムの パラメータ、AID、条件、修飾子などの、すべての TL1 コマンドおよび自律メッセージ セット について説明します。
- 『Cisco ONS 15454 SDH TL1 Command Guide』 Cisco ONS 15454 SDH のパラメータ、AID、条件、修飾子などの、すべての TL1 コマンドおよ び自律メッセージ セットについて説明します。
- 『Cisco ONS SONET TL1 Reference Guide』
 Cisco ONS 15454、ONS 15327、ONS 15600、ONS 15310-CL、および Cisco ONS 15310-MA シス テムにおける、TL1の一般的な情報、手順、エラーについて説明します。
- 『Cisco ONS 15454 SDH TL1 Reference Guide』 Cisco ONS 15454 SDH における、TL1の一般的な情報、手順、エラーについて説明します。
- 『Release Notes for the Cisco ONS 15454 Release 7.0』
 注意事項、すでに終了した問題、新機能の情報を提供します。
- 『Release Notes for the Cisco ONS 15454 SDH Release 7.0』
 注意事項、すでに終了した問題、新機能の情報を提供します。
- 『Release Notes for the Cisco ONS 15327 Release 7.0』
 注意事項、すでに終了した問題、新機能の情報を提供します。

ML シリーズ カードでは、Cisco IOS の Modular QoS CLI(MQC; モジュラ QoS コマンドライン イン ターフェイス)を使用します。MQC の一般的な設定の詳細については、次の Cisco IOS のマニュア ルを参照してください。

- Cisco IOS Quality of Service Solutions Configuration Guide, Release 12.2
- Cisco IOS Quality of Service Solutions Command Reference, Release 12.2

ML シリーズ カードでは、Cisco IOS 12.2 を使用します。Cisco IOS 12.2 に関する一般的な情報については、次の URL に掲載されているさまざまな Cisco IOS マニュアルを参照してください。

• http://www.cisco.com/

表記法

このマニュアルでは、次の表記法を使用しています。

表記	適用
太字	コマンドおよびキーワードは、 太字 で示しています。
イタリック体	ユーザの入力する引数は <i>イタリック体</i> で示しています。
[]	角カッコ内のキーワードや引数は、省略可能です。
$\{ x \mid x \mid x \}$	必須キーワード(左の表記法では x)は、波カッコで囲み、縦棒で区 切って示しています。必ずどれか 1 つを選択する必要があります。
Ctrl	Ctrl キーを表します。たとえば、Ctrl+D と書いてある場合は、Ctrl キー を押しながら D キーを押すことを意味します。
screen フォント	画面に表示される情報は、screen フォントで示しています。
太字の screen フォント	ユーザが入力しなければならない情報は、 太字 の screen フォントで示 しています。
< >	モジュール固有のコードで置き換える必要があるコマンド パラメータ を示しています。

-「*注釈*」です。役立つ情報や、このマニュアル以外の参照資料などを紹介しています。

「*要注意*」の意味です。機器の損傷またはデータ損失を予防するための注意事項が記述されています。

安全上の重要事項

「*危険*」の意味です。人身事故を予防するための注意事項が記述されています。機器の取り扱い作 業を行うときは、電気回路の危険性に注意し、一般的な事故防止対策に留意してください。

これらの注意事項を保存しておいてください。

安全性および警告に関する情報の入手先

安全情報と警告情報については、本製品に付属している『Cisco Optical Transport Products Safety and Compliance Information』を参照してください。このマニュアルでは、Cisco ONS 15xxx システムの国際機関に対する準拠性と安全性について説明しています。また、ONS 15xxx システムのマニュアルに記載されている安全性に関する警告の各国語訳も記載されています。

マニュアルの入手方法

シスコ製品のマニュアルおよびその他の資料は、Cisco.com で入手することができます。また、テ クニカル サポートおよびその他のテクニカル リソースは、さまざまな方法で入手することができ ます。ここでは、シスコ製品に関する技術情報を入手する方法について説明します。

Cisco.com

シスコの最新のマニュアルは、次の URL からアクセスしてください。

http://www.cisco.com/techsupport

シスコの Web サイトには、次の URL からアクセスしてください。

http://www.cisco.com

http://www.cisco.com/jp

シスコの Web サイトの各国語版へは、次の URL からアクセスしてください。

http://www.cisco.com/public/countries_languages.shtml

Product Documentation DVD

シスコ製品のマニュアルおよびその他の資料は、製品に付属の Product Documentation DVD パッケージでご利用いただけます。Product Documentation DVD は定期的に更新されるので、印刷資料よりも新しい情報が得られます。

Product Documentation DVD は、ポータブル メディアに収容された、技術的な製品マニュアルの総合的なライブラリです。この DVD を使用すると、シスコ製品の各種バージョンのハードウェアの インストレーション、ソフトウェアのインストール、設定、およびコマンドに関するガイドにアク セスし、HTML で技術マニュアルを表示できます。DVD を使用することで、インターネットに接続しなくてもシスコの Web サイトと同じマニュアルを参照できます。製品によっては、マニュア ルの PDF バージョンも用意されています。

Product Documentation DVD は単一製品として、またはサブスクリプションとして入手できます。 Cisco.com (Cisco Direct Customers) に登録されている場合、Cisco Marketplace から Product Documentation DVD (Customer Order Number DOC-DOCDVD=)を発注できます。次の URL にアク セスしてください。

http://www.cisco.com/go/marketplace/

シスコ光ネットワーキング製品の Documentation CD-ROM

Cisco ONS 15xxx 製品のマニュアルを含む、光ネットワーキング関連のマニュアルは、製品に付属の CD-ROM パッケージでご利用いただけます。光ネットワーキング製品の Documentation CD-ROM は、定期的に更新されるので、印刷資料よりも新しい情報が得られます。

マニュアルの発注方法

Cisco.com に登録されている場合、2005 年 6 月 30 日から、次の URL にある Cisco Marketplace の Product Documentation Store でシスコ製品のマニュアルを発注できます。

http://www.cisco.com/go/marketplace/

Cisco.com に登録されていない場合、製品を購入された代理店へお問い合わせください。

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

シスコ製品のセキュリティ

シスコでは、無償の Security Vulnerability Policy ポータルを次の URL で提供しています。

http://www.cisco.com/en/US/products/products_security_vulnerability_policy.html

このサイトから、以下のタスクを実行できます。

- シスコ製品における脆弱性を報告する。
- シスコ製品のセキュリティ問題に対する支援を受ける。
- シスコからのセキュリティ情報を入手するために登録を行う。

シスコ製品に関するセキュリティ勧告および注意のリストが以下の URL で確認できます。

http://www.cisco.com/go/psirt

勧告および注意事項が変更された際に、リアルタイムで確認したい場合は、以下の URL から Product Security Incident Response Team Really Simple Syndication (PSIRT RSS) にアクセスできます。

http://www.cisco.com/en/US/products/products_psirt_rss_feed.html

シスコ製品のセキュリティ問題の報告

シスコでは、安全な製品を提供することを目指しています。製品のリリース前に社内でテストを実施し、すべての脆弱性を迅速に修正するように努めております。お客様がシスコ製品の脆弱性を発見したと思われる場合は、次の PSIRT にご連絡ください。

- 緊急度の高い問題 security-alert@cisco.com
 緊急度の高い問題とは、システムが激しい攻撃を受けている状態、または急を要する深刻なセキュリティの脆弱性を報告する必要がある状態を指します。それ以外の状態はすべて、緊急度の低い問題とみなされます。
- 緊急度の低い問題 psirt@cisco.com

緊急度の高い問題の場合、次の電話番号で PSIRT に問い合わせることができます。

- 1877228-7302
- 1 408 525-6532

お客様が第三者に知られたくない情報をシスコに送信する場合、Pretty Good Privacy (PGP)または PGPと互換性のある製品を使用して情報を暗号化することを推奨します。PSIRT は、PGP バージョ ン 2.x ~ 8.x と互換性のある暗号化情報を取り扱うことができます。

無効な暗号鍵または失効した暗号鍵は使用しないでください。PSIRT と通信する際は、次の URL に ある Security Vulnerability Policy ページの Contact Summary にリンクされている有効な公開鍵を使用 してください。

http://www.cisco.com/en/US/products/products_security_vulnerability_policy.htm

このページのリンクに、現在使用されている PGP 鍵の ID があります。

テクニカル サポート

Cisco Technical Support では、評価の高い24 時間体制のテクニカル サポートを提供しています。 Cisco.com の Cisco Technical Support & Documentation Web サイトでは、広範囲にわたるオンライン でのサポート リソースを提供しています。さらに、シスコシステムズとサービス契約を結んでいる 場合は、Technical Assistance Center (TAC)のエンジニアによる電話サポートも提供されます。シ スコシステムズとサービス契約を結んでいない場合は、リセラーにお問い合わせください。

Cisco Technical Support & Documentation Web サイト

Cisco Technical Support & Documentation Web サイトでは、オンラインで資料やツールを利用して、 トラブルシューティングやシスコ製品およびテクノロジーに関する技術上の問題の解決に役立て ることができます。この Web サイトは 24 時間ご利用いただけます。次の URL にアクセスしてく ださい。

http://www.cisco.com/techsupport

Cisco Technical Support & Documentation Web サイト上のツールにアクセスする際は、いずれも Cisco.com のログイン ID およびパスワードが必要です。サービス契約が有効で、ログイン ID また はパスワードを取得していない場合は、次の URL で登録手続きを行ってください。

http://tools.cisco.com/RPF/register/register.do

(注)

テクニカル サポートにお問い合わせいただく前に、Cisco Product Identification (CPI) ツールを使用 して、製品のシリアル番号をご確認ください。CPI ツールへは、Documentation & Tools の下にある **Tools & Resources** リンクをクリックして、Cisco Technical Support & Documentation Web サイトから アクセスできます。Alphabetical Index ドロップダウン リストから **Cisco Product Identification Tool** を選択するか、Alerts & RMAs の下にある **Cisco Product Identification Tool** リンクをクリックしてく ださい。CPI ツールは、製品 ID またはモデル名、ツリー表示、または特定の製品に対する show コ マンド出力のコピー & ペーストによる 3 つの検索オプションを提供します。検索結果には、シリア ル番号のラベルの場所がハイライトされた製品の説明図が表示されます。テクニカル サポートにお 問い合わせいただく前に、製品のシリアル番号のラベルを確認し、メモなどに控えておいてください。

Japan TAC Web サイト

Japan TAC Web サイトでは、利用頻度の高い TAC Web サイト(http://www.cisco.com/tac)のドキュ メントを日本語で提供しています。Japan TAC Web サイトには、次の URL からアクセスしてくだ さい。

http://www.cisco.com/jp/go/tac

サポート契約を結んでいない方は、「ゲスト」としてご登録いただくだけで、Japan TAC Web サイトのドキュメントにアクセスできます。

Japan TAC Web サイトにアクセスするには、Cisco.com のログイン ID とパスワードが必要です。ロ グイン ID とパスワードを取得していない場合は、次の URL にアクセスして登録手続きを行ってく ださい。

http://www.cisco.com/jp/register/

Service Request ツールの使用

オンラインの TAC Service Request ツールを使えば、S3 および S4 の問題について最も迅速にテクニ カル サポートを受けられます(ネットワークの障害が軽微である場合、あるいは製品情報が必要な 場合)。状況をご説明いただくと、TAC Service Request が推奨される解決方法を自動的に提供しま す。これらの推奨リソースを使用しても問題が解決しない場合は、シスコの技術者が問題を診断し ます。TAC Service Request ツールは次の URL からアクセスできます。

http://www.cisco.com/techsupport/servicerequest

問題が S1 または S2 であるか、インターネットにアクセスできない場合は、電話で TAC にご連絡 ください(運用中のネットワークがダウンした場合、あるいは重大な障害が発生した場合)。S1 お よび S2 の問題にはシスコの技術者がただちに対応し、業務を円滑に運営できるよう支援します。

電話でテクニカル サポートを受ける際は、次の番号のいずれかをご使用ください。

アジア太平洋:+61 2 8446 7411 (オーストラリア:1 800 805 227) EMEA:+32 2 704 55 55 米国:1 800 553-2447

TACの連絡先一覧については、次の URL にアクセスしてください。

http://www.cisco.com/techsupport/contacts

問題の重大度の定義

すべての問題を標準形式で報告するために、問題の重大度を定義しました。

重大度1(S1) ネットワークがダウンし、業務に致命的な損害が発生する場合。24時間体制であ らゆる手段を使用して問題の解決にあたります。

重大度2(S2) ネットワークのパフォーマンスが著しく低下、またはシスコ製品のパフォーマンス低下により業務に重大な影響がある場合。通常の業務時間内にフルタイムで問題の解決にあたります。

重大度3(S3) ネットワークのパフォーマンスが低下しているが、ほとんどの業務運用が機能している場合。通常の業務時間内にサービスの復旧を行います。

重大度4(S4) シスコ製品の機能、インストレーション、基本的なコンフィギュレーションについて、情報または支援が必要で、業務への影響がほとんどまたはまったくない場合。

その他の資料および情報の入手方法

シスコの製品、テクノロジー、およびネットワーク ソリューションに関する情報について、さまざ まな資料をオンラインおよび印刷物で入手することができます。

- Cisco Marketplace では、さまざまなシスコの書籍、参考資料、マニュアル、およびロゴ入り商 品を提供しています。Cisco Marketplace には、次の URL からアクセスしてください。 http://www.cisco.com/go/marketplace/
- Cisco Press では、ネットワーク、トレーニング、認定関連の出版物を幅広く発行しています。 初心者から上級者まで、さまざまな読者向けの出版物があります。Cisco Press の最新の出版情報などについては、次の URL からアクセスしてください。

http://www.ciscopress.com

『Packet』は、シスコシステムズが発行するテクニカル ユーザ向けの季刊誌で、インターネットやネットワークへの投資を最大限に活用するのに役立ちます。『Packet』には、ネットワーク分野の最新動向、テクノロジーの進展、およびシスコの製品やソリューションに関する記事をはじめ、ネットワークの配置やトラブルシューティングのヒント、設定例、お客様の事例研究、認定やトレーニングに関する情報、および多数の詳細なオンラインリソースへのリンクが盛り込まれています。『Packet』には、次の URL からアクセスしてください。

http://www.cisco.com/packet

• 『iQ Magazine』は、シスコのテクノロジーを使って収益の増加、ビジネス効率の向上、および サービスの拡大を図る方法について学ぶことを目的とした、シスコシステムズが発行する成長 企業向けの季刊誌です。この季刊誌は、実際の事例研究や事業戦略を用いて、これら企業が直 面するさまざまな課題や、問題解決の糸口となるテクノロジーを明確化し、テクノロジーの投 資に関して読者が正しい決断を行う手助けをします。『iQ Magazine』には、次の URL からアク セスしてください。

http://www.cisco.com/go/iqmagazine

または次の URL でデジタル版をご覧いただけます。

http://ciscoiq.texterity.com/ciscoiq/sample/

『Internet Protocol Journal』は、インターネットおよびイントラネットの設計、開発、運用を担当するエンジニア向けに、シスコシステムズが発行する季刊誌です。『Internet Protocol Journal』には、次の URL からアクセスしてください。

http://www.cisco.com/ipj

 シスコシステムズが提供するネットワーク製品およびカスタマー サポート サービスについて は、次の URL にアクセスしてください。

http://www.cisco.com/en/US/products/index.html

Networking Professionals Connection は、ネットワーキング専門家がネットワーキング製品やネットワーキング技術に関する質問、提案、情報をシスコの専門家および他のネットワーキング専門家と共有するためのインタラクティブな Web サイトです。ディスカッションに参加するには、次の URL にアクセスしてください。

http://www.cisco.com/discuss/networking

シスコシステムズは最高水準のネットワーク関連のトレーニングを実施しています。トレーニングの最新情報については、次の URL からアクセスしてください。

http://www.cisco.com/en/US/learning/index.html

ML シリーズ カードの概要

この章では、ONS 15454 (SONET) および ONS 15454 SDH 向けの ML1000-2 カード、ML100T-12 カード、および ML100X-8 カードの概要を説明します。また、イーサネットと SONET/SDH の機能、 および Cisco IOS ソフトウェアと Cisco Transport Controller(CTC) ソフトウェアの機能を紹介し、一 部の機能を簡単に説明します。

この章の内容は次のとおりです。

- ML シリーズ カードの説明 (p.1-2)
- ML シリーズ カードの機能一覧 (p.1-3)
- ML シリーズ カードの主な機能 (p.1-6)

ML シリーズ カードの説明

ML シリーズ カードは、最大処理速度が 5.7 Mpps の、独立したギガビット イーサネット(ML1000-2) またはファスト イーサネット (ML100T-12 および MT100X-8) レイヤ 3 スイッチです。これらの カードは、ONS 15454 SONET または ONS 15454 SDH に統合されています。10 ギガビット クロス コネクト(XC10G または XC-VXC-10G)カードを使用する ONS 15454 SONET では、どのトラフィッ ク カード スロットにも ML シリーズ カードを取り付けることができます。ただし、Cross-Connect (XC; クロスコネクト) カードまたは Cross-Connect Virtual Tributary (XCVT; クロスコネクト仮想ト リビュタリ) カードを使用する ONS 15454 SONET では、4 つのトラフィック カード スロットにし か ML シリーズ カードを取り付けることができません。ONS 15454 SDH では、使用する XC カー ドに関係なく、どのトラフィック カード スロットにも ML シリーズ カードを取り付けることがで きます。

ML シリーズ カードは、Cisco IOS Release 12.2(28)SV を使用し、ML シリーズ カードでの主なユー ザインターフェイスは Cisco IOS CLI (コマンドライン インターフェイス)です。ほとんどの ML シリーズ カードの設定 (イーサネット ポート、ブリッジング、VLAN [仮想 LAN] など)では、 Cisco IOS CLI のみが使用可能です。

ただし、ONS 15454 SONET/SDH の GUI (グラフィカル ユーザ インターフェイス) である CTC で も ML シリーズ カードがサポートされます。SONET/SDH 回線は、Cisco IOS からプロビジョニン グできませんが、CTC または TL1 から設定する必要があります。CTC では、ML シリーズ カード のステータス情報の表示、SONET/SDH のアラーム管理、Cisco IOS Telnet セッションの初期化、Cisco IOS 設定ファイルの管理、プロビジョニング、インベントリなどの標準機能を使用できます。

ML100T-12 には、12 個の RJ-45 インターフェイスが装備されています。また、ML100X-8 および ML1000-2 には、Short Wavelength (SX; 短波長)光モジュールと Long Wavelength (LX; 長波長)光 モジュールをサポートする 2 つの Small Form-Factor Pluggable (SFP)スロットが装備されています。 3 つのカードでは、ハードウェアとソフトウェアに同じ基盤を使用しており、同じフィーチャ セッ トが提供されます。カードの仕様の詳細については、『*Cisco ONS 15454 Reference Manual*』または 『*Cisco ONS 15454 SDH Reference Manual*』の「Ethernet Cards」の章を参照してください。

ML シリーズ カードには、OC-N カード ポートと同様に機能する 2 つの仮想 Packet over SONET/SDH (POS)ポートが装備されています。SONET/SDH 回線は、標準の OC-N カード回線と同様に CTC で プロビジョニングできます。ML シリーズ カードの POS ポートでは、SONET/SDH 回線の Virtual Concatenation(VCAT; バーチャル コンカチネーション)と Software Link Capacity Adjustment Scheme (SW-LCAS; ソフトウェア リンク キャパシティ調整方式)がサポートされます。

ML シリーズ カードの機能一覧

ML シリーズ カードには次のような機能があります。

- レイヤ1データ機能
 - 10/100BASE-TX 半二重および全二重データ転送 (ML100T-12)
 - Auto-MDIX を使用した 100BASE-FX 全二重データ伝送 (ML 100X-8)
 - 1000BASE-SX、1000BASE-LX 全二重データ転送(ML1000-2)
 - IEEE 802.3z(ギガビット イーサネット)および 802.3x(ファスト イーサネット)フロー制御
- SONET/SDH の機能
 - POS 向けの High-level Data Link Control (HDLC; ハイレベル データリンク制御)または frame-mapped Generic Framing Procedure(GFP-F; ジェネリック フレーミング プロシージャ) フレーミング メカニズム
 - 2つの POS 仮想ポート
 - POS 向けの LEX、Cisco HDLC、または PPP/Bridging Control Protocol (PPP/BCP; ポイント ツーポイント プロトコル / ブリッジ制御プロトコル) カプセル化
 - VCAT & SW-LCAS
- レイヤ2ブリッジング機能
 - トランスペアレント ブリッジング
 - ハードウェアによる MAC (メディア アクセス制御)アドレス学習、エージング、および スイッチング
 - プロトコルのトンネリング
 - Multiple Spanning Tree (MST) プロトコルのトンネリング
 - 最大 255 個のアクティブ ブリッジ グループ
 - 1 カード当たり最大 60,000 個の MAC アドレス、および 1 ブリッジ グループ当たり最大 8,000 個の MAC アドレス
 - Integrated Routing and Bridging (IRB; 統合ルーティングおよびブリッジング)
 - IEEE 802.1P/Q ベースの VLAN トランキング
 - IEEE 802.1Q VLAN トランキング
 - IEEE 802.1D Spanning Tree Protocol (STP; スパニング ツリー プロトコル)と IEEE 802.1W Rapid Spanning Tree Protocol (RSTP; 高速スパニング ツリー プロトコル)
 - 1つのブリッジ グループ当たり 1 つの IEEE 802.1D STP インスタンス
 - Resilient Packet Ring (RPR; 復元パケット リング)
 - Dual RPR Interconnect (DRPRI; 二重復元パケット リング相互接続)
 - Ethernet over Multiprotocol Label Switching (EoMPLS)
 - VLAN 透過サービス、および VLAN 固有のサービス (Ethernet Relay Multipoint Service [ERMS; イーサネット リレー マルチポイント サービス])
- Fast EtherChannel (FEC)の機能(ML100T-12および ML100X-8)
 - 最大4つのファスト イーサネット ポートのバンドル
 - 送信元 IP アドレスと宛先 IP アドレスに基づくユニキャスト パケットのロード シェアリン グ
 - MAC アドレスに基づくブリッジ トラフィックのロード シェアリング
 - IRB
 - IEEE 802.1Q トランキング
 - アクティブ FEC ポート チャネル (ML100T-12 で最大 6 つ、ML100X-8 で最大 4 つ)
- Gigabit EtherChannel (GEC)の機能(ML1000-2)
 - 2つのギガビット イーサネット ポートのバンドル

■ ML シリーズ カードの機能一覧

- MAC アドレスに基づくブリッジ トラフィックのロード シェアリング
- IRB
- IEEE 802.1Q トランキング
- POS チャネル
 - 2 つの POS ポートのバンドル
 - LEX カプセル化のみ
 - IRB
 - IEEE 802.1Q トランキング
- レイヤ3ルーティング、スイッチング、および転送
 - デフォルトルート
 - IP のユニキャスト転送とマルチキャスト転送
 - 簡易 IP Access Control List (ACL; アクセス制御リスト)(レイヤ2とレイヤ3の転送パス)
 - ソフトウェアの拡張 IP ACL (制御プレーンのみ)
 - イーサネット ポート間の IP、および IP マルチキャスト ルーティングとスイッチング
 - Reverse Path Forwarding(RPF; リバース パス転送)マルチキャスト(RPF ユニキャスト以外)
 - 送信元と宛先の IP アドレスに基づく等コスト パス間のロード バランシング
 - 最大 18,000 個の IP ルート
 - 最大 20,000 個の IP ホスト エントリ
 - 最大 40 個の IP マルチキャスト グループ
 - IRB ルーティング モードのサポート
- サポートされるルーティング プロトコル
 - Virtual Private Network (VPN; 仮想私設網) Routing and Forwarding Lite (VRF Lite)
 - Intermediate System-to-Intermediate System (IS-IS) $J\Box$ \square
 - Routing Information Protocol (RIP; ルーティング情報プロトコル)と RIP II
 - Enhanced Interior Gateway Routing Protocol (EIGRP)
 - Open Shortest Path First (OSPF) $\mathcal{T}\Box \vdash \exists \mathcal{W}$
 - Protocol Independent Multicast(PIM; プロトコル独立型マルチキャスト) 疎モード、疎/密 モード、密モード
 - セカンダリ アドレッシング
 - スタティック ルート
 - ローカル プロキシ ARP
 - Border Gateway Protocol (BGP; ボーダー ゲートウェイ プロトコル)
 - Classless Interdomain Routing (CIDR; クラスレス ドメイン内ルーティング)
- Quality of Service (QoS; サービス品質)の機能
 - マルチキャスト プライオリティ キューイング クラス
 - 1 Mbps 単位の Service Level Agreement (SLA; サービス レベル契約)
 - 入力ポリシング
 - 保証帯域幅(Weighted Round-Robin [WDRR; 重み付きラウンド ロビン]と完全優先スケ ジューリング)
 - ユニキャスト Voice-over-IP (VoIP) 用の低遅延キューイング サポート
 - レイヤ 2 プライオリティに基づく Class of Service (CoS; サービス クラス) VLAN ID、レ イヤ 3 Type of Service (ToS; サービス タイプ) /DiffServ Code Point (DSCP; DiffServ コード ポイント) およびポート
 - CoS ベースのパケット統計

- Cisco IP SLA (従来の Cisco Service Assurance Agent)を使用した IP SLA ネットワーク モニ タリング
- セキュリティ機能
 - Cisco IOS ログイン機能強化
 - Secure Shell (SSH; セキュア シェル) 接続 (SSH バージョン 2)
 - コンソール ポートの無効化
 - Authentication, Authorization, Accounting (AAA; 認証、許可、アカウンティング)/Remote Authentication Dial-In User Service (RADIUS)(AAA/RADIUS)スタンド アロン モード
 - AAA/RADIUS リレーモード
- その他のプロトコル
 - イーサネット ポートでの Cisco Discovery Protocol (CDP) サポート
 - Dynamic Host Configuration Protocol (DHCP; ダイナミック ホスト コンフィギュレーション プロトコル) リレー
 - 10/100 イーサネット、ギガビット イーサネット、FEC、GEC、および Bridge Group Virtual Interface(BVI; ブリッジ グループ仮想インターフェイス)上での Hot Standby Router Protocol (HSRP; ホットスタンバイ ルータ プロトコル)
 - Internet Control Message Protocol (ICMP; インターネット制御メッセージ プロトコル)
- 管理機能
 - Cisco IOS
 - · CTC
 - Remote Monitoring (RMON)
 - SNMP(簡易ネットワーク管理プロトコル)
 - Transaction Language 1 (TL1; トランザクション言語 1)
- システムの機能
 - 自動 Field Programmable Gate Array (FPGA) アップグレード
 - Network Equipment Building Systems 3 (NEBS3) 準拠
 - 複数のマイクロコード イメージ
- CTC の機能
 - フレーミング モードのプロビジョニング
 - POS 仮想ポート向けの標準 STS/STM 回線と VCAT 回線
 - SONET/SDH アラーム レポート(パス アラームなどの ML シリーズ カードに固有のアラーム)
 - ポートに関する未加工の統計情報
 - 標準のインベントリおよびカード管理機能
 - J1 パストレース
 - CTC から開始される Cisco IOS CLI セッション
 - CTC からの Cisco IOS スタートアップ コンフィギュレーション ファイル管理

ML シリーズ カードの主な機能

ここでは、MLシリーズカードの主な機能とその実装について説明します。

Cisco IOS

Cisco IOS は、ML シリーズ カードのデータ機能を制御するためのソフトウェアであり、 ONS 15454 SONET/SDH Advanced Timing, Communications, and Control (TCC2) カードおよび Advanced Timing, Communications, and Control Plus (TCC2P) カードにあらかじめロードされて出荷 されます。ML シリーズの Cisco IOS イメージは、Cisco Catalyst シリーズの Cisco IOS システム イ メージと同じようにアップグレードすることはできません。ML シリーズの Cisco IOS イメージを アップグレードするには、必ず ONS 15454 SONET/SDH の CTC を使用する必要があります。また、 ML シリーズ カードの Cisco IOS イメージは、ONS 15454 SONET または SDH のソフトウェア リリー スの一部として提供され、その他の方法で入手することはできません。この Cisco IOS イメージは、 標準の ONS 15454 SONET/SDH システム ソフトウェア CD 内のパッケージ ファイル名 [M_I.bin] に 収録されており、ファイル名は [ons15454m-i7-mz] です。これらのイメージは、個別にダウンロー ドしたり、入手したりすることはできません。

DRPRI

ブリッジグループのプロトコル DRPRI では、ONS ノード障害から保護するためにリングを相互接 続する RPR メカニズムを使用しています。このプロトコルにより、RSTP の特殊なインスタンスに よってリングを2つのパラレル接続でリンクします。一方の接続はアクティブ ノードであり、もう 一方はスタンバイ ノードです。アクティブ ノード、リンク、またはカードで障害が発生すると、独 自のアルゴリズムによって障害が検出され、スタンバイ ノードにスイッチ オーバーします。ML シ リーズ カードで拡張マイクロ イメージを使用している場合は、DRPRI によりレイヤ2のブリッジ ド トラフィックに適用される回復時間は 200 ミリ秒未満です。他のマイクロコード イメージにつ いては、レイヤ 2 の回復時間は最大 12 秒です。レイヤ 3 のユニキャスト トラフィックあよびマル チキャスト トラフィックの回復時間は、使用するマイクロコード イメージに関係なく、実装した ルーティング プロトコルのコンバージェンス時間によって異なります。

EoMPLS

EoMPLS には、MPLS 対応のレイヤ 3 コアを経由するイーサネット トラフィックをトンネリングす るメカニズムがあります。このメカニズムでは、イーサネット Protocol Data Unit (PDU; プロトコル データ ユニット)を MPLS パケット内にカプセル化し、ラベル スタッキングを使用して MPLS ネッ トワーク上で転送します。EoMPLS は、Martini 社のドラフト案に基づく、Internet Engineering Task Force (IETF; インターネット技術特別調査委員会)の標準トラック プロトコルです。サービス プ ロバイダーは、EoMPLS と自社の既存の MPLS バックボーンを使用して、お客様に仮想イーサネッ ト回線サービスまたは VLAN サービスを提供できます。

GFP-F フレーミング

GFP は、さまざまなサービス タイプを SONET/SDH ヘマッピングするための標準ベースの方式を定 義しています。ML シリーズおよび CE シリーズは、GFP 向けの PDU 型クライアント シグナル ア ダプテーション モードである、GFP-F をサポートします。GFP-F では、1 つの可変長データ パケッ トを 1 つの GFP パケットにマッピングします。
GFP は、共通機能とペイロード固有の機能で構成されます。共有機能はすべてのペイロードで共有 されます。ペイロード固有の機能は、ペイロードの種類によって異なります。GFPは ITU 勧告 G.7041 で詳しく定義されています。

リンク集約(FEC、GEC、および POS)

MLシリーズでは、FEC、GEC、および POS チャネルのリンク集約を使用できます。リンク集約に より、複数のポートをより大きい1つの論理ポートにグループ化し、個別のポートで障害が発生し た場合に復元できます。MLシリーズでは、FECの場合は最大4つのイーサネットポート、GECの 場合は最大2つのイーサネットポート、および POS チャネルでは2つの SONET/SDH 仮想ポート がサポートされます。POS チャネルは、LEX カプセル化を使用してのみサポートされます。

ブリッジド パケットの場合は MAC Source Address (SA; 送信元アドレス)と Destination Address (DA: 宛先アドレス)に基づいて、また ルーテッド パケットの場合は IP の SA と DA に基づいて、 トラフィック フローが各ポートにマッピングされます。リンク集約を設定した場合は、ポリシング とクラスベースのパケット プライオリティがサポートされません。

RPR

RPR は、 メトロ ファイバ リング ネットワーク向けに設計されたネットワーク アーキテクチャであ り、現在急速に普及しつつあります。 この新しい MAC プロトコルは、パケットベースのネットワー クでの STP、RSTP、および SONET の限界を解決するように設計されています。RPR のコンバー ジェンス時間は、SONET とほぼ同じで、STP や RSTP よりもかなり高速です。RPR は、レイヤ 2 レ ベルで動作し、イーサネット回線や SONET 回線(保護または非保護)と互換性があります。

TL1

ML シリーズ カードの TL1 を使用して、カードのインベントリ、障害またはアラームの管理、カー ドのプロビジョニング、およびデータと SONET ポートに関するステータス情報の取得を行うこと がきます。また、SONET STS 回線のプロビジョニングや TCC2/TCC2P カード メモリへの Cisco IOS スタートアップ コンフィギュレーション ファイルの転送にも TL1 を使用できます。特定の TL1 コ マンドや TL1 全般については、『Cisco ONS SONET TL1 Command Guide』を参照してください。

VRF Lite

VRF Lite は、ML シリーズ カード専用に実装した VPN Routing/Forwarding instance (VRF; VPN ルー ティング / 転送インスタンス)です。標準の VRF と異なり、VRF Lite には、Multi-Protocol internal BGP (MP-iBGP; マルチプロトコル内部 BGP) が含まれません。

標準の VRF は、IP ルーティングの拡張機能であり、各 VPN に複数のルーティング インスタンスと 独立した IP ルーティング テーブルおよび IP 転送テーブルを提供します。VRF は、内部 MP-iBGP と合わせて使用します。MP-iBGP は、ルータ間で VRF 情報を配布して、レイヤ3の MPLS-VPN を 実現します。

VRF Lite では、VRF 情報をローカルに保存します。VRF 情報は、接続した機器に配布されません。 VRFの情報により、カスタマールータやサービスプロバイダーのルータから受信したトラフィッ クが、正しいインターフェイスとサブインターフェイスに転送されます。

VRF Lite では、カスタマー機器として機能する ML シリーズ カードに、サービス プロバイダーの 機器とのインターフェイスとサブインターフェイスを複数設定できます。これにより、カスタマー の ML シリーズ カードが複数のカスタマーを処理できます。通常のカスタマー機器は、単一のカス タマーしか処理できません。

CTC の動作

この章では、ML シリーズ カードの Cisco Transport Controller (CTC)の動作について説明します。 この章で説明するすべての動作は、CTC のカードレベル ビューで行われます。CTC には、ML シ リーズ カードのイーサネット ポートと Packet-over-SONET/SDH (POS)ポートの両方に関するプロ ビジョニング情報と統計情報が表示されます。ML シリーズ カードの場合、CTC は、他の ONS 15454 SONET/SDH トラフィック カードと同じ方法で SONET/SDH アラームを管理し、STS/STM 回線をプ ロビジョニングします。

CTC を使用して、Cisco IOS コンフィギュレーション ファイルをロードするか、または Cisco IOS CLI (コマンドライン インターフェイス) セッションを開きます。第3章「初期設定」を参照して ください。

この章の内容は次のとおりです。

- ML シリーズの POS およびイーサネット統計情報の CTC への表示 (p.2-2)
- ML シリーズ イーサネット ポートのプロビジョニング情報の CTC への表示 (p.2-3)
- ML シリーズ POS ポートのプロビジョニング情報の CTC への表示 (p.2-4)
- フレーミングモードのプロビジョニング(p.2-5)
- SONET/SDH アラームの管理(p.2-5)
- FPGA 情報の表示 (p.2-6)
- SONET/SDH 回線のプロビジョニング (p.2-7)
- J1パストレース (p.2-7)

ML シリーズの POS およびイーサネット統計情報の CTC への表示

POS 統計情報のウィンドウには、POS ポートレベルの統計情報が表示されます。POS 統計情報ウィ ンドウを表示するには、ML シリーズ カードの CTC カード ビューを表示し、Performance > POS Ports タブをクリックします。

イーサネット統計情報のウィンドウには、イーサネット ポートレベルの統計情報が表示されます。 イーサネット統計情報のウィンドウの表示は、POS 統計情報のウィンドウの表示に似ています。ML シリーズのイーサネット ポートはゼロ ベースです。イーサネット統計情報ウィンドウを表示する には、ML シリーズ カードの CTC カード ビューを表示し、Performance > Ether Ports タブをクリッ クします。表 2-1 に、POS Ports ウィンドウと Ether Ports ウィンドウのボタンを示します。

ML シリーズ カードで HDLC フレーミングまたは Frame-mapped Generic Framing Procedure(GFP-F) フレーミングのどちらを使用するかによって、表示される統計情報が異なります。ML シリーズ カードの統計情報の定義については、『*Cisco ONS 15454 SONET and DWDM Troubleshooting Guide*』 または『*Cisco ONS 15454 SDH Troubleshooting Guide*』の「Performance Monitoring」の章を参照して ください。

ボタン	説明
Refresh	統計情報を手動でリフレッシュします。
Baseline	カード上の実際の統計情報には影響を与えずにソフトウェアのカウンタ(特定 の CTC クライアントのみ)を一時的にゼロにリセットします。その時点以降、 一時的なベースラインからの変化を示すカウンタのみがこの CTC クライアン トによって表示されます。新しいベースライン カウンタは、ユーザが Performance ウィンドウを表示している間だけ表示されます。ユーザが別の CTC ウィンドウに移動して Performance ウィンドウに戻ってきた場合、カードに保 持されている実際の統計情報が表示されます。
Auto-Refresh	統計情報の自動リフレッシュの間隔を設定します。

表 2-1 ML シリーズの POS およびイーサネット統計情報のフィールドとボタン

ML シリーズ イーサネット ポートのプロビジョニング情報の CTC への 表示

イーサネット ポート プロビジョニングのウィンドウには、イーサネット ポートのプロビジョニン グステータスが表示されます。このウィンドウを表示するには、Provisioning > Ether Ports タブを クリックします。ML シリーズ カードの場合、CTC からプロビジョニングできるのは Port Name フィールドのみです。ML シリーズのポートは、Cisco IOS の CLI を使用して設定する必要がありま す。

カラム内の Auto は、ポートが、接続されたリンク パートナーと機能を自動ネゴシエーションする ように設定されていることを示しています。

すべての ML シリーズ カードで、すべてのカラムが表示されるわけではありません。表 2-2 に、 Provisioning > Ether Ports タブで表示される情報の詳細を示します。

表 2-2 イーサネット ポートのプロビジョニング ステータスの CTC 表示

カラム	説明	ML1000-2	ML100T-12	ML100X-8
Port	特定のポートの固定番号 ID	0または1	0 ~ 11	0 ~ 7
Port Name	設定可能な英数字 12 文字のポート ID	ユーザ固有	ユーザ固有	ユーザ固有
Admin State	設定されたポートの状態。管理上アク ティブまたは非アクティブ	UP および DOWN	UP および DOWN	UP および DOWN
Link State	ポートのシグナリング ポイントと接続 装置の間のステータス	UP および DOWN	UP および DOWN	UP および DOWN
MTU	Maximum Transmission Unit (MTU; 最大 伝送ユニット)。ポートに設定されてい る最大パケット サイズ	デフォルト値は 1500	デフォルト値は 1500	デフォルト値は 1500
Speed	イーサネット ポートの伝送速度		Auto、10 Mbps、また は 100 Mbps	100 Mbps
Duplex	ポートのデュプレックス モード設定		Auto、Full、または Half	Full
Flow	ピア装置でネゴシエーションされたフ	Asymmetrical、	Symmetrical または	Symmetrical または
Control	ロー制御モード。これらの値は表示され	Symmetrical、または	None	None
	ますが、CTC で設定することはできま せん。	None		
Optics	Small Form-Factor Pluggable (SFP) の物 理的なメディア タイプ。	Unplugged、1000 SX、または1000 LX		Unplugged、100 FX、 または 100 LX

ML100X-8の Optics カラムに 100 FX 値がある場合、Short Wavelength(SX; 短波長)SFP を表します。

CTC に設定されたポート名フィールドと Cisco IOS に設定されたポート名は、相互に依存しません。 Cisco IOS と CTC に存在する同じポートの名前は、CTC と Cisco IOS の両方で同じ名前を使用して ポート名を設定しない限り一致しません。

ML シリーズ POS ポートのプロビジョニング情報の CTC への表示

POS ポート プロビジョニングのウィンドウには、カードの POS ポートのプロビジョニング ステー タスが表示されます。このウィンドウを表示するには、**Provisioning > POS Ports** タブをクリックし ます。ML シリーズ カードの場合、CTC から設定できるのは POS Port Name フィールドのみです。 ML シリーズのポートは、Cisco IOS の CLI を使用して設定する必要があります。

表 2-3 に、Provisioning > POS Ports タブで表示される情報の詳細を示します。

表 2-3 POS ポートのプロビジョニング ステータスの CTC 表示

カラム	説明
Port	特定のポートの固定番号 ID
Port Name	設定可能な英数字 12 文字のポート ID
Admin State	設定されたポートの状態。管理上アクティブまたは非アクティブです。表示さ れる値は UP と DOWN です。UP 値にするには、POS ポートは管理上アクティ ブで、SONET/SDH 回線がプロビジョニングされている必要があります。
Link State	ポートのシグナリング ポイントと接続装置の間のステータス。表示される値は UP と DOWN です。
MTU	最大伝送ユニット。ポートに設定されている最大パケット サイズです。最大値は 9000 です。デフォルト サイズは、G シリーズ カード対応のカプセル化(LEX)の場合は 1500、Cisco HDLC と PPP/Bridging Control Protocol(ポイントツーポイントプロトコル /BCP)カプセル化の場合は 4470 です。
Framing Type	HDLC フレーミング タイプ、または GFP-F フレーミング タイプは、ポートで 使用されている POS フレーミング メカニズムを示します。

CTC に設定されたポート名フィールドと Cisco IOS に設定されたポート名は、相互に依存しません。 Cisco IOS と CTC に存在するポートの名前は、CTC と Cisco IOS の両方で同じ名前を使用してポー ト名を設定しないかぎり一致しません。

フレーミング モードのプロビジョニング

カード モードのプロビジョニング ウィンドウでは ML シリーズ カードで使用するフレーミング モードが表示されるため、ユーザがフレーミング メカニズムを HDLC または GFP-F に変更できま す。このウィンドウを表示するには、Provisioning > Card タブをクリックします。HDLC は、ONS 15454 または ONS 15454 SDH ML シリーズ カードのデフォルトのフレーミング モードです。フレー ミング メカニズムの詳細については、「ONS イーサネット カード上の POS」を参照してください。

また、ユーザはカードを物理的に取り付ける前に ML シリーズ カードのフレーミング モードを事前にプロビジョニングできます。 その後 ML シリーズ カードは、事前にプロビジョニングされたフレーミング モードで起動します。

接続した POS ポートはそのピア ポートのフレーミング メカニズムと一致する必要があります。フ レーミング モードを変更するには、まず ML シリーズ カード上の既存の STS/STM 回線をすべて削 除する必要があります。

ML シリーズ カードはフレーミング モードが変更されたあとにリブートします。

このウィンドウを表示するには、Provisioning > Card タブをクリックします。Mode ドロップダウ ン リストで Apply をクリックしてフレーミング モードのタイプをプロビジョニングします。表示 された Reset Card ダイアログボックスで Yes をクリックします。

SONET/SDH アラームの管理

CTC は、ML シリーズの SONET/SDH アラームの動作管理を、他の ONS 15454 SONET/SDH カード でのアラームの動作管理と同じ方法で行います。詳細については、『*Cisco ONS 15454 Procedure Guide*』または『*Cisco ONS 15454 SDH Procedure Guide*』の「Manage Alarms」の章を参照してくだ さい。特定のアラームの詳細については、『*Cisco ONS 15454 Troubleshooting Guide*』または『*Cisco ONS 15454 SDH Troubleshooting Guide*』の「Alarm Troubleshooting」の章を参照してください。

このウィンドウを表示するには、イーサネットおよび POS ポート アラーム プロファイル情報で Provisioning > Alarm Profiles タブをクリックします。

FPGA 情報の表示

CTC は、ML シリーズ カードの Field Programmable Gate Array (FPGA)の2つのバージョンに関す る情報を表示します。1つは実行 FPGA で、ML シリーズ カードによって TCC2/TCC2P カードから ダウンロードされた最新の FPGA バージョンです。もう1つはフラッシュ メモリに焼き付けられた FPGA バージョンです。実行 FPGA および焼き込み FPGA のバージョン情報はそれぞれ異なる場合 があります。

実行 FPGA は、ML シリーズ カード上で動作する FPGA バージョンで、FPGA がアップグレードす ると変更されます。CTC インベントリ ウィンドウには、この実行 FPGA 情報が表示されます。こ のウィンドウを表示するには、Inventory > Firmware Rev. タブをクリックします。

CTC メンテナンス情報ウィンドウには、フラッシュ メモリに焼き付けられた FPGA 情報が表示されます。また、カードが SONET または SDH シェルフのどちらに取り付けられているかも表示されます。このウィンドウを表示するには、Maintenance > Info タブをクリックします。

ML100T-12、ML100X-8、および ML1000-2 の FPGA は、カードのネットワーク プロセッサと SONET/SDH クロスコネクト間のインターフェイスとバッファリングを提供します。FPGA Image Version 3.x は HDLC フレーミングをサポートし、FPGA Image Version 4.x は GFP-F フレーミングを サポートします。両方のイメージは Virtual Concatenation (VCAT; バーチャル コンカチネーション) をサポートします。Release 5.0 以降では、ユーザがフレーミング モードを変更すると、適切な FPGA が自動的にロードされます。

Software Release 4.6 以前に製造された ML シリーズ カードで VCAT をサポートするには、FPGA の 更新バーションが必要です。

旧 CTC ソフトウェア リリースで 現在の FPGA イメージを使用しないでください。

SONET/SDH 回線のプロビジョニング

CTC は、ML シリーズ カードの 2 つの仮想 SONET/SDH ポートの STS/STM レベル回線を、他の ONS 15454 SONET/SDH OC-N カードのプロビジョニングと同じ方法でプロビジョニングおよび編 集します。ONS 15454 ML シリーズ カードは、Contiguous Concatenation (CCAT; 連続コンカチネー ション)および VCAT 回線の両方をサポートします。

ML シリーズ カード SONET CCAT または VCAT 回線の詳細な設定手順については、『Cisco ONS 15454 Procedure Guide』の「Create Circuits and VT Tunnels」の章を参照してください。ML シリーズ カード SDH CCAT または VCAT 回線の詳細な設定手順については、『Cisco ONS 15454 SDH Procedure Guide』の「Create Circuits and Tunnels」の章を参照してください。VCAT 回線全般につい ては、『Cisco ONS 15454 Reference Manual』または『Cisco ONS 15454 SDH Reference Manual』の「Circuits and Tunnels」の章を参照してください。

J1 パス トレース

J1 パス トレースは、64 の連続する J1 バイトで構成される、反復固定長文字列です。この文字列を 使用すると、SONET/SDH 回線トラフィックの中断や変更をモニタリングできます。J1 パス トレー スの詳細については、『*Cisco ONS 15454 Reference Manual*』または『*Cisco ONS 15454 SDH Reference Manual*』を参照してください。

初期設定

この章では、MLシリーズカードの初期設定について説明します。主な内容は、次のとおりです。

- ハードウェアの設置(p.3-2)
- ML シリーズ カード上の Cisco IOS (p.3-3)
- スタートアップ コンフィギュレーション ファイル (p.3-8)
- 複数のマイクロコード イメージ (p.3-14)
- 使用中のマイクロコードイメージの変更(p.3-15)
- Cisco IOS のコマンドモード (p.3-16)
- コマンドモードの使用(p.3-18)

ハードウェアの設置

ここでは、ML シリーズ カードの起動など、ハードウェアの設置作業について説明します。 ONS 15454 SONET/SDH のカード スロットはあらかじめ ML シリーズ ラインカード用にプロビ ジョニングされているので、次の物理的な手順は、これらのスロットをプロビジョニングする前で も後でも実行できます。

- 1. ONS 15454 SONET/SDH に ML シリーズ カードを取り付けます。詳細については、『*Cisco ONS* 15454 Procedure Guide』または『*Cisco ONS* 15454 SDH Procedure Guide』の第2章「Install Cards and Fiber-Optic Cable」を参照してください。
- 2. ML シリーズ カードの前面ポートにケーブルを接続します。
- 3. (任意) ML シリーズ カードにコンソール端末を接続します。

ML シリーズ カードが挿入済みの場合、Cisco IOS の有効なスタートアップ コンフィギュレーショ ン ファイルが存在しないと、CTC の Alarms ペインの下に NO-CONFIG 状態がレポートされます。 この状態をクリアするには、このファイルをロードまたは作成します。このファイルのロードまた は作成については、「スタートアップ コンフィギュレーション ファイル」(p.3-8)を参照してくだ さい。

ML シリーズ カード上の Cisco IOS

ML シリーズ カードで使用する Cisco IOS のソフトウェア イメージは、ML シリーズ カードに永続 的に保存されず、TCC2/TCC2P カードのフラッシュ メモリに保存されます。カードを物理的に取り 外して再度挿入する、またはカードの電源が切断されるなどのハード リセットが行われると、Cisco IOS のソフトウェア イメージが TCC2/TCC2P のフラッシュ メモリから ML シリーズ カードのメモ リキャッシュにダウンロードされます。キャッシュされたイメージは、ML シリーズ カードによっ て解凍され、使用できるように初期化されます。

CTC または Cisco IOS CLI (コマンドライン インターフェイス) コマンドの reload を使用して ML シリーズ カードをリセットするなどのソフト リセットが行われると、ML シリーズ カードはキャッ シュ内で Cisco IOS のソフトウェア イメージを確認します。Cisco IOS イメージが有効で最新な場 合、ML シリーズ カードはそのイメージを解凍し、初期化します。適切なイメージが検出されない 場合は、ML シリーズ カードは TCC2/TCC2P に Cisco IOS イメージの新しいコピーを要求します。 Cisco IOS イメージをキャッシュすることにより、ウォーム リセットの実行時間が大幅に短縮され ます。

ML シリーズ カードの Cisco IOS コンフィギュレーションにアクセスするには、4 種類の方法が使用できます。2 つの帯域外オプションは、CTC で Cisco IOS セッションを開く方法と、ノードの IP アドレスとスロット番号に 2000 を加えた値に Telnet 接続する方法です。2 つの帯域内シグナリングオプションは、設定済み管理インターフェイスに Telnet 接続する方法と、コンソール ポートに直接接続する方法です。

CTC を使用して Cisco IOS セッションを開く方法

CTC を使用して ML シリーズ カードに対する Cisco IOS の CLI セッションを開始できます。カード レベルの CTC ビューで IOS タブをクリックし、Open IOS Command Line Interface (CLI)ボタン をクリックします(図 3-1 参照)。ウィンドウが開き、標準の Cisco IOS CLI User EXEC コマンド モードのプロンプトが表示されます。

CTC で Cisco IOS の CLI セッションを開始する前に、あらかじめ Cisco IOS のスタートアップ コン フィギュレーション ファイルをロードし、ML シリーズ カードを取り付けて初期化しておいてく ださい。詳細は、「スタートアップ コンフィギュレーション ファイル (p.3-8)を参照してください。

図 3-1 CTC IOS ウィンドウ

in 28. See Job 28.		Altered
	2 m	- Q
BALLAN MAR VIAL 1997		
Party Billion	88,1077	
Statust Active	4948 HOL	
Nerson Dueter Thill	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	
hash it attributions	<u> </u>	
Feet & (FUE)(Dome	<u>H</u>	
het 0 (EDER)-loves	<u></u>	
Pett 1 (TTERC-Down)	8	
Fort 3 dTTMESt-down		
Page 4 (ETMR) chang		
ters.5 (ETMER): dvam.	E	
test 7 (CHER) from	<u>.</u>	
tert # official-loss	<u> </u>	
NOT F UTTER-DVM	=	
Part 11 (FND) (Lem		
Harris Hardwine Harry Canadh Phonosong Martinance Parton	ania 48	
Care: CC Coresal (an Iterfan (CL) Make		
Then KG Spinster		Read 1
Haroga CE Cardy/fm		
All Note Code		
Transition Committee		
- Frank (more field excess		
Trate fock() free:		
		- Andrews
		JMT (OIT

ノードの IP アドレスとスロット番号に Telnet 接続する方法

ONS 15454 SONET/SDHの IP アドレスとスロット番号に 2000 を加えた値を使用して Cisco IOS CLI に Telnet 接続できます。

(注)

IP アドレスとスロット番号に 2000 を加えた値を使用して Telnet 接続する前に、あらかじめ Cisco IOS のスタートアップ コンフィギュレーション ファイルをロードし、ML シリーズ カードを取り 付けて初期化しておいてください。詳細については、「スタートアップ コンフィギュレーション ファイル」(p.3-8)を参照してください。

ONS 15454 SONET/SDH ノードがプロキシ サーバとして設定されている場合、つまり、リング内の 1 台の ONS 15454 SONET/SDH ノードが同じリング内の他のノードの Gateway Network Element (GNE; ゲートウェイネットワーク エレメント)として機能している場合に、GNE のファイヤウォー ルを超えて GNE 以外または End Network Element (ENE; 終端ネットワーク要素)の IP アドレスと スロット番号に Telnet 接続するには、ユーザの Telnet クライアントが SOCKS v5 (RFC 1928)を認 識できる必要があります。この場合は、Telnet セッションで GNE を Socks v5 プロキシとして認識 し、ENE をホストとして認識できるように、この Telnet クライアントを設定します。

ステップ1 ONS 15454 SONET/SDH 本体の前面にある LCD でノードの IP アドレスを物理的に確認するか、または、CTC ノード ビューの IP Addr フィールドで IP アドレスを確認します(図 3-2 参照)。

ステップ2 ONS 15454 SONET/SDH の本体または CTC で、対象となる ML シリーズ カードを取り付けたスロットの番号を確認します(図 3-2 参照)。スロット番号の例は、「スロット 13」などです。

図 3-2 IP アドレスとスロット番号が表示された CTC ノード ビュー

ステップ3 使用する通信プログラムで、この IP アドレスと、スロット番号に 2000 を加えた値を Telnet アドレ スとして使用します。たとえば、IP アドレスが 10.92.18.124 でスロット番号が 13 の場合は、 10.92.18.124 2013 を入力して Telnet 接続します。

管理ポートへの Telnet 接続

他の Cisco IOS プラットフォームと同様に標準の Cisco IOS 管理ポート経由で ML シリーズ カード に接続できます。管理アクセス用のポートと回線の設定については、『*Cisco IOS Configuration Fundamentals Configuration Guide*』を参照してください。

セキュリティの観点から、Telnet 接続に使用する vty 回線の設定は完全な状態ではありません。ML シリーズカードに Telnet 接続するには、シリアル コンソール接続によって vty 回線を設定するか、 または vty 回線を設定するスタートアップ コンフィギュレーション ファイルをあらかじめロード しておく必要があります。まず、ML シリーズのポートを管理ポートとして設定する必要がありま す。詳細については、「管理ポートの設定」(p.3-9)を参照してください。

ML シリーズの IOS CLI コンソール ポート

ML シリーズ カードの前面プレートには、CONSOLE というラベルが貼られた RJ-11 シリアル コン ソール ポートが用意されています。このコンソール ポートは、Data Circuit-terminating Equipment (DCE; データ回線終端装置)として配線されています。このポートにより、端末エミュレーション ソフトウェアを実行中の PC またはワークステーションのシリアル ポートから特定の ML シリーズ カードの Cisco IOS CLI に通信できます。

RJ-11/RJ-45 コンソール ケーブル アダプタ

ML シリーズ カードの前面プレートのスペースに制約があるため、コンソール ポートには一般的な RJ-45 モジュラ ジャックではなく、RJ-11 モジュラ ジャックを使用しています。シスコでは、各 ML シリーズ カード向けに RJ-11/RJ-45 コンソール ケーブル アダプタ (P/N 15454-CONSOLE-02)を用 意しています。このアダプタを接続すると、コンソール ポートが標準の Cisco RJ-45 コンソール ポー トと同様に機能します。図 3-3 に RJ-11/RJ-45 コンソール ケーブル アダプタを示します。

図 3-3 コンソール ケーブル アダプタ

表 3-1 に RJ-11 と RJ-45 のピンの対応関係を示します。

表 3-1	RJ-11	とRJ-45	のピン	の対応関係
-------	-------	--------	-----	-------

RJ-11 ピン	RJ-45 ピン
1	1
2	2
3	3
4	4
なし	5
5	6
なし	7
6	8

PC または端末からコンソール ポートへの接続

同梱の RJ-11/RJ-45 コンソール ケーブル アダプタと DB-9 アダプタを使用して、PC を ML シリーズ のコンソール ポートに接続します。

PC では VT100 端末エミュレーションがサポートされている必要があります。端末エミュレーショ ン ソフトウェア(通常は HyperTerminal や Procomm Plus などの PC アプリケーション)によって、 セットアップ プログラムの実行中に ML シリーズ カードと PC または端末の間の通信が可能になり ます。

- **ステップ1** PC または端末のデータ レートと文字形式をコンソール ポートのデフォルト設定に合わせて設定します。
 - 9600 ボー
 - 8 データ ビット
 - 1ストップビット
 - パリティなし
- ステップ2 同梱ケーブルの RJ-45 コネクタを同梱のコンソール ケーブル アダプタのメス側に接続します。
- ステップ3 同梱のコンソール ケーブル アダプタの RJ-11 モジュラ プラグ側を、ML シリーズ カードの前面プレートにある CONSOLE というラベルが付いた RJ-11 シリアル コンソール ポートに接続します。図 3-4 に ML1000-2 前面プレートとコンソール ポートを示します。ML100T-12 および ML100X-8 の場合、コンソール ポートはカードの全面プレートの一番下にあります。

図 3-4 コンソール ポートへの接続

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド 78-17207-01-J ステップ4 同梱の RJ-45/DB-9 メス側 DTE アダプタを PC にある 9 ピンの DB-9 シリアル ポートに接続します。

ステップ5 接続したアダプタに、この同梱ケーブルの反対側を挿入します。

スタートアップ コンフィギュレーション ファイル

ML シリーズ カードのリセット時にデフォルト設定以外の値を設定するには、スタートアップ コン フィギュレーション ファイルが必要です。TCC2/TCC2P のフラッシュ メモリにスタートアップ コ ンフィギュレーション ファイルがない場合は、デフォルト設定でカードが起動します。スタート アップ コンフィギュレーション ファイルを手動でセットアップするには、シリアル コンソール ポートおよび Cisco IOS CLI コンフィギュレーション モードから操作するか、または、Cisco IOS が 提供するスタートアップ コンフィギュレーション ファイルを CTC からロードします。copy running-config startup-config コマンドで実行コンフィギュレーション ファイルになります。

ML シリーズ カードへの Telnet 接続を確立するには、あらかじめスタートアップ コンフィギュレー ション ファイルを ML シリーズ カードにロードしておく必要があります。 コンソール ポートを介 してアクセスできます。

copy running-config startup-config コマンドは、スタートアップ コンフィギュレーション ファイル を ML シリーズ カードのフラッシュ メモリに保存します。この操作は、Cisco IOS の CLI セッショ ンで [OK] が表示されることで確認します。また、スタートアップ コンフィギュレーション ファイ ルは約 30 秒が経過したあとに ONS ノードのデータベース復元ファイルにも保存されます。

シスコ社の保守担当者の支援なしに、ML シリーズ カードの Read-Only Memory Monitor mode (ROMMON; 読み取り専用モニタ モード)に絶対にアクセスしないでください。このモードでは、 ML シリーズ カードを動作不能にする作業が可能になります。ML シリーズ カードの ROMMON は、ML シリーズ カードに Cisco IOS ソフトウェア イメージを正しくブートできるように、あらか じめ設定されています。

スタートアップ コンフィギュレーション ファイルの最大サイズは 98356 バイト(文字)です。

実行 コンフィギュレーション ファイルを変更すると、CTC に RUNCFG-SAVENEED 状態が表示されます。この状態が表示された場合は、Cisco IOS の CLI に copy running-config startup-config コマンドを入力する必要があります。このコマンドを入力しないと、ML シリーズ カードがリブートしたときに変更内容が失われます。

シリアル コンソール ポートを使用して手動でスタートアップ コンフィギュレーション ファイルを作成する方法

Cisco IOS を使用して他の製品を操作したことがあるユーザにとって、シリアル コンソール ポート 経由で設定する方法は、操作し慣れた方法です。設定手順の最後に、copy running-config startup-config コマンドを使用してスタートアップ コンフィギュレーション ファイルを保存しま す。

シリアル コンソール ポートを使用すると、ML シリーズ カードのブート プロセス全体を表示でき ます。ML シリーズ カードの初期化中には、まず、ローカルでキャッシュされた Cisco IOS の有効 なコピーが検索されます。次に、TCC2/TCC2P から Cisco IOS のソフトウェア イメージがダウンロー ドされるか、または、有効なイメージの解凍と初期化が直接実行されます。Cisco IOS の初期化が 完了すると、CLI プロンプトが表示されます。このプロンプトで、Cisco IOS の CLI コンフィギュ レーション モードを開始し、ML シリーズ カードの基本設定をセットアップできます。

パスワード

ML シリーズ カードに設定可能なパスワードには、イネーブル パスワードとイネーブル シークレット パスワードの2種類があります。セキュリティを強化するために、イネーブル パスワードとイ ネーブル シークレット パスワードは異なるパスワードにしてください。

- イネーブルパスワード 暗号化されないパスワードです。このパスワードには、任意の長さの英数字(大文字および小文字)を指定できます。イネーブルパスワードは、MLシリーズカードに対する設定変更を許可するユーザだけに通知してください。
- イネーブル シークレット パスワード 暗号化された安全なパスワードです。暗号化されたパ スワードを設定することで、設定が不正に変更されるのを防ぐことができます。Cisco IOS ソフ トウェアを実行中のシステムでグローバル コンフィギュレーション モードを開始するには、イ ネーブル シークレット パスワードを入力する必要があります。

イネーブル シークレット パスワードには、1 ~ 25 文字の英数字(大文字および小文字)を使用できます。最初の文字として数字を指定することはできません。このパスワードにはスペースを含めることができます。先頭のスペースは無視されますが、未尾のスペースは認識されます。

パスワードの設定方法については、「管理ポートの設定」(p.3-9)を参照してください。

管理ポートの設定

ML シリーズ カードには独立した管理ポートがないため、ファスト イーサネット インターフェイス (ML100T-12 カードの 0 ~ 11 および ML100X-8 の 0 ~ 7)、ギガビット イーサネット インターフェイス (ML1000-2 カードの 0 ~ 1)、または Packet-over-SONET (POS) インターフェイス (ML シリーズ カードの 0 ~ 1)を管理ポートとして設定できます。POS インターフェイスを作成するには、まず、CTC または TL1 から STS または STM 回線を作成する必要があります。

ML シリーズ カードは、リモートから管理ポート経由で設定できますが、その前に、ML シリーズ カードに到達するための IP アドレスを設定しておくか、または、スタートアップ コンフィギュレー ション ファイルをロードしておく必要があります。Cisco IOS の CLI からシリアル コンソール接続 経由で管理ポート インターフェイスを手動で設定できます。

リモート管理アクセス用に Telnet を設定するには、ユーザ EXEC モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router> enable	ユーザ EXEC(イネーブル)モードを開始します。
	Router#	# プロンプトは、イネーブル モードが開始されているこ
		とを表します。
ステップ 2	Router# configure terminal	グローバル コンフィギュレーション モードを開始しま
	Router(config)#	す。このコマンドを config t と短縮することもできます。
		Router(config)# プロンプトは、グローバル コンフィギュ
		レーション モードが開始されていることを表します。
ステップ 3	Router(config)# enable password password	イネーブル パスワードを設定します。「パスワード」
		(p.3-9)を参照してください。
ステップ 4	Router(config)# enable secret password	イネーブル シークレット パスワードを入力できます。
		「パスワード」(p.3-9)を参照してください。グローバル
		コンフィギュレーション モードを開始するには、イ
		イーノル シークレット ハスワートを入力する必要かめ
ステツノ 5	Router(config)# interface type number Router(config-if)#	指正したインダーノェイスのインダーノェイス コン
		ノイキュレーションモートを開始します。
ステッノ り	Router(config-if)# ip address ip-address subnetmask	ステッノ 5 ご指定した1 ノターノエ1 スの IP アトレス と ID サブネット ファクを入力できます
マニッチィ		
	Router(config-if)# no shutdown	
ステップ 8	Router(config-if)# exit Router(config)#	グローバル コンフィキュレーション モードに戻りま +
ステッフ 9	Router(config)# line vty <i>line-number</i> Router(config-line)#	仮想端末接続用のライン コンフィキュレーション モー
		Fにようて、ML シリース カードに対する Tellet ビッ
フテップ 10	Pouter(config_line) # pressored pressored	アコンションのパフロードたりカズキキオ
スノッノ IU フニューディイ	Router (config-fine)# password password	
ステッフ 11	Kouter(config-line)# end Router#	1
ステップ 12	Router# copy running-config startup-config	(任意)設定の変更を NVRAM(不揮発性 RAM)に保存
		します。

管理ポートでのリモート管理設定が完了すると、Telnet を使用して、設定をリモートで割り当てた り確認したりできます。

ホスト名の設定

初期設定では、システム パスワードとイネーブル パスワードの他にホスト名を指定し、MLシリーズ カードを簡単に識別できるようにする必要があります。ホスト名を設定するには、イネーブル モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router# configure terminal Router(config)#	グローバル コンフィギュレーション モードを開始 します。
ステップ 2	Router(config)# hostname name-string	システム名を入力できます。この例では、ホスト名 を [Router] に設定します。

	コマンドの説明	目的
ステップ 3	Router(config)# end Router#	イネーブル EXEC モードに戻ります。
ステップ 4	Router# copy running-config startup-config	(任意)設定の変更を NVRAM にコピーします。

CTC とスタートアップ コンフィギュレーション ファイル

CTC を使用すると、ML シリーズ カードに必要なスタートアップ コンフィギュレーション ファイ ルをロードできます。Cisco ONS 15454 SONET/SDH のソフトウェア CD には、Cisco IOS スタート アップ コンフィギュレーション ファイルのサンプル Basic-IOS-startup-config.txt が収録されてい ます。Cisco IOS CLI のデフォルトの回線パスワードと、この設定のイネーブル パスワードは、 CISCO15 です。独自のスタートアップ コンフィギュレーション ファイルを作成することもできま す。詳細については、「シリアル コンソール ポートを使用して手動でスタートアップ コンフィギュ レーション ファイルを作成する方法」(p.3-9)を参照してください。

CTC では、ML シリーズ カードをスロットに物理的に取り付ける前に、TCC2/TCC2P カードのフ ラッシュ メモリに Cisco IOS のスタートアップ コンフィギュレーション ファイルをロードできま す。この場合、ML シリーズ カードを取り付けると、Cisco IOS ソフトウェア イメージとロード済 みの Cisco IOS スタートアップ コンフィギュレーション ファイルがダウンロードされ、適用されま す。スタートアップ コンフィギュレーション ファイルをあらかじめロードしておくと、ML シリー ズ カードは ONS 15454 SONET/SDH に取り付けた直後から完全に設定済みのカードとして動作で きます。

Cisco IOS スタートアップ コンフィギュレーション ファイルを TCC2/TCC2P カードのフラッシュ メモリにロードする前に ML シリーズ カードのブートが完了している場合は、ML シリーズ カード をリセットして Cisco IOS スタートアップ コンフィギュレーション ファイルが使用されるようにす るか、または、Cisco IOS の CLI で copy start run コマンドを実行して、Cisco IOS スタートアップ コンフィギュレーション ファイルが使用されるように ML シリーズ カードを設定する必要があり ます。

CTC での Cisco IOS スタートアップ コンフィギュレーション ファイルのロード

CTC を使用して Cisco IOS スタートアップ コンフィギュレーション ファイルを初めてロードする には、次の手順を実行します。

ステップ1 ML シリーズ カードのカードレベルのビューで IOS タブをクリックします。

CTCのIOS ウィンドウが開きます(図 3-1)。

ステップ2 IOS startup config ボタンをクリックします。

config file ダイアログボックスが表示されます。

- **ステップ3** Local -> TCC ボタンをクリックします。
- **ステップ4** Cisco IOS スタートアップ コンフィギュレーション ファイルのサンプルは、ONS 15454 SONET/SDH ソフトウェア CD、PC フォルダ、またはネットワーク フォルダからインストールできます。

- シスコが提供するスタートアップコンフィギュレーションファイルをONS 15454 SONET/SDH ソフトウェア CD からインストールするには、PC またはワークステーションの CD ドライブに この CD を挿入します。CTC の config file ダイアログを使用して、PC またはワークステーショ ンの CD ドライブに移動して、Basic-IOS-startup-config.txt ファイルをダブルクリックします。
- シスコが提供するスタートアップ コンフィギュレーション ファイルを PC フォルダまたは ネットワークフォルダからインストールするには、必要な Cisco IOS スタートアップ コンフィ ギュレーションファイルが格納されたフォルダに移動して、その Cisco IOS スタートアップコ ンフィギュレーションファイルをダブルクリックします。
- **ステップ5** Are you sure? ダイアログ ボックスで、Yes ボタンをクリックします。

configuration file ダイアログの Directory フィールドと Filename フィールドが更新され、TCC2/TCC2P にロードされた Cisco IOS スタートアップ コンフィギュレーション ファイルが反映されます。

- **ステップ6** TCC2/TCC2P から ML シリーズ カードに IOS スタートアップ コンフィギュレーション ファイルを ロードします。
 - a. ML シリーズ カードを取り付け済みの場合は、CTC のノード レベル ビューまたはカード レベ ル ビューで ML シリーズ カードを右クリックし、Reset Card を選択します。

リセットが完了すると、新しくロードされた Cisco IOS スタートアップ コンフィギュレーション ファイルに基づいて ML シリーズ カードが動作します。

b. ML シリーズ カードを取り付けていない場合は、スロットに ML シリーズ カードを取り付ける と、新しくロードされた Cisco IOS スタートアップ コンフィギュレーション ファイルが ML シ リーズ カードにロードされ、実行されます。

(注) Cisco IOS スタートアップ コンフィギュレーション ファイルがダウンロードされ、初期化中の解析でこのファイルにエラーが検出されると、ERROR-CONFIG アラームがレポートされ、CTC の Alarms ペインの下、または TL1 で表示されます。テキストの解析に関する他の Cisco IOS エラーメッセージは、CTC または TL1 でレポートされません。Cisco IOS に精通している場合は、Cisco IOS の CLI を開き、copy start run コマンドを実行して、解析エラーの原因となっている行をスタートアップ コンフィギュレーション ファイル内で探して問題を解決できます。

ONS 15454 SONET/SDH データベースを標準的な方法で復元すると、TCC2/TCC2P にある Cisco IOS スタートアップ コンフィギュレーション ファイルが再インストールされます。た だし、ML シリーズ カードには、この Cisco IOS スタートアップ コンフィギュレーション ファイルが実装されません。詳細については、「スタートアップ コンフィギュレーション ファイルのデータベースの復元」(p.3-13)を参照してください。

スタートアップ コンフィギュレーション ファイルのデータペースの復元

ONS 15454 SONET/SDH には、データベースの復元機能があります。データベースを復元すると、 ノードと、ML シリーズ カード以外の取り付け済みのライン カードが、保存されているプロビジョ ニングに再設定されます。ML シリーズ カードは、TCC2/TCC2P データベースに保存されているス タートアップ コンフィギュレーション ファイルを自動的に復元しません。

保存されているスタートアップコンフィギュレーションファイルは、2種類の方法でMLシリーズ カードにロードできます。1つは、保存されていない実行設定で行った追加設定を失いますが、保 存されている起動設定に完全に戻すことができます。この方法は、他のONSカードの復元方式に 似ています。もう1つは、保存したスタートアップコンフィギュレーションファイルを現在の実 行コンフィギュレーションに追加インストールできます。この方法は、多くのCisco Catalyst 装置で 使用されているマージ型復元方式です。

復元されたデータベースに保存されているスタートアップ コンフィギュレーション ファイルに完 全に戻すには、ML シリーズ カードをリセットする必要があります。CTC で ML シリーズ カード を右クリックし、Reset を選択するか、Cisco IOS の CLI で reload コマンドを使用して ML シリーズ カードをリセットします。

ONS 15454 ML シリーズ カードをリセットすると、トラフィックが損失します。また、 カードへの Telnet セッションがすべて閉じられます。

保存されたスタートアップ コンフィギュレーションファイルを実行コンフィギュレーションと マージするには、Cisco IOS CLI の copy startup-config running-config コマンドを使用します。この 復元方式は、現在の実行コンフィギュレーション、および Cisco IOS の copy コマンドを理解してい る経験のあるユーザだけが行うようにしてください。copy startup-config running-config コマンドは ML シリーズ カードをリセットしません。また、Cisco IOS CLI の copy running-config startup-config コマンドを使用して、新たにマージされた実行コンフィギュレーションをスタートアップ コンフィ ギュレーション ファイルに保存する必要があります。

複数のマイクロコード イメージ

ML シリーズ カードでのパケットの一時処理と転送は、ネットワーク プロセッサによって実行され ます。ネットワーク プロセッサは、マイクロコードで制御されます。このマイクロコードは、命令 セット (ソフトウェア)であり、ネットワーク プロセッサにロードされて、高速実行されます。 ネットワーク プロセッサでは、マイクロコードの保存容量が限られています。

ML シリーズ カードに組み込まれた機能によっては、マイクロコードを大量に必要とし、これらの 追加マイクロコードがネットワーク プロセッサの保存許容量を超えることがあります。このような 機能は、新しいマイクロコード イメージ(別のマイクロコード プログラム)として追加されます。 ネットワーク プロセッサに一度に保持できるマイクロコード イメージは、1 つだけです。ロードし た マイクロコード イメージを変更するには、ネットワーク プロセッサをリセットする必要があり ます。

ML シリーズ カード用のマイクロコード イメージは、3 つの中から選択できます。デフォルトの基本イメージには、Software Release 4.1 IOS のイメージと同じ ML シリーズ カードの基本機能があり、 Cisco IOS Release 12.1(19)EO および、ML シリーズ カードの Virtual Concatenation (VCAT; バーチャル コンカチネーション)回線のようなマイクロコードに依存しない追加機能が含まれています。基本イメージを使用すると、ML シリーズ カードの既存設定を変更せずに、ソフトウェア リリース 4.0 または 4.1 からアップグレードできます。

他の2つのマイクロコードイメージ(拡張イメージと Multiprotocol Label Switching [MPLS; マルチ プロトコル ラベル スイッチング]イメージ)では、特定の機能が追加されますが、基本イメージ の機能の一部が使用できません。拡張マイクロコードイメージを選択すると、IP 分割機能と IP マ ルチキャスト機能が削除され、Ethernet Relay Multipoint Service (ERMS; イーサネット リレー マル チポイント サービス)、および Dual Resilient Packet Ring Interconnect (DRPRI; 二重復元パケット リ ング相互接続)とパフォーマンス モニタリングの拡張機能が追加されます。MPLS マイクロコード イメージを選択すると、IP マルチキャスト、IP 分割、および ERMS のサポートが削除されますが、 EoMPLS (MPLS ネットワーク経由のイーサネット フレームの転送機能)が追加されます。表 3-2 は、各マイクロコードイメージで使用可能な機能の比較表です。

機能	基本(デフォルト) イメージ	拡張イメージ	MPLS イメージ
IP マルチキャスト		×	×
IP 分割		×	×
IP 転送			×
拡張パフォーマンス モニタリング	×		×
拡張 DRPRI	×		×
ERMS	×		×
MPLS	×	×	

表 3-2 マイクロコード イメージの機能比較

使用中のマイクロコード イメージの変更

マイクロコード イメージを変更するには、Cisco IOS の CLI コマンドを実行し、CTC 経由で ML シ リーズ カードをリセットします。使用中のマイクロコード イメージを設定するには、グローバル コンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# microcode {base enhanced fail system-reload mpls}	次の 3 つのマイクロコード イメージのいずれかを使用 して、ML シリーズ カードを設定します。
		base (デフォルト)基本機能だけをイネーブルにし ます。基本機能には、マルチキャスト ルーティングと IP 分割が含まれます。
		enhanced ERMS、拡張パケット統計、および拡張 DRPRI をイネーブルにします。マルチキャスト ルー ティングと IP 分割がディセーブルになります。
		fail system reload このコマンドと機能は、ML シリー ズカード固有のものです。マイクロコード障害の際に、 フラッシュ メモリに情報を保存してリブートするよう に ML シリーズ カードを設定します。保存される情報 は、Cisco TAC で使用されます。TAC へお問い合わせさ れる場合は、「テクニカル サポート」(p.xxvii)を参照し てください。
		mpls MPLS をイネーブルにします。IP マルチキャス ト、IP 分割、および ERMS サポートをディセーブルに します。
ステップ 2	Router(config)# exit	グローバル コンフィギュレーション モードを終了しま す。
ステップ 3	Router# copy running-config startup-config	設定の変更をフラッシュ メモリに保存します。新しい マイクロコード イメージを使用して設定した実行コン フィギュレーション ファイルを ML シリーズ カードの スタートアップ コンフィギュレーション ファイルとし て保存し、新しいマイクロコード イメージでリプート します。
ステップ 4	Router# reload	ML シリーズ カードをリセットし、新しいマイクロコー ド イメージをロードします。 <u> 注意</u> ガム NL シリーズ カードをリセットすると、トラ フィックが損失します。また、カードへの
		Telnet セッションがすべて閉じられます。
ステップ 5	Router# show microcode	現在ロードされているマイクロコード イメージと、ML シリーズ カードをリセットした場合にロードされるマ イクロコード イメージを表示します。

Cisco IOS のコマンド モード

Cisco IOS ユーザ インターフェイスには複数のモードがあります。使用できるコマンドは、使用中のモードによって異なります。モード別の使用可能コマンド リストを表示するには、システム プロンプトに疑問符 (?)を入力します。

使用頻度が高いモード、そのモードを開始する方法、および表示されるシステム プロンプトを表 3-3 に示します。システム プロンプトによって、どのモードを使用中であるかを簡単に識別できる ため、使用可能なコマンドも容易に識別できます。

プロセスが MLシリーズ カードの CPU を大量に消費すると、CPU の応答時間が長くなり、CPUHOG エラー メッセージがコンソールに表示されることがあります。このメッセージでは、イベントに よりルーティング テーブル内のルートが大量に更新された場合など、CPU サイクルを大量に使用 したプロセスが表示されます。カードのリセットまたは頻繁に発生しないイベントを実行した結果 としてこのメッセージが表示された場合は、問題ありません。

表 3-3 Cisco IOS のコマンド モード

モード	用途	アクセス方法	プロンプト
ユーザ EXEC	リモート装置への接続、一時的 な端末設定値の変更、基本的な テストの実行、およびシステム 情報の表示を行うことができま す。	ログインします。	Router>
イネーブル EXEC (イネーブル モード とも呼ぶ)	操作パラメータを設定します。 イネーブル コマンド セットに は、ユーザ EXEC モードのコマ ンドと configure コマンドが含 まれます。他のコマンド モード にアクセスするには、このコマ ンド モードを使用します。	ユーザ EXEC モードで、enable コマン ドとイネーブル パスワードを入力し ます。	Router#
グローバル コン フィギュレーショ ン	システム全体に影響する機能を 設定します。	イネーブル EXEC モードで configure terminal コマンドを入力します。	Router(config)#
インターフェイス コンフィギュレー ション	特定のインターフェイスの機能 をイネーブルにします。イン ターフェイス コマンドでは、 ファスト イーサネット ポート、 ギガビット イーサネット ポー ト、または POS ポートの操作を イネーブルにしたり、変更した りできます。	グローバル コンフィギュレーション モードで interface <i>type number</i> コマン ドを入力します。 たとえば、ファストイーサネットイン ターフェイスに対して interface fastethernet 0、ギガビットイーサネッ トインターフェイスに対して interface gigabitethernet 0、Packet over SONET イ ンターフェイスに対して interface pos 0 を入力します。	Router(config-if)#

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

表 3-3 Cisco IOS のコマンド モード (続き)

モード	用途	アクセス方法	プロンプト
ライン コンフィ	直接接続したコンソールまたは	コンソール ポートを設定するには、グ	Router(config-line)#
ギュレーション	Telnet 接続した仮想端末からコ	ローバル コンフィギュレーション	
	ンソール ポートまたは vty 回線	モードで line console 0 コマンドを入力	
	を設定します。	します。vty 回線を設定するには、グ	
		ローバル コンフィギュレーション	
		モードで line vty line-number コマンド	
		を入力します。	

ML シリーズ カードでセッションを開始すると、ユーザ EXEC モードで始まります。ユーザ EXEC モードで使用できるコマンドのサブセットは限られています。すべてのコマンドを実行するには、 イネーブル EXEC モード(イネーブル モード)を使用する必要があります。イネーブル EXEC モー ドでは、すべての EXEC コマンドの入力またはグローバル コンフィギュレーション モードへのア クセスが可能です。ほとんどの EXEC コマンドは、現在の設定ステータスを表示する show コマン ド、カウンタやインターフェイスをクリアする clear コマンドなどのように、一度しか使用しない コマンドです。ML シリーズ カードをリブートすると、ブート前に実行した EXEC コマンドは、保 存されません。

コンフィギュレーション モードでは、実行コンフィギュレーションを変更できます。コンフィギュ レーションを保存すると、ML シリーズ カードをリプートしたあともコマンドが保存されます。最 初は、グローバル コンフィギュレーション モードから始める必要があります。グローバル コンフィ ギュレーション モードでは、インターフェイス コンフィギュレーション モード、サブインターフェ イス コンフィギュレーション モード、およびプロトコル固有のさまざまなモードに切り替えるこ とができます。

ROMMON モードは、ML シリーズ カードを正しくブートできない場合に使用する独立したモード です。たとえば、ML シリーズ カードのブート時に有効なシステム イメージが検出されない場合、 または起動時にコンフィギュレーション ファイルが破損している場合、このカードは ROM モニタ モードに入ります。

コマンド モードの使用

入力したコマンドは、EXEC と呼ばれる Cisco IOS コマンド インタプリタにより解釈および実行されます。コマンドやキーワードは、他のコマンドと区別するのに十分な文字だけを入力して短縮することができます。たとえば、show コマンドは sh に短縮できます。また、configure terminal コマンドは config t に短縮できます。

終了

exit と入力すると、ML シリーズ カードのレベルが 1 つ上に戻ります。通常は、exit と入力すると、 グローバル コンフィギュレーション モードに戻ります。コンフィギュレーション モードを完全に 終了し、イネーブル EXEC モードに戻るには、end コマンドを入力します。

ヘルプの利用方法

どのコマンド モードでも、疑問符(?)を入力すると、使用可能なコマンドのリストを表示できます。

Router> ?

特定の文字列で始まるコマンドのリストを表示するには、その文字列の直後に疑問符(?)を続け て入力します。スペースは挿入しないでください。この形式のヘルプは、コマンド ワードの完全な 形を表示するので、ワード ヘルプと呼ばれます。

Router# **co?** configure

キーワードまたは引数のリストを表示するには、キーワードまたは引数の代わりに疑問符(?)を 入力します。疑問符の前に1つスペースを挿入します。入力したコマンド、キーワード、および引 数に適用できるキーワードまたは引数が表示されるので、この形式のヘルプはコマンドシンタック スヘルプと呼ばれます。

Router#configure ? memory Configure from NV memory network Configure from a TFTP network host overwrite-network Overwrite NV memory from TFTP network host terminal Configure from the terminal <cr>

1つ前に入力したコマンドを再表示するには、上矢印キーを押します。上矢印キーを押し続けると、 過去に実行したコマンドがさらに表示されます。

コマンドの入力ができない場合は、システム プロンプトをチェックし、次に疑問符(?)を入力し て利用可能なコマンドのリストを表示します。誤ったコマンド モードやシンタックスを使用してい る可能性があります。

どのモードからでも Ctrl-Z を押すか、または end と入力すると、イネーブル EXEC (イネーブル) モードに直接戻ることができます。代わりに exit と入力すると、直前のモードに戻ります。

インターフェイスの設定

この章では、MLシリーズカードを起動して実行するための、MLシリーズカードのインターフェイスの基本設定について説明します。Packet-over-SONET/SDH(POS)インターフェイスの高度な設定については、第5章「POSの設定」を参照してください。この章で使用する Cisco IOS コマンドの詳細については、『*Cisco IOS Command Reference*』を参照してください。

この章の内容は次のとおりです。

- インターフェイスの一般的な注意事項(p.4-2)
- インターフェイスの基本設定(p.4-4)
- ファスト イーサネット、ギガビット イーサネット、および POS インターフェイスの基本設定 (p.4-6)
- ファスト イーサネット インターフェイスとギガビット イーサネット インターフェイスのモニ タリング操作(p.4-11)

ML シリーズ カードの初期設定が完了してからインターフェイスを設定してください。

インターフェイスの一般的な注意事項

ML シリーズ カードの主な機能はデータ リンク間でパケットを中継することです。したがって、パ ケットを送受信するインターフェイスの特性を設定する必要があります。インターフェイスの特性 には IP アドレス、ポートのアドレス、データ カプセル化方式、およびメディア タイプなどがあり ます。

多数の機能がインターフェイスごとにイネーブルにできます。インターフェイス コンフィギュレー ション モードには、イーサネット ポートなどのインターフェイスの動作を修正するコマンドがあ ります。interface コマンドを入力する場合は、インターフェイスのタイプと番号を指定する必要が あります。

次の一般的な注意事項は、すべての物理インターフェイスと仮想インターフェイスの設定に当ては まります。

- すべてのインターフェイスに名前があります。名前はインターフェイス タイプ(ワード)と ポート ID(番号)から成ります。例としては、FastEthernet 2 があります。
- それぞれのインターフェイスは、ブリッジ グループ、または IP アドレスと IP サブネット マス クを使用して設定します。
- VLAN(仮想LAN)はサブインターフェイスを使用することによりサポートされます。サブインターフェイスとは、関連付けられた物理インターフェイスとは別に設定された論理インターフェイスです。
- 内部 POS インターフェイスを含め、それぞれの物理インターフェイスには、MAC(メディア アクセス制御)アドレスが割り当てられています。

MAC アドレス

イーサネット ネットワークに接続するポートまたは装置には、MAC アドレスが必要です。ネット ワークの他の装置が、特定のポートをネットワーク内で検索したり、ルーティング テーブルとデー 夕構造を作成および更新したりするために MAC アドレスを使用します。

装置の MAC アドレスを検索するには、show interfaces コマンドを次のように使用します。

```
Router# sh interfaces fastEthernet 0
FastEthernet0 is up, line protocol is up
 Hardware is epif_port, address is 0005.9a39.6634 (bia 0005.9a39.6634)
 MTU 1500 bytes, BW 100000 Kbit, DLY 100 usec,
    reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation ARPA, loopback not set
 Keepalive set (10 sec)
  Full-duplex, Auto Speed, 100BaseTX
  ARP type: ARPA, ARP Timeout 04:00:00
  Last input 00:00:01, output 00:00:18, output hang never
  Last clearing of "show interface" counters never
  Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue :0/40 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
    11 packets input, 704 bytes
     Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
     0 watchdog, 11 multicast
     0 input packets with dribble condition detected
    3 packets output, 1056 bytes, 0 underruns
     0 output errors, 0 collisions, 0 interface resets
     0 babbles, 0 late collision, 0 deferred
     0 lost carrier, 0 no carrier
     0 output buffer failures, 0 output buffers swapped out
```

インターフェイス ポート ID

インターフェイス ポート ID によって、ML シリーズ カードのインターフェイスの物理的な位置が 指定されます。この ID は、設定するインターフェイスを特定する名前です。システム ソフトウェ アは、インターフェイス ポート ID を使用して ML シリーズ カード活動状況を制御し、ステータス 情報を表示します。インターフェイス ポート ID は、ネットワークの他の装置が使用することはな く、個々の ML シリーズ カードおよびその内部のコンポーネントとソフトウェアに固有です。

ML100T-12 では、12 個のファスト イーサネット インターフェイスのポート ID は Fast Ethernet 0 ~ 11 です。ML100X-8 では、8 つのファスト イーサネット インターフェイスのポート ID は Fast Ethernet 0 ~ 7 です。ML1000-2 では、2 つのギガビット イーサネット インターフェイスのポート ID は Gigabit Ethernet 0 ~ 1 です。どちらの ML シリーズ カードにも 2 つの POS ポートがあり、これらの 2 つの POS インターフェイスの ML シリーズ ポート ID は POS 0 と POS 1 です。ポート ID には、ユーザ 定義の省略形を使用できます。たとえば、ファスト イーサネット インターフェイスの設定には f0、 2 つのギガビット イーサネット インターフェイスの設定には gi0 または gi1、2 つの POS ポートの 設定には POS0 と POS1 にすることができます。

Cisco IOS の show コマンドを使用すると、ML シリーズ カードの任意またはすべてのインターフェ イスに関する情報を表示できます。

ギガビット イーサネットのユーザ定義の省略形として、g0 または g1 を使用しないでください。使用すると、サポートされないグループ非同期インターフェイスが作成されます。

インターフェイスの基本設定

次の一般的な設定方法は、すべてのインターフェイスに当てはまります。インターフェイスを設定 する前に、ブリッジまたはルーティングされるネットワークの計画を作成しておいてください。

インターフェイスを設定するには、次の手順を実行します。

ステップ1 イネーブル EXE プロンプトで configure EXEC コマンドを入力してグローバル コンフィギュレー ション モードを開始します。

> Router> **enable** Password: Router# **configure terminal** Router(config)#

ステップ2 interface コマンド、インターフェイス タイプ (fastethernet、gigabitethernet、pos など)、インター フェイス ポート ID (「インターフェイス ポート ID」 [p.4-3] を参照)の順に入力します。

たとえば、ギガビット イーサネット ポートを1つ設定するには、次のコマンドを入力します。

Router(config)# interface gigabitethernet number

ステップ3 interface コマンドの入力後に、設定するインターフェイスに必要なインターフェイス設定コマンド を入力します。

> 入力するコマンドによって、インターフェイス上で実行するプロトコルとアプリケーションが定義 されます。ML シリーズ カードは、interface コマンドがもう一度入力されるか、またはインター フェイス コンフィギュレーション コマンド以外のコマンドが入力されるまで、コマンドを集め、 interface コマンドに適用します。end を入力してイネープル EXEC モードに戻ることもできます。

ステップ4 EXEC の show interface コマンドを入力して、設定したインターフェイスのステータスを確認します。

```
Router# sh interface fastEthernet 0
FastEthernet0 is up, line protocol is up
Hardware is epif_port, address is 0005.9a39.6634 (bia 0005.9a39.6634)
MTU 1500 bytes, BW 100000 Bit, DLY 100 use,
     reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation ARPA, loopback not set
 Keepalive set (10 sec)
 Full-duplex, Auto Speed, 100BaseTX
 ARP type: ARPA, ARP Timeout 04:00:00
 Last input 00:00:01, output 00:00:18, output hang never
 Last clearing of "show interface" counters never
 Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue :0/40 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
    11 packets input, 704 bytes
     Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
    0 watchdog, 11 multicast
    0 input packets with dribble condition detected
     3 packets output, 1056 bytes, 0 underruns
     0 output errors, 0 collisions, 0 interface resets
    0 babbles, 0 late collision, 0 deferred
     0 lost carrier, 0 no carrier
     0 output buffer failures, 0 output buffers swapped out
```

ファスト イーサネット、ギガビット イーサネット、および POS イン ターフェイスの基本設定

ML シリーズ カードは、ファスト イーサネット、ギガビット イーサネット、および POS の各イン ターフェイスをサポートしています。ここでは、すべてのインターフェイス タイプの設定例をいく つか説明します。

ファスト イーサネット、ギガビット イーサネット、または POS のインターフェイスに IP アドレス またはブリッジ グループ番号を設定するには、グローバル コンフィギュレーション モードで次の 手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# interface type number	インターフェイス コンフィギュレーション モードを起
		動して、ギガビット イーサネット インターフェイス、
		ファスト イーサネット インターフェイス、または POS
		インターフェイスのいずれかを設定します。
ステップ 2	Router(config-if)# { ip address <i>ip-address</i>	インターフェイスに割り当てる IP アドレスと IP サブ
	subnet-mask bridge-group bridge-group-number}	ネット マスクを設定します。
		または
		ネットワーク インターフェイスをブリッジ グループに
		割り当てます。
ステップ 3	Router(config-if)# no shutdown	インターフェイスがシャット ダウンしないようにする
		ことにより、インターフェイスをイネーブルにします。
ステップ 4	Router(config)# end	イネーブル EXEC モードに戻ります。
ステップ 5	Router# copy running-config startup-config	(任意)設定の変更をタイミング制御用カード
		(TCC2/TCC2P)のフラッシュ データベースに保存しま
		す。

ファスト イーサネット インターフェイスの設定 (ML100T-12)

ML100T-2 ファスト イーサネット インターフェイス上で IP アドレスまたはブリッジ グループ番号、速度、デュプレックス、およびフロー制御を設定するには、グローバル コンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的	
ステップ 1	Router(config)# interface fastethernet number	インターフェイス コンフィギュレーション モード	
		を起動してファスト イーサネット インターフェイ	
		スを設定します。	
ステップ 2	Router(config-if)# { ip address <i>ip-address</i>	インターフェイスに割り当てる IP アドレスと IP サ	
	subnet-mask bridge-group bridge-group-number}	ブネット マスクを設定します。	
		または	
		ネットワーク インターフェイスをブリッジ グルー プに割り当てます。	

	コマンドの説明	目的
ステップ 3	Router(config-if)# [no] speed {10 100 auto}	伝送速度を 10 または 100 Mbps に設定します。speed または duplex を auto に設定した場合、システムで自 動ネゴシエーションがイネーブルになります。この 場合、ML シリーズ カードはパートナー ノードの speed および duplex モードと一致します。
ステップ 4	Router(config-if)# [no] duplex {full half auto}	全二重モード、半二重モード、または自動ネゴシエー ション モードを設定します。
ステップ 5	<pre>Router(config-if)# flowcontrol send {on off desired}</pre>	 (任意)インターフェイスのフロー制御送信値を設定します。フロー制御は、ポートレベルのポリシングを使用した場合にのみ機能します。ML シリーズカードのファスト イーサネット ポートのフロー制御は IEEE 802.3x 準拠です。 (注) ファスト イーサネット ポートは対称フロー制御のみをサポートしているので、flowcontrol send コマンドは送受信両方のフロー制御動作を制御します。
ステップ 6	Router(config-if)# no shutdown	インターフェイスがシャット ダウンしないように することにより、インターフェイスをイネーブルに します。
ステップ 7	Router(config)# end	イネーブル EXEC モードに戻ります。
ステップ 8	Router# copy running-config startup-config	(任意)設定の変更を TCC2/TCC2P フラッシュ デー タベースに保存します。

例 4-1 に、IP アドレスと自動ネゴシエーションを使用した ML100T-12 ファスト イーサネット イン ターフェイスの初期設定方法を示します。

例 4-1 ML100T-12 ファスト イーサネット インターフェイスの初期設定

```
Router(config)# interface fastethernet 1
Router(config-if)# ip address 10.1.2.4 255.0.0.0
Router(config-if)# negotiation auto
Router(config-if)# no shutdown
Router(config-if)# end
Router# copy running-config startup-config
```

ファスト イーサネット インターフェイスの設定 (ML100X-8)

ML 100X-8 は、100BASE-FX 全二重データ伝送をサポートしています。ファスト イーサネット イ ンターフェイスでは、自動ネゴシエーションや速度を設定できません。またカードには、デフォル トで Automatic Media-Dependent Interface crossover(Auto-MDIX; 自動メディア依存型インターフェイ スクロスオーバー)機能がイネーブルに設定されています。Auto-MDIX は、必要なケーブル接続 タイプ(ストレートまたはクロス)を検出し、接続設定を適切に行います。ファスト イーサネット インターフェイス上で IP アドレス、ブリッジ グループ番号、またはフロー制御を設定するには、 グローバル コンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# interface fastethernet number	インターフェイス コンフィギュレーション モード を起動してファスト イーサネット インターフェイ
		スを設定します。
ステップ 2	Router(config-if)# { ip address <i>ip-address</i> <i>subnet-mask</i> bridge-group <i>bridge-group-number</i> }	インターフェイスに割り当てる IP アドレスと IP サ ブネット マスクを設定します。
		または
		ネットワーク インターフェイスをブリッジ グルー プに割り当てます。
ステップ 3	<pre>Router(config-if)# flowcontrol send {on off desired}</pre>	 (任意)インターフェイスのフロー制御送信値を設定します。フロー制御は、ポートレベルのポリシングを使用した場合にのみ機能します。MLシリーズカードのファストイーサネットポートのフロー制御はIEEE 802.3x 準拠です。 (注) ファストイーサネットポートは対称フロー制御のみをサポートしているので、flowcontrol send コマンドは送受信両方のフロー制御動作を制御します。
ステップ 4	Router(config-if)# no shutdown	インターフェイスがシャット ダウンしないように することにより、インターフェイスをイネーブルに します。
ステップ 5	Router(config)# end	イネーブル EXEC モードに戻ります。
ステップ 6	Router# copy running-config startup-config	(任意)設定の変更を TCC2/TCC2P フラッシュ デー タベースに保存します。

ギガビット イーサネット インターフェイスの設定(ML1000-2)

ML1000-2 ギガビット イーサネット インターフェイス上で IP アドレスまたはブリッジ グループ番号、自動ネゴシエーション、およびフロー制御を設定するには、グローバル コンフィギュレーション モードで次の手順を実行します。

(注)

Aゴシエーション モードのデフォルト設定は、ギガビット イーサネットおよびファスト イーサ ネットのインターフェイスの場合は auto です。ギガビット イーサネット ポートは、常に全二重 モードの 1000 Mbps で動作します。
	コマンドの説明	目的
ステップ 1	Router# interface gigabitethernet number	インターフェイス コンフィギュレーション モードを起
		動してギガビット イーサネット インターフェイスを設
		定します。
ステップ 2	Router(config-if)# { ip address ip-address submet-mask bridge-group	IP アドレスおよびサブネット マスクを設定します。
	bridge-group-number}	または
		ネットワーク インターフェイスをブリッジ グループに
		割り当てます。
ステップ 3	Router(config-if)# [no] negotiation auto	ネゴシエーション モードを auto に設定します。ギガ
		ビット イーサネット ポートはパートナー ポートとリン
		クのネゴシエーションを試行します。
		パートナー ポートの設定に関係なく、このポートでリ
		ンクを強制的に起動する場合は、ギガビット イーサ
		ネット インターフェイスを no negotiation auto に設定
		します。
ステップ 4	Router(config-if)# flowcontrol {send	(任意)インターフェイスに送信または受信のフロー制
	receive; {on orr destred;	御値を設定します。フロー制御は、ボートレベルのボリ
		シンクを使用した場合にのみ機能します。MLシリース
		ハートのキハビット イーリネット ホートのノロー制御 H IEEE 802 37 淮柳です
フテップ5	Poutor(config if) # no chutdorm	$\frac{1}{4} = \frac{1}{2} = \frac{1}{4} = \frac{1}$
X) 97 3	Kouter (config-ii) # no shutdown	「インターフェイスかシャット タワン しないようにする ことにより インターフェイスをイネーブルにします
ステップィ	Router(config)# end	7 = 7 = 7 = 7 = 7 = 7 = 7 = 7 = 7 = 7 =
フニッ プ フ		
スナツノ (Router# copy running-config startup-config	(11日) 設たの変更を ICC2/ICC2P ノフッシュ テータ ベーフに保存します

例 4-2 に、自動ネゴシエーションと IP アドレスを使用したギガビット イーサネット インターフェ イスの初期設定方法を示します。

例 4-2 ギガビット イーサネット インターフェイスの初期設定

```
Router(config)# interface gigabitethernet 0
Router(config-if)# ip address 10.1.2.3 255.0.0.0
Router(config-if)# negotiation auto
Router(config-if)# no shutdown
Router(config-if)# end
Router# copy running-config startup-config
```

POS インターフェイスの設定(ML100T-12、ML100X-8、および ML1000-2)

POS ポートでカプセル化を変更できるのは、インターフェイスが手動でシャットダウン (ADMIN_DOWN)されているときだけです。POS インターフェイスの高度な設定については、第 5章「POS の設定」を参照してください。

POS インターフェイスの IP アドレス、ブリッジ グループ、カプセル化を設定するには、グローバ ル コンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# interface pos number	インターフェイス コンフィギュレーション モードを起
		動して POS インターフェイスを設定します。
ステップ 2	Router(config-if)# { ip address <i>ip-address</i>	IP アドレスおよびサブネット マスクを設定します。
	subnet-mask bridge-group	
		ネットワーク インターフェイスをブリッジ グループに
		割り当てます。
ステップ 3	Router(config-if)# shutdown	インターフェイスを手動でシャット ダウンします。POS
		ポートでカプセル化を変更できるのは、インターフェイ
		スがシャットダウン(ADMIN_DOWN)されているとき
		だけです。
ステップ 4	Router(config-if)# encapsulation type	カプセル化のタイプを設定します。有効な値は次のとお
		りです。
		• hdlc Cisco HDLC
		• lex (デフォルト)LAN 拡張。Cisco ONS イーサ
		ネット ライン カードと併用するための特殊なカプ
		• ppp ポイントツーポイント プロトコル
ステップ 5	Router(config-if)# no shutdown	シャットダウンされているインターフェイスを再起動
		します。
ステップ 6	Router(config)# end	イネーブル EXEC モードに戻ります。
ステップ 7	Router# copy running-config startup-config	(任意)設定の変更を NVRAM(不揮発性 RAM)に保存
		します。

ファスト イーサネット インターフェイスとギガビット イーサネット イ ンターフェイスのモニタリング操作

インターフェイスを設定したあとに設定を確認するには、show interface コマンドを入力します。 POS インターフェイス上の動作に対するモニタリングの詳細については、「POS の設定」の章を参 照してください。

例 4-3 に show interface コマンドの出力を示します。ポート速度とデュプレックス動作を含むイン ターフェイスのステータスが表示されます。

例 4-3 show interface コマンドの出力

Router# show interface fastEthernet 0 FastEthernet1 is administratively down, line protocol is down Hardware is epif_port, address is 000d.bd5c.4c85 (bia 000d.bd5c.4c85) MTU 1500 bytes, BW 100000 Kbit, DLY 100 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation ARPA, loopback not set Keepalive set (10 sec) Auto-duplex, Auto Speed, 100BaseTX ARP type: ARPA, ARP Timeout 04:00:00 Last input never, output never, output hang never Last clearing of "show interface" counters never Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/40 (size/max) 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 0 packets input, 0 bytes Received 0 broadcasts (0 IP multicast) 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored 0 watchdog, 0 multicast 0 input packets with dribble condition detected 0 packets output, 0 bytes, 0 underruns 0 output errors, 0 collisions, 0 interface resets 0 babbles, 0 late collision, 0 deferred 0 lost carrier, 0 no carrier 0 output buffer failures, 0 output buffers swapped out

ファスト イーサネット コントローラ チップに関する情報を表示するには、show controller コマン ドを入力します。

例 4-4 に、show controller コマンドの出力を示します。初期化ブロック情報を含む統計情報が表示 されます。

例 4-4 show controller コマンドの出力

```
Router# show controller fastEthernet 0
IF Name: FastEthernet0
Port Status DOWN
Send Flow Control
                    : Disabled
Receive Flow Control : Enabled
MAC registers
CMCR : 0x0000042D (Tx Enabled, Rx Disabled)
CMPR : 0x150B0A80 (Long Frame Disabled)
FCR : 0x0000A00B (Rx Pause detection Enabled)
MIT registers:
Control Register
                              (0x0): 0x4000 (Auto negotiation disabled)
Status Register
                             (0x1): 0x7809 (Link status Down)
PHY Identification Register 1 (0x2): 0x40
PHY Identification Register 2 (0x3): 0x61D4
Auto Neg. Advertisement Reg (0x4): 0x1E1 (Speed 100, Duplex Full)
Auto Neg. Partner Ability Reg (0x5): 0x0
                                            (Speed 10, Duplex Half)
Auto Neg. Expansion Register (0x6): 0x4
100Base-X Aux Control Reg (0x10): 0x2000
100Base-X Aux Status Register(0x11): 0x0
100Base-X Rcv Error Counter (0x12): 0x0
100Base-X False Carr. Counter(0x13): 0x0
```

ファスト イーサネット インターフェイスの設定に関する情報を表示するには、show run interface [*type number*] コマンドを入力します。複数のインターフェイスがあり、特定のインターフェイスの 設定を表示する場合にこのコマンドは便利です。

例 4-5 に、show run interface [*type number*] コマンドの出力を示します。IP アドレスまたは IP アド レスの未指定、およびインターフェイスの状態に関する情報が含まれます。

例 4-5 show run interface コマンドの出力

daytona# show run interface FastEthernet 1
Building configuration...
Current configuration : 56 bytes
!
interface FastEthernet1
no ip address
shutdown

end

POS の設定

この章では、ML シリーズ カードの Packet-over-SONET/SDH (POS) インターフェイスの高度な設定について説明します。POS インターフェイスの基本設定については、第4章「インターフェイスの設定」を参照してください。この章で使用する Cisco IOS コマンドの詳細については、『*Cisco IOS Command Reference*』を参照してください。ML シリーズ カードを含め、ONS イーサネット カードでの POS 操作については 第20章「ONS イーサネット カード上の POS」を参照してください。

この章の内容は次のとおりです。

- ML シリーズ カード上の POS (p.5-2)
- POS のモニタリングと確認 (p.5-11)
- POS の設定例 (p.5-13)

ML シリーズ カード上の POS

イーサネット パケットおよび IP データ パケットは、SONET/SDH ネットワーク上で転送するため に、SONET/SDH フレームにフレーム化およびカプセル化する必要があります。このフレーミング およびカプセル化処理は POS として知られ、ML シリーズ カードで行われます。POS の詳細につ いては、第 20 章「ONS イーサネット カード上の POS」を参照してください。

ML シリーズ カードには、カード前面にある標準のイーサネット ポート、および仮想 POS ポート があり、これらすべてのポートがスイッチ ポートとして装備されています。Cisco IOS では、POS ポートは ML シリーズ カード上の他のイーサネット インターフェイスに類似したインターフェイ スです。通常は、トランク ポートとして使用されます。IEEE 802.1 Q VLAN (仮想 LAN)設定な ど、多くの Cisco IOS の標準機能は、標準イーサネット インターフェイスと同じように POS イン ターフェイスに設定されています。一部の機能と設定は、厳密に POS インターフェイスだけで行わ れます。POS ポートに限定された機能の設定については、この章内で説明しています。

ML シリーズの SONET および SDH の回線サイズ

SONET は、51.840 Mbps (STS-1) ~ 2.488 Gbps (STS-48)以上の階層レートを持つ光デジタル伝送 用 American National Standards Institute (ANSI; 米国規格協会)標準(T1.1051988)です。SDH は、 155.520 Mbps (STM-1) ~ 2.488 Gbps (STM-16)以上の階層レートを持つ光デジタル伝送用国際標 準です。

SONET および SDH の両方とも、基本フレームと速度を備えた構造に基づいています。SONET で 使用するフレーム形式は Synchronous Transport Signal (STS; 同期転送信号)であり、STS-1 が 51.84 Mbps の基本レベル信号です。STS-1 フレームは OC-1 信号で伝送できます。SDH で使用するフレー ム形式は Synchronous Transport Module (STM; 同期転送モジュール)であり、STM-1 が 155.52 Mbps の基本レベル信号です。STM-1 フレームは OC-3 信号で伝送できます。

SONET および SDH はともに、信号速度が階層化されています。複数の低レベルの信号を多重化して、高レベルの信号を形成できます。たとえば、3 つの STS-1 信号を多重化して 1 つの STS-3 信号を構成したり、4 つの STM-1 信号を多重化して 1 つの STM-4 信号を構成したりすることができます。

SONET の回線サイズは STS-n として定義されます。ここで、n は 51.84 Mbps の倍数で、1 以上で す。SDH の回線サイズは STM-n として定義されます。ここで、n は 155.52 Mbps の倍数で、0 以上 です。表 5-1 に、STS および STM の回線レート相当値を示します。

SONET 回線サイズ	SDH 回線サイズ	回線レート(Mbps)
STS-1 (OC-1)	VC-3 ¹	52 Mbps
STS-3c (OC-3)	STM-1 (VC4)	156 Mbps
STS-6c (OC-6)	STM-2 (VC4-2c)	311 Mbps
STS-9c (OC-9)	STM-3 (VC4-3c)	466 Mbps
STS-12c (OC-12)	STM-4 (VC4-4c)	622 Mbps
STS-24c (OC-24)	STM-8 (VC4-8c)	1244 Mbps(1.24 Gbps)

表 5-1 回線レート Mbps での SONET STS 回線容量

1. VC-3 回線サポートでは、XCVL カードを取り付ける必要があります。

ML シリーズ カードの SONET STS 回線の詳細な設定手順については、『*Cisco ONS 15454 Procedure Guide*』の「Create Circuits and VT Tunnels」の章を参照してください。ML シリーズ カードの SDH STM 回線の詳細な設定手順については、『*Cisco ONS 15454 SDH Procedure Guide*』の「Create Circuits and Tunnels」の章を参照してください。

VCAT

Virtual Concatenation (VCAT; バーチャル コンカチネーション)を使用すると、連続していない SONET/SDH フレームの Synchronous Payload Envelope(SPE; 同期ペイロードエンベロープ)を VCAT グループにグループ化できるので、SONET/SDH 上のデータ転送効率が大きく向上します。VCAT グループの回線帯域幅は、VCAT メンバーという、より小さい回線に分割されます。各メンバーは、 独立した回線として機能します。

VCAT メンバーは、中継ノードでは、SONET/SDH ネットワークによって独立的にルーティングおよび保護される通常の回線として処理されます。終端ノードでは、これらのメンバー回線が、連続的なデータストリームに多重化されます。VCAT では、SONET/SDH 帯域幅のフラグメンテーションの問題が防止され、帯域幅サービスをより細かい単位で設定できます。

また、ONS 15454 SONET および ONS 15454 SDH ML シリーズ カードの VCAT 回線は、通常のファ イバ経由でルーティングし、双方向かつ対称である必要があります。High Order (HO; 高次) VCAT 回線だけがサポートされています。ML シリーズ カードでは、最大 2 つの VCAT グループがサポー トされ、各グループが POS ポートの 1 つに対応します。各 VCAT グループには、2 つの回線メン バーを含むことができます。ML シリーズ カードを起点とする VCAT 回線は、別の ML シリーズ カードまたは CE シリーズ カードで終端させる必要があります。表 5-2 に、ML シリーズ カードが サポートする VCAT の回線サイズを示します。

表 5-2 ML100 ⁻	「-12、ML100X-8、	、ML1000-2 カードでサポー	- トされる VCAT 回線サイフ	ς.
--------------------------	----------------	-------------------	-------------------	----

SONET VCAT 回線サイズ	SDH VCAT 回線サイズ
STS-1-2v	VC-3-2v
STS-3c-2v	VC-4-2v
STS-12c-2v	VC-4-4c-2v

ML シリーズ カードの SONET VCAT 回線の詳細な設定手順については、『Cisco ONS 15454 Procedure Guide』の「Create Circuits and VT Tunnels」の章を参照してください。ML シリーズ カー ドの SDH VCAT 回線の詳細な設定手順については、『Cisco ONS 15454 SDH Procedure Guide』の 「Create Circuits and Tunnels」の章を参照してください。VCAT 回線全般については、『Cisco ONS 15454 Reference Manual』または『Cisco ONS 15454 SDH Reference Manual』の「Circuits and Tunnels」 の章を参照してください。

ML シリーズカードの POS インターフェイスは通常、POS リンクがダウンまたは RPR がラップし たときに、ONS 15454 STS パスオーバーヘッド (PDI-P)の信号ラベル ミスマッチ障害に関するア ラームを遠端に送信します。PDI-P が検出されたとき、Remote Defection Indication - Path (RDI-P; リ モート障害表示 パス)アラームが遠端に送信されているとき、または検出された障害が Generic Framing Procedure (GFP)-Loss of Frame Delineation (LFD)、GFP Client Signal Fail (CSF)、Virtual Concatenation (VCAT)-Loss of Multiframe (LOM)または VCAT-Loss of Sequence (SQM)の場合 は、ML シリーズカードの POS インターフェイスは PDI-P を遠端に送信しません。

DCC(オープン エンド ノード)によって接続されていないノードの場合は、VCAT を TL-1 経由で 設定する必要があります。

SW-LCAS

Link Capacity Adjustment Scheme (LCAS; リンク キャパシティ調整方式)を使用すると、関係しない メンバーの動作を中断せずに VCAT グループを動的に再設定できるので VCAT の柔軟性が向上し ます。Software Link Capacity Adjustment Scheme (SW-LCAS; ソフトウェア リンク キャパシティ調整 方式)は、LCAS タイプの機能をソフトウェアで実装したものです。SW-LCAS は、LCAS と異な り、エラーが発生することがあるだけでなく、異なるハンドシェイク メカニズムを使用します。

ONS-15454 SONET/SDH ML シリーズカードの SW-LCAS では、2ファイバ Bidirectional Line Switched Ring (BLSR; 双方向ライン スイッチ型リング)で障害または回復が発生した場合に、VCAT グルー プのメンバーを自動的に追加または削除できます。保護メカニズム ソフトウェアは、ML シリーズ カードのリンク イベントに基づいて動作します。サービス プロバイダーは、SW-LCAS を使用する と、ML シリーズ カード上の VCAT メンバーの回線を Protection Channel Access (PCA; 保護チャネ ル アクセス)回線として設定できます。この PCA トラフィックは、保護切り替え時にドロップさ れますが、過剰なトラフィックやコミットされていないトラフィックには適しており、その回線で 使用可能な帯域幅を倍増させることができます。

SW-LCAS の詳細な設定手順については、『*Cisco ONS 15454 Procedure Guide*』の「Create Circuits and VT Tunnels」の章または『*Cisco ONS 15454 SDH Procedure Guide*』の「Create Circuits and Tunnels」の 章を参照してください。SW-LCAS 全般については、『*Cisco ONS 15454 Reference Manual*』または 『*Cisco ONS 15454 SDH Reference Manual*』の「Circuits and Tunnels」の章を参照してください。

フレーミング モード、カプセル化、および CRC のサポート

ONS 15454 および ONS 15454 SDH 上の ML シリーズ カードは、POS フレーミング メカニズムの 2 つのモードである、GFP-F フレーミングと High-Level Data Link Control (HDLC; ハイレベル データ リンク制御) フレーミング (デフォルト)をサポートします。送信元 POS ポートと宛先 POS ポー トのフレーミング モード、カプセル化、および CRC サイズは、POS 回線が正常に動作するために 一致する必要があります。フレーミング メカニズム、カプセル化、および Cyclic Redundancy Check (CRC; 巡回冗長検査) ビット サイズの詳細については、第 20 章「ONS イーサネット カード上の POS」を参照してください。

表 5-3 に、フレーミング タイプでサポートされているカプセル化および CRC サイズの詳細を示します。

	HDLC フレーミングの カプセル化	HDLC フレーミングの CRC サイズ	GFP-F フレーミングの カプセル化	GFP-F フレーミングの CRC サイズ
ML シリーズ	LEX(デフォルト)	16 ビット	LEX(デフォルト)	32 ビット
	Cisco HDLC	32 ビット	Cisco HDLC	(デフォルト)
	PPP/BCP	(デフォルト)	PPP/BCP	

表 5-3 ONS 15454 および ONS 15454 SDH 上の ML シリーズ カードでサポートされているカプセル化、フレーミング、および CRC サイズ

<u>》</u> (注)

ML シリーズ カードの POS インターフェイスは通常、POS リンクがダウンまたは RPR がラップし たときに、PDI-P を遠端に送信します。PDI-P が検出されたとき、RDI-P が遠端に送信されている とき、検出された障害が GFP LFD、GFP CSF、VCAT LOM または VCAT SQM の場合には、ML シ リーズ カードの POS インターフェイスは PDI-P を遠端に送信しません。

POS インターフェイス フレーミング モード の設定

ML シリーズ カードのフレーミング モードは、CTC から設定します。CTC でのフレーミング モードの設定の詳細については、第2章「CTC の動作」を参照してください。

POS インターフェイス カプセル化タイプの設定

デフォルトの Cisco EoS LEX は ONS イーサネット カードの主要なカプセル化方式です。このカプ セル化は、HDLC フレーミングのもと、Internet Engineering Task Force (IETF; インターネット技術 特別調査委員会)の Request For Comments (RFC; コメント要求)1841 で指定された値にプロトコル フィールドを設定した状態で使用されます。GFP-F フレーミング下では、Cisco IOS CLI もキーワー ド lex を使用します。GFP-F フレーミングでは、lex キーワードは ITU-T G.7041 に基づいた GFP-F 上の標準マップ イーサネットを表すために使用されます。

ML シリーズ カードのカプセル化タイプを設定するには、グローバル コンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# interface pos number	インターフェイス コンフィギュレーション モード を起動して POS インターフェイスを設定します。
ステップ 2	Router(config-if)# shutdown	インターフェイスを手動でシャット ダウンします。 POS ポートでカプセル化を変更できるのは、イン ターフェイスがシャットダウン(ADMIN_DOWN) されているときだけです。
ステップ 3	Router(config-if)# encapsulation <i>type</i>	カプセル化のタイプを設定します。有効な値は次の とおりです。 hdlc Cisco HDLC lex (デフォルト)LAN 拡張。Cisco ONS イー サネット ライン カードと併用するための特殊 なカプセル化。GFP-F フレーミングで lex キー ワードが使用される場合、ITU-T G.7041 に基づ いた GFP-F 上の標準マップ イーサネットにな ります。 npn ポイントツーポイント プロトコル
ステップ 4	Router(config-if)# no shutdown	シャットダウンされているインターフェイスを再起 動します。
ステップ 5	Router(config)# end	イネーブル EXEC モードに戻ります。
ステップ 6	Router# copy running-config startup-config	(任意)設定の変更を NVRAM(不揮発性 RAM)に 保存します。

HDLC フレーミングの POS インターフェイス CRC サイズの設定

遠端のインターフェイスのプロパティと一致させるために追加のプロパティを設定するには、グ ローバル コンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config) # interface pos number	インターフェイス コンフィギュレーション モード
		を起動して POS インターフェイスを設定します。
ステップ 2	<pre>Router(config-if)# crc {16 32}</pre>	HDLC フレーミングの CRC 値を設定します。POS モ ジュールに接続している装置がデフォルト CRC 値 の 32 をサポートしない場合は、16 の値を使用する ように両方の装置を設定します。
		 (注) CRC 値は、GFP-F フレーミングでは 32 に固定されます。
ステップ 3	Router(config-if)# end	イネーブル EXEC モードに戻ります。
ステップ 4	Router# copy running-config startup-config	(任意)設定の変更を NVRAM(不揮発性 RAM)に 保存します。

MTU サイズの設定

Maximum Transmission Unit(MTU; 最大伝送ユニット)サイズを設定するには、グローバル コンフィ ギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# interface pos number	インターフェイス コンフィギュレーション モード を起動して POS インターフェイスを設定します。
ステップ 2	Router(config-if)# mtu bytes	最大 9000 バイトまでの MTU サイズを設定します。 デフォルトの MTU サイズについては表5-4を参照し てください。
ステップ 3	Router(config-if)# end	イネーブル EXEC モードに戻ります。
ステップ 4	Router# copy running-config startup-config	(任意)設定の変更を NVRAM(不揮発性 RAM)に 保存します。

表 5-4 に、デフォルトの MTU サイズを示します。

表 5-4 デフォルトの MTU サイズ

カプセル化タイプ	デフォルト サイズ
LEX(デフォルト)	1500
HDLC	4470
PPP	4470

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

キープアライブ メッセージの設定

ML シリーズ カードのキープアライブ メッセージを設定するには、グローバル コンフィギュレー ション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# interface pos number	インターフェイス コンフィギュレーション モード を開始し、設定する POS インターフェイスを指定し ます。
ステップ 2	Router(config-if)# [no] keepalive	キープアライブ メッセージを設定します。 キープアライブ メッセージはデフォルトでオンに なっています。必須ではありませんが、オンにする なら推奨します。
		このコマンドの no 形式はキープアライブ メッセー ジをオフにします。
ステップ 3	Router(config-if)# end	イネーブル EXEC モードに戻ります。
ステップ 4	Router# copy running-config startup-config	(任意)設定の変更を NVRAM(不揮発性 RAM)に 保存します。

SONET/SDH アラーム

ML シリーズ カードは、Cisco IOS および CTC/TL1 で SONET/SDH アラームをレポートします。多数のパス アラームが Cisco IOS コンソールにレポートされます。Cisco IOS コンソールのアラーム レポートを設定しても、CTC のアラーム レポートには影響しません。「SONET/SDH アラームの設定」の手順では、Cisco IOS コンソールにレポートするアラームを指定します。

CTC/TL1 には、高度な SONET/SDH アラームのレポート機能があります。ONS ノードのカードとして、ML シリーズ カードは他の ONS カードと同様に、CTC/TL-1 にアラームをレポートします。 ONS 15454 SONET で ML シリーズ カードを使用する場合は、このカードの CTC の Alarms パネル に Telcordia GR-253 SONET アラームがレポートされます。アラームとアラームの定義の詳細につい ては、『Cisco ONS 15454 Troubleshooting Guide』または『Cisco ONS 15454 SDH Troubleshooting Guide』 の「Alarm Troubleshooting」の章を参照してください。

SONET/SDH アラームの設定

デフォルトではすべての SONET/SDH アラームが表示されますが、Cisco IOS の CLI での SONET/SDH アラームのレポートをプロビジョニングするには、グローバル コンフィギュレーショ ン モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# interface pos number	インターフェイス コンフィギュレーション モード を開始し、設定する POS インターフェイスを指定し ます
ステップ 2	<pre>Router(config-if)# pos report {all encap pais plop ppdi pplm prdi ptim puneq sd-ber-b3 sf-ber-b3}</pre>	 選択した SONET/SDH アラームのコンソール ロギン グを許可します。特定のアラームのレポートを無効 にするには、このコマンドの no 形式を使用します。 アラームの種類は次のとおりです。 all すべてのアラーム / 信号 encap パスのカプセル化ミスマッチ pais パス アラーム表示信号 plop パス ポインタ喪失 ppdi パス ペイロード障害表示 pplm ペイロードうベル、C2 ミスマッチ prdi パス リモート障害表示 ptim パストレース ID ミスマッチ puneq ゼロと同等のパス ラベル sd-ber-b3 PBIP BER SD スレッシュホールド超過 sf-ber-b3 PBIP BER SF スレッシュホールド超過
ステップ 3	Router(config-if)# end	 イネーブル EXEC モードに戻ります
ステップ 4	Router# copy running-config startup-config	(任意)設定の変更を NVRAM(不揮発性 RAM)に 保存します

POS インターフェイスでレポートするアラームを決定して BER スレッシュホールドを表示するに は、show controllers pos コマンドを使用します。「POS のモニタリングと確認」(p.5-11)を参照し てください。

(注)

Cisco IOS アラーム レポート コマンドは、Cisco IOS の CLI のみに適用されます。TCC2/TCC2P に レポートされる SONET/SDH アラームは影響を受けません。

SONET/SDH 遅延トリガーの設定

リストされているパス アラームをトリガーとして設定して、POS インターフェイスのライン プロ トコルをダウンさせることができます。パス アラームをトリガーとして設定する場合は、pos trigger delay コマンドを使用してトリガーの遅延を指定することもできます。遅延は 200 ~ 2000 ミリ秒に 設定できます。間隔を指定しないと、遅延はデフォルトの 200 ミリ秒に設定されます。

パス アラームをトリガーとして設定して遅延を指定するには、グローバル コンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# interface pos number	インターフェイス コンフィギュレーション モードを開
		始し、設定する POS インターフェイスを指定します。
ステップ 2	Router(config-if)# pos trigger defect {all ber_sf_b3 encap pais plop ppdi pplm prdi ptim puneq}	特定のパス障害をトリガーとして設定して、POS イン ターフェイスをダウンさせます。設定可能なトリガーは 次のとおりです。
		• all すべてのリンク ダウン アラーム障害
		• ber_sd_b3 PBIP BER SD スレッシュホールド超過 障害
		 ber_sf_b3 PBIP BER SD スレッシュホールド超過 障害(デフォルト)
		 encap パス信号ラベル カプセル化ミスマッチ障害(デフォルト)
		• pais パス アラーム表示信号障害(デフォルト)
		• plop パス ポインタ損失障害(デフォルト)
		• ppdi パス ペイロード障害表示障害(デフォルト)
		 pplm ペイロード ラベル ミスマッチ パス (デフォルト)
		• prdi パス リモート障害表示障害(デフォルト)
		 ptim パス トレース インジケータ ミスマッチ障害(デフォルト)
		 puneq ゼロと同等のパス ラベル障害 (デフォルト)
ステップ 3	Router(config-if)# pos trigger delay millisecond	インターフェイスの回線プロトコルがダウンするまで に待機する時間を設定します。遅延は 200 ~ 2000 ミリ
		秒に設定できます。間隔を指定しないと、遅延はデフォ ルトの 200 ミリ秒に設定されます。
ステップ 4	Router(config-if)# end	イネーブル EXEC モードに戻ります。
ステップ 5	Router# copy running-config startup-config	(任意) 設定の変更を NVRAM (不揮発性 RAM) に保存 します。

C2 バイトとスクランブリング

SONET/SDH フレーム内のオーバーヘッド バイトの 1 つに C2 バイトがあります。SONET/SDH 規 格では、C2 バイトをパス信号ラベルとして定義しています。このバイトの目的は、SONET Framing Overhead (FOH; フレーミング オーバーヘッド)でカプセル化されているペイロード タイプと通信 することです。C2 バイトの機能は、イーサネット ネットワークの EtherType および Logical Link Control (LLC; 論理リンク制御)/Subnetwork Access Protocol (SNAP; サブネットワーク アクセス プ ロトコル)のヘッダー フィールドと似ています。C2 バイトによって 1 つのインターフェイスで複 数のペイロード タイプを同時に送信できるようになります。C2 バイトは設定できません。表 5-5 に、C2 バイトの 16 進数値を示します。

信号ラベル	SONET/SDH ペイロードの内容
0x01	スクランブリングを使用した、または使用しない、32 ビット CRC の LEX カプ
	セル化
0x05	スクランブリングを使用した、または使用しない、16 ビット CRC の LEX カプ
	セル化
0xCF	スクランブリングを使用した Cisco HDLC または PPP/BCP
0x16	スクランブリングを使用しない Cisco HDLC または PPP/BCP
0x1B	GFP-F

表 5-5 C2 バイトおよびスクランプリングのデフォルト値

サード パーティ製 POS インターフェイスの C2 バイトおよびスクランプリングの値

サード パーティ製の装置と接続したときにシスコ製の POS インターフェイスが起動しない場合 は、スクランプリング設定、CRC 設定、および C2 バイトでアドバタイズされる値を確認します。 Juniper Networks 製ルータでは、RFC 2615 モードを設定すると、次の 3 つのパラメータが設定され ます。

- スクランブリングのイネーブル
- C2 值 0x16
- CRC-32

従来は、スクランブリングをイネーブルにしても、これらのサードパーティ製の装置は 0xCF の C2 値を使用し続けたため、スクランブルされたペイロードが適切に反映されませんでした。

SPE スクランプリングの設定

SPE スクランブリングはデフォルトではオンに設定されています。POS SONET/SDH ペイロード (SPE)スクランブリングを設定するには、グローバル コンフィギュレーション モードで次の手順 を実行します。

コマンドの説明	目的
Router(config)# interface pos number	インターフェイス コンフィギュレーション モード
	を開始し、設定する POS インターフェイスを指定し
	ます。
Router(config-if)# no pos scramble-spe	ペイロード スクランブリングをインターフェイス
	上でディセーブルにします。 ペイロード スクランブ
	リングはデフォルトではオンに設定されています。
Router(config-if)# no shutdown	以前の設定を使用してインターフェイスをイネーブ
	ルにします。
Router(config-if)# end	イネーブル EXEC モードに戻ります。
Router# copy running-config startup-config	(任意)設定の変更を NVRAM(不揮発性 RAM)に 保存します。
	コマンドの説明 Router(config)# interface pos number Router(config-if)# no pos scramble-spe Router(config-if)# no shutdown Router(config-if)# end Router# copy running-config startup-config

POS のモニタリングと確認

show controller pos [0|1] コマンド(例 5-1)は受信値と送信値および C2 値を出力します。したがって、ローカル エンドで値を変更しても show controller コマンドの出力値は変わりません。

例 5-1 show controller pos [0 | 1] コマンド

```
ML_Series# sh controllers pos 0
Interface POS0
Hardware is Packet/Ethernet over Sonet
Framing Mode: HDLC
Concatenation: CCAT
Alarms reportable to CLI: PAIS PLOP PUNEQ PTIM PPLM ENCAP PRDI PPDI BER_SF_B3
BER_SD_B3 VCAT_OOU_TPT LOM SQM
Link state change defects: PAIS PLOP PUNEO PTIM PPLM ENCAP PRDI PPDI BER SF B3
Link state change time : 200 (msec)
*************** Path ***************
Circuit state: IS
                      PAIS = 0
PPLM = 0
                                            PRDT = 0
                                                               PTTM = 0
                                           PPDI = 0
                                                              PTIU = 0
   BER\_SF\_B3 = 0
                      BER_SD_B3 = 0
                                           BIP(B3) = 0
                                                               RET = 0
   NEWPTR = 0
                       PSE = 0
                                            NSE = 0
                                                             ENCAP = 0
Active Alarms : PAIS
Demoted Alarms: None
Active Defects: PAIS
DOS FPGA channel number : 0
Starting STS (0 based)
                      : 0
VT ID (if any) (0 based) : 255
              : STS-3c
Circuit size
RDI Mode
                    : 1 bit
                    : 0x01 / 0x01
C2 (tx / rx)
Framing
                     : SONET
Path Trace
   Mode
                 : off
   Transmit String :
   Expected String :
   Received String :
   Buffer
                 : Stable
   Remote hostname :
   Remote interface:
   Remote IP addr
B3 BER thresholds:
SFBER = 1e-4, SDBER = 1e-7
0 total input packets, 0 post-HDLC bytes
0 input short packets, 0 pre-HDLC bytes
0 input long packets , 0 input runt packets
0 input CRCerror packets , 0 input drop packets
0 input abort packets
0 input packets dropped by ucode
0 total output packets, 0 output pre-HDLC bytes
0 output post-HDLC bytes
Carrier delay is 200 msec
```

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

show interface pos $\{0|1\}$ コマンド (例 5-2) はスクランブリングを表示します。

例 5-2 show interface pos [0 | 1] コマンド

ML_Series# show interface pos 0 POSO is administratively down, line protocol is down Hardware is Packet/Ethernet over Sonet, address is 0011.2130.b340 (bia 0011 2130 b340) MTU 1500 bytes, BW 145152 Kbit, DLY 100 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation: Cisco-EoS-LEX, crc 32, loopback not set Keepalive set (10 sec) Scramble enabled ARP type: ARPA, ARP Timeout 04:00:00 Last input 01:21:02, output never, output hang never Last clearing of "show interface" counters 00:12:01 Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/40 (size/max) 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 0 packets input, 0 bytes Received 0 broadcasts (0 IP multicast) 0 runts, 0 giants, 0 throttles 0 parity 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored 0 input packets with dribble condition detected 0 packets output, 0 bytes, 0 underruns 0 output errors, 0 applique, 0 interface resets 0 babbles, 0 late collision, 0 deferred 0 lost carrier, 0 no carrier 0 output buffer failures, 0 output buffers swapped out 0 carrier transitions

POS の設定例

ここでは、他の ONS イーサネット カードおよび POS 対応ルータに接続するための ML シリーズ カードの POS 設定例を説明します。ここに示す例は、他の ONS イーサネット カードおよび POS 対 応ルータとの接続に使用可能な ML シリーズ カード設定の一例です。ONS イーサネット カードの POS 特性の詳細については、第 20 章「ONS イーサネット カード上の POS」を参照してください。

ML シリーズ カード間の設定

図 5-1 に、2 つの ONS 15454 または ONS 15454 SDH ML シリーズ カード間の POS 設定を示します。

図 5-1 ML シリーズ カード間の POS 設定

例 5-3 に、ML シリーズ カード A の設定に関連するコードを示します。

例 5-3 ML シリーズ カード A の設定

```
hostname ML_Series_A
!
interface FastEthernet0
ip address 192.168.1.1 255.255.255.0
!
interface POS0
ip address 192.168.2.1 255.255.255.0
crc 32
pos flag c2 1
!
router ospf 1
log-adjacency-changes
network 192.168.1.0 0.0.0.255 area 0
network 192.168.2.0 0.0.0.255 area 0
```

例 5-4 に、ML シリーズ カード B の設定に関連するコードを示します。

例 5-4 ML シリーズ カード B の設定

```
hostname ML_Series_B
!
interface FastEthernet0
ip address 192.168.3.1 255.255.255.0
!
interface POS0
ip address 192.168.2.2 255.255.255.0
crc 32
pos flag c2 1
!
router ospf 1
log-adjacency-changes
network 192.168.2.0 0.0.0.255 area 0
network 192.168.3.0 0.0.0.255 area 0
```

ML シリーズ カードと Cisco 12000 GSR シリーズ ルータ間の設定

図 5-2 に、ML シリーズ カードと Cisco 12000 Gigabit Switch Router(GSR; ギガビット スイッチ ルー タ)シリーズ ルータ間の POS 設定を示します。相互運用するには、PPP/BCP カプセル化または Cisco HDLC カプセル化が使用できます。

図 5-2 ML シリーズ カードと Cisco 12000 シリーズ GSR 間の POS 設定

例 5-5 に、ML シリーズ カード A の設定に関連するコードを示します。

例 5-5 ML シリーズ カード A の設定

```
hostname ML_Series_A
!
interface FastEthernet0
ip address 192.168.1.1 255.255.255.0
!
!
interface POS0
ip address 192.168.2.1 255.255.255.0
encapsulation ppp
crc 32
!
router ospf 1
log-adjacency-changes
network 192.168.1.0 0.0.0.255 area 0
network 192.168.2.0 0.0.0.255 area 0
```

例 5-6 に、GSR-12000の設定に関連するコードを示します。

例 5-6 GSR-12000 の設定

```
hostname GSR
1
interface FastEthernet1/0
ip address 192.168.3.1 255.255.255.0
!
interface POS2/0
ip address 192.168.2.2 255.255.255.0
crc 32
encapsulation PPP
pos scramble-atm
1
router ospf 1
log-adjacency-changes
network 192.168.2.0 0.0.0.255 area 0
network 192.168.3.0 0.0.0.255 area 0
!
```

ML シリーズ カードの場合、デフォルトのカプセル化は LEX で、対応するデフォルト MTU は 1500 バイトです。外部 POS 装置と接続している場合は、表 5-6 に示すパラメータが ML シリーズ スイッ チと外部装置の両方で同じ設定になっていることを確認してください。

役 3-0 CISCU 12000 CIST ノリース ルーフに技能する場合の ML ノリースのハノスー:	フ 入一 夕 設 正
---	-------------------

コマンドの説明	パラメータ		
Router(config-if)# encapsulation ppp	カプセル化 Cisco 12000 GSR シリーズでのデ フォルトのカプセル化は、ML シリーズでサポー		
または	トされている HDLC です。また、PPP は ML シ		
Router(config-if)# encapsulation hdlc	の両方でサポートされています。		
	Cisco 12000 GSR シリーズは LEX カプセル化を サポートしません。LEX は、ML シリーズ カー		
	ドでデフォルトのカプセル化としてサポートさ れています。		
Router(config-if)# show controller pos	C2 バイト show controller pos コマンドを使用 して送信と受信の C2 値が同じであることを確 認します。		
Router(config-if)# pos flag c2 value	C2 バイト値を設定します。有効な値は、0 ~ 255 (10 進数)です。LEX のデフォルト値は 0x01(16 進数)です。		

ML シリーズ カードとG シリーズ カード間の設定

図 5-3 に、ML シリーズ カードとG シリーズ カード間の POS 設定を示します。

例 5-7 に、ML シリーズ カード A の設定に関連するコードを示します。

例 5-7 ML シリーズ カード A の設定

```
hostname ML_Series_A
!
interface FastEthernet0
ip address 192.168.1.1 255.255.255.0
!
interface POS0
ip address 192.168.2.1 255.255.255.0
crc 32
!
router ospf 1
log-adjacency-changes
network 192.168.1.0 0.0.0.255 area 0
network 192.168.2.0 0.0.0.255 area 0
```

ML シリーズ カードと ONS 15310 ML-100T-8 カード間の設定

図 5-4 に、ML シリーズ カードと ONS 15310 ML-100T-8 カード間の POS 設定を示します。接続された ML-100T-8 カードの回線の詳細な設定手順については、『*Cisco ONS 15310-CL and Cisco ONS 15310-MA Ethernet Card Software Feature and Configuration Guide*』を参照してください。

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

例 5-8 に、ML シリーズ カード A の設定に関連するコードを示します。

例 5-8 ML シリーズ カード A の設定

```
hostname ML_Series_A
!
interface FastEthernet0
ip address 192.168.1.1 255.255.255.0
!
interface POS0
ip address 192.168.2.1 255.255.255.0
crc 32
!
router ospf 1
log-adjacency-changes
network 192.168.1.0 0.0.0.255 area 0
network 192.168.2.0 0.0.0.255 area 0
```


ブリッジの設定

この章では、MLシリーズカードに対してブリッジングを設定する方法について説明します。この 章で使用する Cisco IOS コマンドの詳細については、『*Cisco IOS Command Reference*』を参照してく ださい。

この章の主な内容は次のとおりです。

- 基本的なブリッジングの概要 (p.6-2)
- 基本的なブリッジングの設定 (p.6-3)
- 基本的なブリッジングのモニタリングと確認(p.6-5)
- トランスペアレント ブリッジング モードの動作 (p.6-6)

Cisco ISL (スイッチ間リンク)と Cisco Dynamic Trunking Protocol (DTP; ダイナミック トランキン グ プロトコル)は、ML シリーズ カードではサポートされませんが、ML シリーズ ブロードキャ ストではこれらの形式が転送されます。装置間の接続に ISL または DTP を使用しないことを推奨 します。シスコの装置によっては、デフォルトで ISL または DTP を使用するものがあります。

基本的なブリッジングの概要

ML シリーズ カードは、ファスト イーサネット ポート、ギガビット イーサネット ポート、および POS ポートでのランスペアレント ブリッジングをサポートします。最大 255 個のアクティブなブ リッジ グループをサポートします。ランスペアレント ブリッジングのモードの詳細については、 「トランスペアレント ブリッジング モードの動作」(p.6-6)を参照してください。

ブリッジングを設定するには、次に示すモードで作業を実行する必要があります。

- グローバル コンフィギュレーション モード:
 - IP パケットのブリッジングをイネーブルにします。
 - Spanning Tree Protocol(STP; スパニング ツリー プロトコル)のタイプを選択します(任意)。
- インターフェイス コンフィギュレーション モード:
 - 同じブリッジ グループに属するインターフェイスを特定します。

ML シリーズ カードは、ブリッジ グループを構成するネットワーク インターフェイス間 ですべてのルーテッド トラフィックをブリッジできます。スパニング ツリーがイネーブ ルになっている場合は、インターフェイスが同じスパニング ツリーの一部になります。 ブリッジ グループに参加していないインターフェイスは、ブリッジド トラフィックを転 送できません。

パケットの宛先アドレスがブリッジ テーブルに存在する場合、そのパケットはブリッジ グループの単一のインターフェイスに転送されます。パケットの宛先アドレスがブリッジ テーブルに存在しない場合、パケットはブリッジ グループのすべての転送インターフェ イスでフラッディングされます。ブリッジはブリッジングのプロセスにおいて送信元アド レスを学習すると、そのアドレスをブリッジ テーブルに記録します。

スパニング ツリーは、ML シリーズ カードのブリッジ グループに必須ではありません。 ただし設定した場合、設定されたブリッジ グループごとに個別のスパニングツリー プロ セスが実行されます。ブリッジ グループは受信した Bridge Protocol Data Unit (BPDU; ブ リッジ プロトコル データ ユニット)に基づいて、所属するメンバー インターフェイス上 にのみスパニング ツリーを確立します。

基本的なブリッジングの設定

ブリッジングを設定するには、次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# no ip routing	IP パケットのブリッジングをイネーブルにします。こ のコマンドは、ブリッジ グループごとではなく、カー ドごとに 1 回実行します。この手順は、Integrated Routing and Bridging (IRB; 統合ルーティングおよびブリッジン グ)に対しては実行しません。
ステップ 2	Router(config)# bridge bridge-group-number [protocol {drpi-rstp rstp ieee}]	ブリッジ グループ番号を割り当て、適切なスパニング ツリーのタイプを定義します。
		bridge-group-numberの範囲は1~4096です。
		 drpri-rstpは、デュアル RPR を相互接続してノード 障害から保護するために使用するプロトコルです。
		• rstp は IEEE 802.1W 高速スパニングツリーです。
		・ ieee は IEEE 802.1D STP です。
		 (注) スパニング ツリーは、ML シリーズ カードのブリッジ グループに必須ではありません。ただし、スパニングツリーを設定するとネットワーク ループが防止されます。
ステップ 3	Router(config)# bridge bridge-group-number priority number	(任意)スパニングツリーのルート定義で利用するため に、特定のプライオリティをブリッジに割り当てます。 プライオリティが低いブリッジほど、ルートとして選択 される可能性が高くなります。
ステップ 4	Router(config)# interface type number	インターフェイス コンフィギュレーション モードを開 始して、ML シリーズ カードのインターフェイスを設定 します。
ステップ 5	Router(config-if)# bridge-group bridge-group-number	ネットワーク インターフェイスをブリッジ グループに 割り当てます。
ステップ 6	Router(config-if)# no shutdown	シャットダウン ステートをアップにし、インターフェ イスをイネーブルにします。
ステップ 7	Router(config-if)# end	イネーブル EXEC モードに戻ります。
ステップ 8	Router# copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを 保存します。

図 6-1 に、ブリッジングの例を示します。例 6-1 に、ML シリーズ カード A の設定を示します。例 6-2 に、ML シリーズ カード B の設定を示します。


```
例 6-1 ルータ A の設定
```

bridge 1 protocol ieee
!
!
interface FastEthernet0
no ip address
bridge-group 1
!
interface POS0
no ip address
crc 32
bridge-group 1
pos flag c2 1

例 6-2 ルータ B の設定

bridge 1 protocol ieee
!
!
interface FastEthernet0
no ip address
bridge-group 1
!
interface POS0
no ip address
crc 32
bridge-group 1
pos flag c2 1

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

基本的なブリッジングのモニタリングと確認

ML シリーズ カードに対してブリッジングを設定したら、イネーブル EXEC モードで次の手順を実行すると、ML シリーズ カードの動作をモニタリングおよび確認できます。

	コマンドの説明	目的
ステップ 1	Router# clear bridge bridge-group-number	学習したエントリを特定のブリッジ グループの転送
		データベースから削除し、送信をクリアして、静的に設
		定された転送エントリのカウントを受信します。
ステップ 2	Router# show bridge {bridge-group-number	ブリッジ転送データベースのエントリのクラスを表示
	interface-address}	します。
ステップ 3	Router# show bridge verbose	設定したブリッジ グループの詳細情報を表示します。
ステップ 4	ML_Series# show spanning-tree	スパニングツリーの詳細情報を表示します。
		bridge-group-number を指定すると、スパニングツリー
		情報が特定のブリッジ グループに制限されます。
		brief を指定すると、スパニングツリーに関する要約情報が表示されます。

例 6-3 に、ブリッジングのモニタリングと確認の例を示します。

例 6-3 ブリッジングのモニタリングと確認

ML-Series# show bridge

Total of 300 station blocks, 298 free Codes: P - permanent, S - self

Bridge Group 1:

Maximum dynamic entries allowed: 1000 Current dynamic entry count: 2

Address Action Interface 0000.0001.6000 forward FastEthernet0 0000.0001.6100 forward POS0

ML-Series# show bridge verbose

Total of 300 station blocks, 298 free Codes: P - permanent, S - self

Maximum dynamic entries allowed: 1000 Current dynamic entry count: 2

BG HashAddressActionInterfaceVCAgeRX countTX count1 60/00000.0001.6000 forwardFastEthernet0-1 61/00000.0001.6100 forwardPOS0-

Flood ports FastEthernet0 POS0

ML-Series# show spanning-tree brief

Bridge group 1 Spanning tree enabled protocol ieee Root ID Priority 32769

	Address This bridge Hello Time	0005.9a39.6 is the root 2 sec Max	5634 : « Age 20 s	sec Forward	Delay 15 sec
Bridge ID	Priority Address Hello Time Aging Time 3	32769 (pr: 0005.9a39.6 2 sec Max 000	iority 327 5634 & Age 20 s	768 sys-id-ex sec Forward	t 1) Delay 15 sec
Interface	Role Sta	Cost	Prio.Nbr	Туре	
Fa0 PO0	Desg FWI Desg FWI) 19) 9	128.3 128.20	P2p P2p	

トランスペアレント ブリッジング モードの動作

Cisco IOS ソフトウェアのランスペアレント ブリッジング機能は、ブリッジ グループと IP ルーティ ングを組み合わせたものです。この組み合わせは、適応スパニングツリー ブリッジの高速性を提供 し、ルータの機能性、信頼性、安全性を実現します。ML シリーズ カードは、他の Cisco IOS プラッ トフォームと同じ方法でランスペアレント ブリッジングをサポートします。

ランスペアレント ブリッジングは、4 つの異なるモードで IP フレームを処理します。モードには、 IP routing、no IP routing、bridge crb、bridge irb の 4 つがあり、それぞれ異なるルールと設定オプショ ンが適用されます。ここでは、ML シリーズ カードのこの 4 つのモードの設定および動作について 説明します。

ランスペアレント ブリッジングの設定に関する一般的な Cisco IOS ユーザ マニュアルについては、 『*Cisco IOS Bridging and IBM Networking Configuration Guide*』Release 12.2 の「Configuring Transparent Bridging」の章 を参照してください。次の URL からアクセスしてください。

http://www.cisco.com/en/US/products/sw/iosswrel/ps1835/products_configuration_guide_chapter09186a008 00ca767.html

IP routing モード

IP routing モードはデフォルトのモードです。このモードは他のモード (no IP routing、bridge crb、 bridge irb)をディセーブルにします。グローバル コマンド **ip routing** を使用すると、IP routing モー ドがイネーブルになります。

IP routing モードのブリッジ グループは IP パケットを処理しません。IP パケットはルーティングされるか、または廃棄されます。

次の規則は、このモードでのパケット処理について説明します。

- ブリッジ グループのみを設定した入力インターフェイスまたはサブインターフェイスは、非 IP パケットをブリッジングし、IP パケットを廃棄します(例 6-4)。
- IP アドレスのみを設定した入力インターフェイスまたはサブインターフェイスは、IP パケット をルーティングし、非 IP パケットを廃棄します(例 6-5)。
- IP アドレスとブリッジ グループ両方を設定した入力インターフェイスまたはサブインター フェイスは、IPパケットをルーティングし、非IPパケットをブリッジングします(例 6-6)。この設定は、フォールバックブリッジングともいいます。プロトコルをルーティングできない場合、インターフェイスはブリッジングにフォールバックします。
- 特定のブリッジ グループに属するすべてのインターフェイスまたはサブインターフェイスで、 IP アドレスの設定の有無を統一させる必要があります。同じブリッジ グループ内で IP アドレ スを設定したインターフェイスと、IP アドレスを設定していないインターフェイスを混在させ ると、ネットワーク レベルでルーティングが矛盾したり予測不可能な事態を招いたりします。

 同じブリッジ グループに属するすべてのインターフェイスおよびサブインターフェイスで、IP アドレスの設定を統一させる必要があります。ブリッジ グループのすべてのインターフェイス に IP アドレスを設定するか、またはブリッジ グループのインターフェイスのいずれにも IP ア ドレスを設定しないでください。

例 6-4 に、ブリッジ グループ内で、IP アドレスが設定されていない ML シリーズ カード インター フェイスを示します。

例 6-4 IP アドレスが設定されていないブリッジ グループ

ip routing bridge 1 proto rstp

int f0 bridge-group 1

int pos 0 bridge-group 1

例 6-5 に、ブリッジ グループが存在しない状態で IP アドレスが設定されている ML シリーズ カード インターフェイスを示します。

例 6-5 ブリッジ グループに存在しない IP アドレス

ip routing

int f0 ip address 10.10.10.2 255.255.255.0

int pos 0 ip address 20.20.20.2 255.255.0

例 6-6 に、ブリッジ グループ内で、IP アドレスが設定されている ML シリーズ カード インターフェ イスを示します。

例 6-6 ブリッジ グループに属する IP アドレス

ip routing bridge 1 proto rstp

int f0
ip address 10.10.10.2 255.255.255.0
bridge-group 1

int pos 0
ip address 20.20.20.2 255.255.255.0
bridge-group 1

no IP routing モード

no IP routing モードでは、IP パケットと非 IP パケットの両方をブリッジングし、ルーティングを回 避します。Cisco IOS では、管理ポートとして設定されたインターフェイスの IP アドレスを使用で きますが、IP アドレス間でのルーティングは行われません。

グローバル コマンド no ip routing を使用するとこの機能がイネーブルになり、no ip routing を使用 すると他のモードがディセーブルになります。

次の規則は、このモードでのパケット処理について説明します。

- 1つのブリッジ グループのみで、IP アドレスなしで設定された入力インターフェイスまたはサ ブインターフェイスは、すべてのパケットをブリッジングします(例 6-7)。
- 1 つの IP アドレスのみで設定された入力インターフェイスまたはサブインターフェイスは、すべてのパケットを廃棄します。ただし、宛先 MAC (メディア アクセス制御) および入力インターフェイスの IP アドレスがあるパケットは Cisco IOS によって処理されます。これは有効な設定ではありません。
- IP アドレスとブリッジ グループの両方が設定された入力インターフェイスまたはサブイン ターフェイスは、入力インターフェイスの MAC アドレスに送信されるパケット以外のすべて のパケットをブリッジングします。入力インターフェイスの MAC アドレスとインターフェイ ス IP アドレスに送信されたパケットは、Cisco IOS によって処理されます。入力インターフェ イスの MAC アドレスに送信されたその他のパケットは廃棄されます。これは IP アドレスの有 効な設定ではありません。
- 特定のブリッジ グループに属するすべてのインターフェイスまたはサブインターフェイスで、 IP アドレスの設定の有無を統一させる必要があります。同じブリッジ グループ内で IP アドレ スを設定したインターフェイスと、IP アドレスを設定していないインターフェイスを混在させ ると、ネットワーク レベルでルーティングが矛盾したり予測不可能な事態を招いたりします。

例 6-7 に、ブリッジ グループ内で、IP アドレスが設定されていない ML シリーズ カード インター フェイスを示します。

例 6-7 IP アドレスが設定されていないプリッジ グループ

no ip routing bridge 1 proto rstp int f0 bridge-group 1

int pos 0 bridge-group 1

bridge CRB モード

bridge crb モードでは、各ブリッジ グループのデフォルトのサブモードは、IP パケットをブリッジ ングしますがルーティングしません。これは、no ip routing モードの動作と似ています。ただし、 bridge crb では、パケット処理はグローバルに設定されず、特定のブリッジ グループに対して設定 されます。ブリッジ グループをディセーブルにして IP パケットをブロックするか、またはルーテッ ド インターフェイスのグループにフォールバック ブリッジングを設定するかを選択できます。

グローバル コマンド bridge crb を使用すると、同時ルーティングとブリッジングがイネーブルにな ります。bridge crb をイネーブルにすると、他のモードがディセーブルになります。

次の規則は、このモードでのパケット処理について説明します。

- bridge x bridge ip コマンド(x はブリッジ グループ番号)は、IP パケットをブリッジングする ブリッジ グループを設定します。ブリッジ グループに属するインターフェイスおよびサブイ ンターフェイスは、no IP routing モードの規則に従います。
- bridge x route IP コマンド(x はブリッジ グループ番号)は、IP パケットを無視するブリッジ グループを設定します。このブリッジ グループに属するインターフェイスおよびサブインター フェイスは、IP routing モードの規則に従います(例 6-8)。
- 既存のブリッジ グループで bridge crb をイネーブルにすると、ルーティング用に設定 (IP アドレスが設定)されたインターフェイスのある既存のブリッジ グループに対して、bridge x route IP コンフィギュレーション コマンドを生成します。このことは、crb が最初にイネーブルになった場合に注意してください。
- 特定のブリッジ グループに属するすべてのインターフェイスまたはサブインターフェイスで、 IP アドレスの設定の有無を統一させる必要があります。同じブリッジ グループ内で IP アドレ スを設定したインターフェイスと、IP アドレスを設定していないインターフェイスを混在させ ると、ネットワーク レベルでルーティングが矛盾したり予測不可能な事態を招いたりします。
- 同じブリッジ グループに属さないインターフェイスまたはサブインターフェイス間のルー ティングは、ネットワーク動作が矛盾する原因となります。このモードは、ブリッジグループ のメンバー間のルーティング用であり、ブリッジグループ内外のルーティング用ではありません。

例 6-8 に、IP アドレスと複数のブリッジ グループが設定された ML シリーズ カード インターフェ イスを示します。

例 6-8 IP アドレスおよび複数のブリッジ グループ

bridge crb bridge 1 proto rstp bridge 1 route ip bridge 2 proto rstp int f0 ip address 10.10.10.2 255.255.255.0 bridge-group 1 int pos 0

ip address 20.20.20.2 255.255.255.0 bridge-group 1

int f1 bridge-group 2

int pos 1 bridge-group 2

bridge crb コンフィギュレーションをトラブルシューティングする場合、同じサブネットに属する IP アドレスがインターフェイスに割り当てられていないことを確認してください。ルーティングす る場合、IP アドレスは異なるサブネットに属する必要があります。

bridge IRB モード

グローバル コマンド bridge irb を使用すると、統合ルーティングとブリッジング モードがイネーブ ルになります。bridge irb をイネーブルにすると、他のモードがディセーブルになります。

bridge irb モードは、bridge crb モードのスーパーセットです。IRB モードのみが Bridged Virtual Interface (BVI)をサポートします。これは、特定のブリッジ グループに属する仮想レイヤ 3 イン ターフェイスです。BVI が機能するためには IP アドレスが必要です。BVI はそのブリッジ グルー プのすべてのメンバー インターフェイスから見ることができます。ブリッジ グループ内外のルー ティングを正しく実行する唯一の方法は、BVI を使用することです。

bridge irb の動作は、bridge crb の動作に次を追加したものです。

- BVI インターフェイスが1つのブリッジ グループに設定されている場合、BVI IP アドレスは、 そのブリッジ グループのメンバー上で設定する唯一のアドレスである必要があります(例 6-9)。
- 1 つの IP アドレスと1 つの ブリッジ グループの両方が1 つのインターフェイス上に設定されている場合、IP ブリッジングまたは IP ルーティングのいずれかをイネーブルにします。両方イネーブルにすることはできません(例 6-10)。
- IP ルーティングがブリッジ グループでディセーブルの場合、すべてのパケットがブリッジング され、BVI インターフェイスは IP をルーティングしません。これは各ブリッジ グループのデ フォルトです。
- BVI のあるブリッジ グループで IP ブリッジングと IP ルーティングの両方がイネーブルの場合、IP パケットをブリッジ グループ メンバーの間でブリッジングし(同じサブネット内でブリッジ) BVI を介してブリッジ グループ内外でルーティングできます。
- IP ブリッジングがディセーブルで、IP ルーティングがブリッジングでイネーブルの場合、BVI を介してブリッジ グループ内外で IP パケットをルーティングできますが、レイヤ 2 インター フェイス間ではブリッジングできません。グローバル コマンド bridge x route ip とグローバル コマンド no bridge x bridge ip を組み合わせると、IP ルーティングがイネーブルになり、IP ブ リッジングがディセーブルになります。

例 6-9 に、ブリッジ グループに設定された ML シリーズ カード インターフェイスと、IP アドレス が設定された BVI を示します。ブリッジングとルーティングは両方ともイネーブルです。

例 6-9 ブリッジングとルーティングがイネーブルである bridge irb

bridge irb bridge 1 proto rstp bridge 1 route ip

int f0 bridge-group 1

int pos 0 bridge-group 1

int bvi 1 ip address 10.10.10.1 255.255.255.0

例 6-10 に、IP アドレスとブリッジ グループの両方が設定された ML シリーズ カード インターフェ イスを示します。IP ルーティングはイネーブルで、IP ブリッジングはディセーブルです。

例 6-10 IP アドレスおよび複数のブリッジ グループ

bridge irb bridge 1 proto rstp bridge 1 route ip no bridge 1 bridge ip

int f0
ip address 10.10.10.1 255.255.255.0
bridge-group 1

int pos 0
ip address 20.20.20.2 255.255.255.0
bridge-group 2

bridge irb をトラブルシューティングする場合、BVI に IP アドレスが設定され、BVI ブリッジメン バーには IP アドレスが設定されていないことを確認してください。

STP および RSTP の設定

この章では、IEEE 802.1D Spanning Tree Protocol(STP; スパニングツリー プロトコル) および IEEE 802.1W Rapid Spanning Tree Protocol(RSTP; 高速スパニングツリー プロトコル)の ML シリーズ実 装について説明します。また、ML シリーズ カードで STP および RSTP を設定する方法についても 説明します。

この章の内容は次のとおりです。

- STPの機能 (p.7-2)
- RSTP (p.7-10)
- IEEE802.1D STP との相互運用性(p.7-15)
- STP および RSTP 機能の設定 (p.7-16)
- STP および RSTP のステータスの確認とモニタリング(p.7-22)

STP の機能

次の項では、スパニングツリー機能概要について説明します。

- STPの概要(p.7-2)
- サポートされている STP インスタンス (p.7-3)
- BPDU (p.7-3)
- **ルートスイッチの選出(p.7-4)**
- ブリッジ ID、スイッチ プライオリティ、および拡張システム ID (p.7-4)
- スパニングツリータイマー (p.7-5)
- スパニングツリートポロジーの形成 (p.7-5)
- スパニングツリー インターフェイスのステート (p.7-6)
- スパニングツリーアドレスの管理(p.7-8)
- STP および IEEE 802.1Q トランク (p.7-8)
- スパニングツリーおよび冗長接続(p.7-8)
- 接続を維持するためのエージングの加速(p.7-9)

STP の概要

STP は、ネットワーク内のループを防ぎながら、パスの冗長性を実現するレイヤ2リンク管理プロトコルです。レイヤ2イーサネットネットワークが正常に機能するのは、任意の2つのステーション間にアクティブなパスが1つだけ存在する場合です。スパニングツリーの動作はエンドステーションに対して透過的であるため、1つのLAN セグメントに接続されているのか、複数のセグメントで構成されたスイッチドLAN に接続されているのかエンドステーションで検出することはできません。

フォールト トレランスなインターネットワークを構築するときには、ネットワーク内のすべての ノード間にループのないパスが必要となります。スパニングツリー アルゴリズムでは、スイッチ型 レイヤ 2 ネットワーク全体にわたる最適なループフリー パスを計算します。スイッチは、Bridge Protocol Data Unit (BPDU; ブリッジ プロトコル データ ユニット)と呼ばれるスパニングツリー フ レームを定間隔で送受信します。スイッチはこれらのフレームを転送せず、フレームを使用して ループフリー パスを構築します。

エンド ステーション間に複数のアクティブなパスがあると、ネットワーク内にループが発生する原 因となります。ネットワークにループが存在すると、エンド ステーションが重複したメッセージを 受信する可能性があります。また、スイッチが複数のレイヤ 2 インターフェイスでエンド ステー ションの MAC (メディア アクセス制御) アドレスを学習する可能性もあります。このような状況 は、ネットワークを不安定にします。

スパニングツリーでは、ルート スイッチおよびルートからレイヤ2ネットワーク内のすべてのス イッチからのループフリー パスによってツリーを定義します。スパニングツリーは、冗長データ パスを強制的にスタンバイ(ブロック)状態にします。スパニングツリー内のネットワーク セグメ ントで障害が発生したときに冗長パスが存在する場合、スパニングツリー アルゴリズムは、スパニ ングツリー トポロジーを再計算し、スタンバイ パスをアクティブにします。

スイッチの2つのインターフェイスがループに含まれているときには、スパニングツリーのポート プライオリティとパス コストの設定によって、フォワーディング ステートになるインターフェイ スとブロッキング ステートになるインターフェイスが決まります。ポート プライオリティ値は、 ネットワーク トポロジー内のインターフェイスの位置を表すとともに、そのインターフェイスがト ラフィックを渡すためにどの程度適しているかを表します。パス コスト値は、メディア速度を表し ます。
サポートされている STP インスタンス

ML シリーズ カードでは、Per-VLAN (仮想 LAN) Spanning Tree (PVST+)と最大 255 のスパニン グツリー インスタンスをサポートしています。

BPDU

スイッチド ネットワークのスパニングツリー トポロジーが、安定でアクティブになるかどうかは、 次の要素によって決まります。

- 各スイッチの各 VLAN に関連付けられた一意のブリッジ ID (スイッチ プライオリティおよび MAC アドレス)
- ルート スイッチへのスパニングツリー パス コスト
- 各レイヤ 2 インターフェイスに関連付けられたポート識別子(ポート プライオリティおよび MAC アドレス)

ネットワーク内のスイッチの電源がオンになっているときには、各スイッチはルート スイッチとし て機能します。各スイッチは、そのすべてのポートからコンフィギュレーション BPDU を送信しま す。BPDU によって、スパニングツリー トポロジーの通信と計算が行われます。各コンフィギュ レーション BPDU には、次の情報が格納されます。

- 送信スイッチがルート スイッチとして識別するスイッチの一意のブリッジ ID
- ルートへのスパニングツリー パス コスト
- 送信スイッチのブリッジ ID
- メッセージの有効期間
- 送信インターフェイスの識別子
- Hello タイマー、転送遅延タイマー、および最大エージング プロトコル タイマーの値

スイッチは、小さいブリッジ ID、低いパス コストなど、より優位な情報が格納されたコンフィギュ レーション BPDU を受信すると、そのポートの情報を保存します。この BPDU がスイッチのルート ポートで受信された場合、この指定スイッチに接続されているすべての LAN に最新のメッセージ とともにこの BPDU を転送します。

スイッチは、そのポート用に現在保存されている情報より下位の情報が格納されたコンフィギュ レーション BPDU を受信した場合には、その BPDU を廃棄します。スイッチがその LAN の指定ス イッチであり、その LAN から下位 BPDU を受信した場合、スイッチはそのポート用に保存してい る最新情報が含まれている BPDU を、その LAN に送信します。このようにして、下位情報は廃棄 されるので、優位情報がネットワークで伝播されます。

BPDU を交換することによって、次の処理が実行されます。

- ネットワーク内の1台のスイッチがルートスイッチとして選出されます。
- 各スイッチに対して1つのルートポートが選択されます(ルートスイッチを除く)。このポートは、スイッチがルートスイッチにパケットを転送する際に最適パス(最もコストの低いパス)を提供します。
- パス コストに基づいて、各スイッチからルート スイッチまでの最短距離が計算されます。
- 各 LAN セグメントの指定スイッチが選択されます。指定スイッチは、その LAN からルートス イッチにパケットを転送する際に最もコストの低いパスを選択します。指定スイッチと LAN と の接続に使用されるポートを指定ポートと呼びます。
- スパニングツリーインスタンスに含まれているインターフェイスが選択されます。ルートポートと指定ポートがフォワーディングステートになります。
- スパニングツリーに含まれていないすべてのインターフェイスはブロックされます。

ルート スイッチの選出

スパニングツリーに関与するレイヤ 2 ネットワーク内のすべてのスイッチは、BPDU データ メッ セージの交換を通じてネットワーク内の他のスイッチの情報を収集します。このメッセージの交換 によって、次の処理が実行されます。

- 各スパニングツリーインスタンスに対して一意のルートスイッチが選出されます。
- すべてのスイッチド LAN セグメントの指定スイッチが選出されます。
- 冗長リンクに接続されているレイヤ 2 インターフェイスをブロッキングすることにより、ス イッチドネットワーク内のループを除去します。

各 VLAN では、スイッチ プライオリティが最も高い(プライオリティ値が最も小さい)スイッチ が、ルート スイッチとして選出されます。すべてのスイッチがデフォルトのプライオリティ(32768) に設定されている場合は、VLAN 内で MAC アドレスが最も小さいスイッチがルート スイッチにな ります。スイッチ プライオリティ値は、ブリッジ ID の最上位ビット部分に割り当てられます。

スイッチ プライオリティ値を変更すると、スイッチがルート スイッチとして選出される可能性が 変わります。設定する値が大きくなるほどルート スイッチとして選出される可能性が低くなり、値 が小さくなるほど可能性が高くなります。

ルート スイッチは、スイッチド ネットワークのスパニングツリー トポロジーの論理的な中心部分 です。スイッチド ネットワーク内の任意の場所からルート スイッチに到達する必要のないパスは すべて、スパニングツリー ブロッキング モードになります。

BPDU には、スイッチ アドレスと MAC アドレス、スイッチ プライオリティ、ポート プライオリ ティ、パス コストなど、送信スイッチとそのポートに関する情報が格納されています。スパニング ツリーはこの情報を使用して、スイッチド ネットワークのルート スイッチとルート ポート、およ び各スイッチド セグメントのルート ポートと指定ポートを選出します。

ブリッジ ID、スイッチ プライオリティ、および拡張システム ID

IEEE 802.1D 規格では、各スイッチには一意のブリッジ識別子(ブリッジ ID)が割り当てられてい る必要があります。このブリッジ ID によって、ルート スイッチが選択されます。各 VLAN は PVST+ を備えた別の*論理ブリッジ*とみなされるため、各スイッチには設定されている VLAN と同数の異な るブリッジ ID が必要となります。スイッチの各 VLAN には、8 バイトの一意のブリッジ ID が割り 当てられています。最上位の2 バイトはスイッチ プライオリティに使用され、残りの6 バイトはス イッチの MAC アドレスから取得されます。

ML シリーズ カードでは、IEEE 802.1T のスパニングツリー拡張機能をサポートしています。以前 にスイッチ プライオリティに使用されていたビットの一部は、現在ブリッジ ID として使用されて います。その結果、スイッチ用に予約される MAC アドレスが減り、ブリッジ ID の一意性を維持し ながら、広範囲の VLAN ID をサポートできるようになりました。表 7-1 に示すように、これまで スイッチ プライオリティに使用されていた 2 バイトは、4 ビットのプライオリティ値、およびブ リッジ ID と等しい 12 ビットの拡張システム ID 値に再割り当てされています。以前のリリースで は、スイッチ プライオリティは 16 ビット値です。

表 7-1 スイッチ プライオリティ値と拡張システム ID

スイッチ ブライオリティ値			拡張シ	拡張システム ID(フリッジ ID と同じ値に設定)											
ビット 16	ビ ット 15	ピット 14	ビット 13	ビット 12	ビット 11	ビット 10	ビット 9	ビット 8	ビ ット 7	ビット 6	ビ ット 5	ビット 4	ビット 3	ピット 2	ピット 1
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1

スパニングツリーは、拡張システム ID、スイッチ プライオリティ、および割り当てられたスパニ ングツリー MAC アドレスを使用して、各 VLAN のブリッジ ID を一意にします。以前のリリース では、スパニングツリーは VLAN ごとに 1 つの MAC アドレスを使用して、各 VLAN のブリッジ ID を一意にしていました。

スパニングツリー タイマー

表 7-2 に、スパニングツリー全体のパフォーマンスに影響を及ぼすタイマーを示します。

表 7-2 スパニングツリー タイマー

変数	説明
Hello タイマー	このタイマーが満了すると、インターフェイスは近接ノードに
	Hello メッセージを送信します。
転送遅延タイマー	インターフェイスが転送を開始するまでの、リスニング ステート
	およびラーニング ステートの継続時間を決定します。
最大エージング タイマー	インターフェイスで受信したプロトコル情報をスイッチが保管す
	る時間を決定します。

スパニングツリー トポロジーの形成

図 7-1 では、すべてのスイッチのスイッチ プライオリティがデフォルト(32768)に設定されてお り、スイッチ A の MAC アドレスが最も小さいため、スイッチ A がルート スイッチとして選出さ れます。ただし、トラフィック パターン、転送インターフェイスの数、またはリンク タイプによっ ては、スイッチ A が最適なルート スイッチではない場合があります。最適なスイッチがルート ス イッチになるように、そのスイッチのプライオリティを上げる(数値を下げる)ことによって、最 適なスイッチをルートにした新しいトポロジーを形成するよう強制的にスパニングツリーで再計 算させます。

図 7-1 スパニングツリー トポロジー

スパニングツリー トポロジーをデフォルトのパラメータに基づいて計算すると、スイッチド ネットワークの送信元エンド ステーションから宛先エンド ステーションまでのパスが最適にならない 可能性があります。たとえば、より高速のリンクをルート ポートよりも値の大きいインターフェイ スに接続すると、ルート ポートが変更される可能性があります。目標は、最も高速のリンクをルー ト ポートにすることです。

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

スパニングツリー インターフェイスのステート

プロトコル情報がスイッチド LAN を通過するときに、伝播遅延が発生する場合があります。その 結果、さまざまな時点およびスイッチド ネットワークのさまざまな場所でトポロジーの変更が発生 します。インターフェイスが、スパニングツリー トポロジーに含まれていない状態からフォワー ディング ステートに直接移行すると、一時的なデータ ループが形成される可能性があります。イ ンターフェイスは、新しいトポロジー情報がスイッチド LAN 経由で伝播されるまで待機してから、 フレームの転送を開始する必要があります。また、以前のトポロジーを使用して転送されたフレー ムの存続時間が満了できるようにする必要もあります。

スパニングツリーを使用するスイッチの各レイヤ2インターフェイスは、次のいずれかの状態にな ります。

- ブロッキング インターフェイスはフレーム転送に関与しません。
- リスニング インターフェイスがフレーム転送に関与する必要があるとスパニングツリーが 判断したときに、ブロッキングステートから最初に移行するステートです。
- ラーニング インターフェイスがフレーム転送に関与する準備をしているステートです。
- フォワーディング インターフェイスはフレームを転送します。
- ディセーブル ポートのシャットダウン、ポート上のリンクの欠落、またはポートで稼働するスパニングツリーインスタンスがないことなどが原因で、インターフェイスはスパニングツリーに関与していません。

インターフェイスは、次のようにステートを移行します。

- 1. 初期化からブロッキング
- 2. ブロッキングからリスニングまたはディセーブル
- 3. リスニングからラーニングまたはディセーブル
- 4. ラーニングからフォワーディングまたはディセーブル
- 5. フォワーディングからディセーブル

図 7-2 に、インターフェイスのステートがどのように移行するかを示します。

図 7-2 スパニングツリー インターフェイスのステート

スイッチの電源をオンにすると、STP はデフォルトでイネーブルになり、スイッチ、VLAN、また はネットワーク内のすべてのインターフェイスは、ブロッキング ステートを経てリスニングおよび ラーニングという移行ステートになります。スパニングツリーは、各インターフェイスをフォワー ディング ステートまたはブロッキング ステートで安定させます。 スパニングツリー アルゴリズムによって、レイヤ2インターフェイスがフォワーディングステートになると、次のプロセスが発生します。

- インターフェイスをブロッキング ステートに移行するためのプロトコル情報をスパニングツ リーが待っている間、インターフェイスはリスニング ステートになります。
- スパニングツリーは転送遅延タイマーの満了を待っている間、インターフェイスをラーニング ステートに移行して転送遅延タイマーをリセットします。
- 3. ラーニング ステートでは、スイッチが転送データベースのエンド ステーション位置情報を学 習する間、インターフェイスは継続的にフレーム転送をブロックします。
- **4.** 転送遅延タイマーが満了すると、スパニングツリーはインターフェイスをフォワーディングス テートに移行します。この時点で、ラーニングとフレーム転送の両方がイネーブルになります。

ブロッキング ステート

ブロッキングステートのレイヤ2インターフェイスは、フレーム転送に関与しません。初期化後、 スイッチの各インターフェイスに BPDU が送信されます。スイッチは他のスイッチと BPDU を交換 するまで、最初はルートとして機能します。この交換により、ネットワーク内のどのスイッチが ルートまたはルート スイッチであるかが確定します。ネットワークにスイッチが1台しかない場 合、交換は行われずに転送遅延タイマーが満了し、インターフェイスはリスニングステートに移行 します。スイッチの初期化後、インターフェイスは常にブロッキングステートになります。

ブロッキング ステートのインターフェイスは、次の処理を実行します。

- ポートで受信したフレームを廃棄します。
- 転送のために別のインターフェイスからスイッチングされたフレームを廃棄します。
- アドレスを学習しません。
- BPDU を受信します。

リスニング ステート

リスニング ステートは、レイヤ 2 インターフェイスがブロッキング ステート後に最初に移行する ステートです。インターフェイスがフレーム転送に関与する必要があるとスパニングツリーが判断 したときに、インターフェイスはこのステートになります。

リスニングステートのインターフェイスは、次の処理を実行します。

- ポートで受信したフレームを廃棄します。
- 転送のために別のインターフェイスからスイッチングされたフレームを廃棄します。
- アドレスを学習しません。
- BPDU を受信します。

ラーニング ステート

ラーニング ステートのレイヤ2インターフェイスは、フレーム転送に関与するように準備しています。 す。インターフェイスは、リスニング ステートからラーニング ステートになります。

ラーニング ステートのインターフェイスは、次の処理を実行します。

- ポートで受信したフレームを廃棄します。
- 転送のために別のインターフェイスからスイッチングされたフレームを廃棄します。
- アドレスを学習します。
- BPDU を受信します。

フォワーディング ステート

フォワーディング ステートのレイヤ 2 インターフェイスはフレームを転送します。インターフェイ スは、ラーニング ステートからフォワーディング ステートになります。

フォワーディング ステートのインターフェイスは、次の処理を実行します。

- ポートで受信したフレームを受け入れて転送します。
- 別のポートからスイッチングされたフレームを転送します。
- アドレスを学習します。
- BPDU を受信します。

ディセーブル ステート

ディセーブル ステートのレイヤ2インターフェイスは、フレーム転送またはスパニングツリーに関与しません。ディセーブル ステートのインターフェイスは動作していません。

ディセーブルになったインターフェイスは、次の処理を実行します。

- 転送のために別のインターフェイスからスイッチングされたフレームを転送します。
- アドレスを学習します。
- BPDU を受信しません。

スパニングツリー アドレスの管理

IEEE 802.1D には、さまざまなブリッジ プロトコルが使用するマルチキャスト アドレスとして、 0x00180C2000000 ~ 0x0180C2000010 の範囲の 17 個のアドレスが指定されています。これらのアド レスは、削除できないスタティック アドレスです。

ML シリーズ カードは、プロトコル トンネリング機能によってトンネリングされているときには、 サポートされている BPDU (0x0180C2000000 および 01000CCCCCCD) をスイッチングします。

STP および IEEE 802.1Q トランク

IEEE 802.1Q トランクを介してシスコ スイッチを他社製の装置に接続する場合、シスコ スイッチで は PVST+を使用してスパニングツリーの相互運用性を実現します。ユーザがブリッジ グループに プロトコルを割り当てると、PVST+は IEEE 802.1Q トランクで自動的にイネーブルになります。ア クセス ポートおよび ISL (スイッチ間リンク)トランク ポートの外部スパニングツリーの動作は、 PVST+の影響を受けません。

IEEE 802.1Q トランクの詳細については、第8章「VLANの設定」を参照してください。

スパニングツリーおよび冗長接続

2 つのスイッチインターフェイスをもう1台の装置、または2台の異なる装置に接続することにより、スパニングツリーで冗長バックボーンを作成できます。図7-3に示すように、スパニングツリーは、一方のインターフェイスを自動的にディセーブルにしますが、もう一方のインターフェイスに障害が発生すると、ディセーブルになっているインターフェイスをイネーブルにします。一方のリンクが高速で、もう一方が低速の場合、低速のリンクが常にディセーブルになります。両方の速度が同じである場合は、ポートプライオリティとポート ID が加算され、スパニングツリーは値の小さいリンクをディセーブルにします。

EtherChannel グループを使用して、スイッチ間に冗長リンクを作成することもできます。詳細については、第10章「リンク集約の設定」を参照してください。

接続を維持するためのエージングの加速

ダイナミック アドレスのデフォルトのエージング タイムは 5 分です。この値は、bridge bridge-group-number aging-time グローバル コンフィギュレーション コマンドのデフォルト設定で す。ただし、スパニングツリーの再構成により、多数のステーションの位置が変更される可能性が あります。再構成時には、5 分以上の間、これらのステーションに到達できない場合があるため、 ステーション アドレスがアドレス テーブルから削除されて再度学習されるように、アドレス エー ジング タイムが加速されます。

各 VLAN は個別のスパニングツリー インスタンスであるため、スイッチは VLAN 単位でエージン グを加速します。ある VLAN でスパニングツリーの再構成が行われると、その VLAN で学習され たダイナミック アドレスがエージング短縮の対象になる場合があります。他の VLAN のダイナミッ ク アドレスは影響を受けず、スイッチに設定されたエージング間隔がそのまま適用されます。

RSTP

RSTP は、スパニングツリーの高速コンバージェンスを実現します。RSTP を使用すると、1 つのイ ンスタンス(転送パス)で障害が発生しても、他のインスタンス(転送パス)に影響を及ぼすこと がないため、ネットワークのフォールト トレランスが向上します。RSTP の最も一般的な初期配備 は、レイヤ2スイッチド ネットワークのバックボーン レイヤおよびディストリビューション レイ ヤへの配備です。このように配備することによって、サービスプロバイダー環境で必要とされる高 可用ネットワークが実現できます。

RSTP は、(元の) IEEE 802.1D スパニングツリーに基づく機器との下位互換性を維持しながら、スパニング ツリーの動作を向上させます。

RSTP はポイントツーポイントの配線を利用して、スパニングツリーの高速コンバージェンスを実現します。スパニングツリーの再構成は、2秒未満で行われます(IEEE 802.1D スパニングツリーのデフォルト設定では 50 秒)。これは、音声やビデオなど、遅延に影響されやすいトラフィックを伝送するネットワークには不可欠です。

次の項では、RSTP の機能概要について説明します。

- サポートされている RSTP インスタンス (p.7-10)
- ポートの役割およびアクティブトポロジー(p.7-10)
- 高速コンバージェンス (p.7-11)
- ポートの役割の同期化 (p.7-13)
- BPDUの形式と処理(p.7-14)
- TC (p.7-15)

サポートされている RSTP インスタンス

ML シリーズでは、Per-VLAN Rapid Spanning Tree (PVRST)と最大 255 の高速スパニングツリーインスタンスをサポートしています。

ポートの役割およびアクティブ トポロジー

RSTP は、ポートの役割を割り当ててアクティブトポロジーを決定することにより、スパニングツ リーの高速コンバージェンスを実現します。「ルート スイッチの選出」(p.7-4)で説明したように、 RSTP は IEEE 802.1D STP を構築し、最高のスイッチ プライオリティを持つ(プライオリティ値が 最も小さい)スイッチをルート スイッチとして選択します。さらに、RSTP は次のポート役割のい ずれかを各ポートに割り当てます。

- ルートポート スイッチがルートスイッチにパケットを転送する際に最適パス(最もコストの低いパス)を提供します。
- 指定ポート 指定スイッチに接続します。これにより、その LAN からルート スイッチにパ ケットを転送するときのパス コストが最も低くなります。指定スイッチと LAN との接続に使 用されるポートを指定ポートと呼びます。
- 代替ポート 現在のルートポートによって提供されたパスに替わるルートスイッチへの代替 パスを提供します。
- バックアップポート 指定ポートによって提供されたスパニングツリーのリーフに向かうパスのバックアップとして機能します。バックアップポートが存在できるのは、2つのポートがポイントツーポイントリンクによってループバックで接続されている場合、または1台のスイッチに共有LAN セグメントへの接続が2つ以上ある場合のみです。
- ディセーブル ポート スパニングツリーの動作における役割はありません。

ルート ポートまたは指定ポートの役割を持つポートは、アクティブ トポロジーに含まれます。代 替ポートまたはバックアップ ポートの役割を持つポートは、アクティブ トポロジーから除外され ます。

ネットワーク全体にわたってポートの役割が一貫している安定したトポロジーでは、すべてのルートポートと指定ポートはすぐにフォワーディングステートに移行し、すべての代替ポートとバックアップポートは常に廃棄ステート(IEEE 802.1Dのブロッキングに相当)になることがRSTPによって保証されます。フォワーディングプロセスおよびラーニングプロセスの動作は、ポートステートによって制御されます。表 7-3 は、IEEE 802.1D とRSTPのポートステートを比較したものです。

表 7-3 ポート ステートの比較

動作ステータス	STP ポート ステート	RSTP ポート ステート	ポートがアクティブ トポロジーに含まれて いるか
イネーブル	ブロッキング	廃棄	含まれていない
イネーブル	リスニング	廃棄	含まれていない
イネーブル	ラーニング	ラーニング	含まれている
イネーブル	フォワーディング	フォワーディング	含まれている
ディセーブル	ディセーブル	廃棄	含まれていない

STP エッジ ポートは、そのポートの外部でループ保護を必要としない場合、またはそのポートの 外部に STP ネイバが存在しない場合に、STP をイネーブルにする必要のないブリッジ ポートです。 RSTP の場合、適切なインターフェイスで bridge bridge-group-number spanning-disabled コマンド を使用して、エッジ ポート(通常は正面側のイーサネット ポート)で STP をディセーブルにする ことが重要です。RSTP がエッジ ポートでディセーブルになっていない場合、エッジ ポートを通 過するパケットのコンバージェンス タイムが過大になります。

シスコの STP 実装で一貫性を保つために、表 7-3 では、ポート ステートを廃棄ではなくブロッキ ングと表現しています。指定ポートはリスニング ステートから開始します。

高速コンバージェンス

RSTP を使用すると、スイッチ、スイッチ ポート、または LAN に障害が発生しても、接続を迅速 に回復できます。RSTP は、新しいルート ポート、およびポイントツーポイント リンクによって接 続されているポートに次のように高速コンバージェンスを提供します。

- ルートポート RSTP は新しいルートポートを選択すると、以前のルートポートをブロックし、新しいルートポートをただちにフォワーディングステートにします。
- ポイントツーポイント リンク ポート間をポイントツーポイント リンクによって接続し、 ローカル ポートが指定ポートになると、その指定ポートは提案合意ハンドシェイクを使用して 相手側のポートと高速移行をネゴシエーションし、ループフリーのトポロジーを保証します。
 図 7-4 に示すように、スイッチ A はポイントツーポイント リンクによってスイッチ B に接続

され、すべてのポートがブロッキングステートになっています。スイッチAのプライオリティ は、スイッチBのプライオリティよりも小さい数値であるとします。スイッチAは提案メッ セージ(提案フラグが設定されたコンフィギュレーションBPDU)をスイッチBに送信し、ス イッチA自身が指定スイッチになることを提案します。 スイッチBは提案メッセージを受信すると、提案メッセージの受信ポートを新しいルート ポートとして選択し、すべての非エッジ ポートを強制的にブロッキング ステートにします。さらに、その新しいルート ポート経由で合意メッセージ(合意フラグが設定された BPDU)を送信します。

スイッチ A はスイッチ B から合意メッセージを受信すると、ただちに自分の指定ポートをフォ ワーディング ステートにします。 スイッチ B はそのすべての非エッジ ポートをブロックして おり、さらにスイッチ A と B はポイントツーポイント リンクで接続されているため、ネット ワークにループは形成されません。

スイッチ C がスイッチ B に接続された場合も、同様の一連のハンドシェイク メッセージが交換されます。スイッチ C はスイッチ B に接続されたポートをルート ポートとして選択し、両端のポートはすぐにフォワーディング ステートに移行します。このハンドシェイク プロセスの繰り返しによってアクティブ トポロジーにスイッチがもう 1 つ追加されます。ネットワークが収束するにつれて、この提案合意ハンドシェイクがルートからスパニングツリーのリーフに進みます。

スイッチは、ポートのデュプレックス モードからリンク タイプを判断します。つまり、全二 重ポートはポイントツーポイント接続とみなされ、半二重ポートは共有接続とみなされます。

図 7-4 高速コンパージェンスの提案合意ハンドシェイク

ポートの役割の同期化

スイッチのポートの1つで提案メッセージを受信し、そのポートが新しいルートポートとして選出 されると、RSTP は他のすべてのポートを新しいルート情報と強制的に同期化させます。他のポー トがすべて同期化されると、スイッチはルートポートで受信した優位なルート情報と同期化されま す。

指定ポートがフォワーディングステートの場合、RSTPによって新しいルート情報と強制的に同期 化されると、その指定ポートはブロッキングステートになります。一般的に、RSTPがポートを ルート情報と強制的に同期化させ、ポートが上記のどの条件も満たしていない場合、そのポートス テートはブロッキングに設定されます。

スイッチはすべてのポートが同期化されたことを確認すると、そのルート ポートに対応する指定ス イッチに合意メッセージを送信します。ポイントツーポイント リンクによって接続されたスイッチ がそれぞれのポートの役割について合意すると、RSTP はポート ステートをただちにフォワーディ ング ステートに移行させます。図 7-5 に、このイベント シーケンスを示します。

図 7-5 高速コンパージェンス時のイベント シーケンス

BPDU の形式と処理

RSTP の BPDU の形式は、プロトコル バージョンが 2 に設定されている点を除き、IEEE 802.1D の BPDU の形式と同じです。新しい Length フィールドは 0 に設定されます。これは、バージョン 1 の プロトコル情報が存在しないことを意味します。表 7-4 に、RSTP のフラグ フィールドを示します。

ビット	説明
0	Topology Change (TC; トポロジーの変更)
1	提案
2 ~ 3:	ポートの役割
00	不明
01	代替ポート
10	ルート ポート
11	指定ポート
4	ラーニング
5	フォワーディング
6	合意
7	TC 確認

表 7-4 RSTP の BPDU のフラグ

送信スイッチは、自分をその LAN の指定スイッチとして提案するために提案フラグを RSTP の BPDU に設定します。提案メッセージでは、ポートの役割は常に指定ポートに設定されます。

送信スイッチは、前の提案を受け入れる合意フラグを RSTP の BPDU に設定します。合意メッセージでは、ポートの役割は常にルート ポートに設定されます。

RSTP には、独立した Topology Change Notification (TCN; トポロジー変更通知) BPDU はありません。TC は、TC フラグによって示されます。ただし、IEEE 802.1D スイッチとの相互運用性を保つために、RSTP スイッチは TCN BPDU の処理と生成を行います。

ラーニング フラグとフォワーディング フラグは、送信ポートのステートに応じて設定されます。

優位な BPDU 情報の処理

ポート用に現在保存されているルート情報よりも優位なルート情報(小さいブリッジ ID、低いパス コストなど)をポートが受信すると、RSTP は再構成を開始します。そのポートが新しいルート ポー トとして提案され選択されると、RSTP は他のすべてのポートを強制的に同期化します。

受信した BPDU が提案フラグの設定された RSTP BPDU である場合、スイッチは他のすべてのポートを同期化してから合意メッセージを送信します。BPDU が IEEE 802.1D BPDU の場合は、スイッチは提案フラグを設定せずに、ポートの転送遅延タイマーを開始します。新しいルート ポートは、フォワーディング ステートに移行するために 2 倍の転送遅延時間を必要とします。

ポートで優位な情報が受信されたために、そのポートがバックアップ ポートまたは代替ポートになる場合、RSTP はポートをブロッキング ステートに設定しますが、合意メッセージは送信しません。 指定ポートは、転送遅延タイマーが満了するまで、提案フラグの設定された BPDU の送信を続けま す。タイマーが満了すると、ポートはフォワーディング ステートに移行します。

下位 BPDU 情報の処理

指定ポートが、指定ポートの役割を持つポート用に現在保存されている情報より下位の BPDU(大きいブリッジ ID、高いパス コストなど)を受信すると、その指定ポートは自分の情報でただちに応答します。

TC

ここでは、スパニングツリー TC を処理する際の RSTP と IEEE 802.1D の違いについて説明します。

- 検出 IEEE 802.1D では、ブロッキングステートとフォワーディングステート間の移行で TC が発生しますが、RSTP で TC が生じるのは、ブロッキングステートからフォワーディングス テートに移行する場合だけです(TC とみなされるのは、接続で増加する場合だけです)。エッ ジポートでステートが変更されても、TC は発生しません。RSTP スイッチは TC を検出すると、 すべての非エッジ ポートで学習済みの情報を一斉に流します。
- 通知 IEEE 802.1D は TCN BPDU を使用しますが、RSTP は使用しません。ただし、IEEE 802.1D との相互運用性を保つために、RSTP スイッチは TCN BPDU の処理と生成を行います。
- 確認 RSTP スイッチは指定ポートで IEEE 802.1D スイッチから TCN メッセージを受信する と、TC 確認ビットを設定した IEEE 802.1D コンフィギュレーション BPDU で応答します。た だし、IEEE 802.1D スイッチに接続されたルート ポートで TC 時間タイマー(IEEE 802.1D の TC タイマーと同じ)がアクティブであり、TC 確認ビットが設定されたコンフィギュレーショ ン BPDU を受信した場合、TC 時間タイマーがリセットされます。

この動作は、IEEE 802.1D スイッチをサポートする場合にのみ必要です。RSTP の BPDU では、 TC 確認ビットは設定されません。

- 伝播 RSTP スイッチは、指定ポートまたはルート ポート経由で別のスイッチから TC メッセージを受信すると、そのすべての非エッジ ポート、エッジ ポート、指定ポート、およびルート ポート(TC メッセージの受信ポートを除く)に TC を伝播します。スイッチは、これらのすべてのポートの TC 時間タイマーを開始し、これらのポート上で学習した情報を一斉に流します。
- プロトコルの移行 IEEE 802.1D スイッチとの下位互換性を保つために、RSTP は IEEE 802.1D コンフィギュレーション BPDU と TCN BPDU をポート単位で選択的に送信します。

ポートが初期化されると、タイマーが開始され(RSTP BPDU を送信する最短時間を指定)、 RSTP BPDU が送信されます。このタイマーがアクティブな間、スイッチはそのポートで受信 したすべての BPDU を処理し、プロトコル タイプは無視します。

ポートの移行遅延タイマーの満了後に、スイッチが IEEE 802.1D BPDU を受信した場合、 IEEE 802.1D スイッチに接続されているとみなし、IEEE 802.1D BPDU のみの使用を開始しま す。ただし、RSTP スイッチがポートで IEEE 802.1D BPDU を使用している場合に、タイマー満 了後に RSTP BPDU を受信すると、スイッチはタイマーを再起動し、そのポートで RSTP BPDU の使用を開始します。

IEEE802.1D STP との相互運用性

RSTP を実行しているスイッチは、IEEE 802.1D レガシー スイッチとの相互運用を可能にする内蔵 プロトコル移行メカニズムをサポートしています。このスイッチが IEEE 802.1D レガシー コンフィ ギュレーション BPDU (プロトコル バージョンが 0 に設定されている BPDU)を受信すると、その ポートで IEEE 802.1D BPDU だけを送信します。

ただし、スイッチが IEEE 802.1D の BPDU を受信しなくなっても、自動的に RSTP モードに戻るわ けではありません。これは、レガシー スイッチが指定スイッチでない限り、リンクからレガシー スイッチが削除されているかどうかを判断できないためです。また、このスイッチの接続先スイッ チがその領域に加入した場合に、引き続きポートに境界の役割を割り当てる可能性があります。

STP および RSTP 機能の設定

この項では、スパニングツリー機能の設定方法について説明します。

- STP および RSTP のデフォルト設定 (p.7-16)
- STP および RSTP のディセーブル化 (p.7-17)
- **ルートスイッチの**設定(p.7-17)
- ポート プライオリティの設定 (p.7-18)
- パスコストの設定 (p.7-18)
- ブリッジ グループのスイッチ プライオリティの設定 (p.7-19)
- Hello **タイムの**設定 (p.7-20)
- ブリッジ グループの転送遅延時間の設定 (p.7-21)
- ブリッジ グループの最大エージング タイムの設定 (p.7-21)

STP および RSTP のデフォルト設定

表 7-5 に、STP および RSTP のデフォルト設定を示します。

表 7-5 STP および RSTP のデフォルト設定

機能	デフォルト設定	
イネーブル状態	最大 255 のスパニングツリー インスタンスをイ	
	ネーブルにできます。	
スイッチ プライオリティ	32768 + ブリッジ ID	
スパニングツリー ポート プライオリティ(イン	128	
ターフェイス単位で設定可能 レイヤ 2 アク		
セスボートとして設定されたインターフェイス		
$\frac{C(R)}{2}$	1000 Mhrs : 4	
スパーノジ ジリー ホート コスト(イノダーノエイス単位で設定可能)	1000 Mbps : 4	
	100 Mbps : 19	
	10 Mbps : 100	
	STS-1:37	
	STS-3c: 14	
	STS-6c:9	
	STS-9c: 7	
	STS-12c:6	
	STS-24c : 3	
Hello タイム	2秒	
転送遅延時間	15 秒	
最大エージング タイム	20 秒	

STP および RSTP のディセーブル化

ネイティブ VLAN 1 および新規作成されたすべての VLAN 上で、スパニングツリーに指定された 255 の制限を上限として、STP はデフォルトでイネーブルになっています。ネットワーク トポロ ジーにループが存在しないことが確実である場合にのみ、STP をディセーブルにします。

注意

STP エッジ ポートは、そのポートの外部でループ保護を必要としない場合、またはそのポートの 外部に STP ネイバが存在しない場合に、STP をイネーブルにする必要のないブリッジ ポートです。 RSTP の場合、適切なインターフェイスで bridge bridge-group-number spanning-disabled コマンド を使用して、エッジ ポート(通常は正面側のイーサネット ポート)で STP をディセーブルにする ことが重要です。RSTP がエッジ ポートでディセーブルになっていない場合、エッジ ポートを通 過するパケットのコンバージェンス タイムが過大になります。

STP がディセーブルで、トポロジーにループが存在していると、過度のトラフィックが発生し、パ ケットの重複が無限に繰り返されるため、ネットワークのパフォーマンスが大幅に低下します。

VLAN 単位で STP または RSTP をディセーブルにするには、イネーブル EXEC モードで次の手順を 実行します。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始
		します。
ステップ 2	Router(config)# interface <i>interface-id</i>	インターフェイス コンフィギュレーション モード
		を開始します。
ステップ 3	Router(config-if)# bridge-group	インターフェイス単位で STP または RSTP をディ
	bridge-group-number spanning disabled	セーブルにします。
ステップ 4	Router(config-if)# end	イネーブル EXEC モードに戻ります。

STP を再度イネーブルにするには、no bridge-group bridge-group-number spanning disabled インター フェイスレベル コンフィギュレーション コマンドを使用します。

ルート スイッチの設定

スイッチは、スイッチに設定されたアクティブな各 VLAN について個別のスパニングツリー イン スタンスを保持します。 スイッチ プライオリティとスイッチ MAC アドレスで構成されるブリッジ ID は、各インスタンスに関連付けられています。各 VLAN では、最小のブリッジ ID を持つスイッ チがその VLAN のルート スイッチになります。

ネットワークが拡張システム ID をサポートするスイッチとサポートしていないスイッチの両方で 構成されている場合、拡張システム ID をサポートするスイッチがルート スイッチになる可能性は ほとんどありません。ブリッジ ID が旧ソフトウェアを実行している接続スイッチのプライオリ ティよりも大きくなるたびに、拡張システム ID のスイッチ プライオリティ値が増加します。

ポート プライオリティの設定

ループが発生した場合、スパニングツリーはポート プライオリティを使用して、フォワーディング ステートにするインターフェイスを選択します。最初に選択させたいインターフェイスには、高い プライオリティ値(小さい数値)を割り当て、最後に選択させたいインターフェイスには、低いプ ライオリティ値(大きい数値)を割り当てることができます。すべてのインターフェイスに同じプ ライオリティ値が割り当てられている場合、スパニングツリーはインターフェイス番号が最も小さ いインターフェイスをフォワーディングステートにし、他のインターフェイスをブロックします。

インターフェイスのポート プライオリティを設定するには、イネーブル EXEC モードで次の手順 を実行します。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始
		します。
ステップ 2	Router(config)# interface interface-id	インターフェイス コンフィギュレーション モード
		を開始し、設定するインターフェイスを指定します。
		有効なインターフェイスとして、物理インターフェ
		イスとポートチャネル論理インターフェイス
		(port-channel <i>port-channel-number</i>) があります。
ステップ 3	Router(config-if) # bridge-group	アクセス ポートであるインターフェイスのポート
	bridge-group-number priority-value	プライオリティを設定します。
		priority-value に指定できる範囲は、0 ~ 255 です。デ
		フォルトは 128 で 16 ずつ増加します。数字が小さい
		ほど、プライオリティは高くなります。
ステップ 4	Router(config-if)# end	イネーブル EXEC モードに戻ります。

インターフェイスをデフォルト設定に戻すには、no bridge-group id bridge-group-number priorityvalue コマンドを使用します。

パス コストの設定

スパニングツリーのパスコストのデフォルト値は、インターフェイスのメディア速度から取得され ます。ループが発生した場合、スパニングツリーはコストを使用して、フォワーディングステート にするインターフェイスを選択します。最初に選択させたいインターフェイスには、低いコスト値 を割り当て、最後に選択させたいインターフェイスには高いコスト値を割り当てることができま す。すべてのインターフェイスに同じコスト値が割り当てられている場合、スパニングツリーはイ ンターフェイス番号が最も小さいインターフェイスをフォワーディングステートにし、他のイン ターフェイスをブロックします。

インターフェイスのコストを設定するには、イネーブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始
		します。
ステップ 2	Router(config)# interface <i>interface-id</i>	インターフェイス コンフィギュレーション モード を開始し、設定するインターフェイスを指定します。
		有効なインターフェイスとして、物理インターフェ イスとポートチャネル論理インターフェイス (port-channel <i>port-channel-number</i>)があります。
ステップ 3	Router(config-if)# bridge-group bridge-group-number path-cost cost	アクセス ポートであるインターフェイスのコスト を設定します。
		ループが発生した場合、スパニングツリーはパス コ ストを使用して、フォワーディング ステートにする インターフェイスを選択します。パス コストが小さ いほど、高速な伝送になります。
		<i>cost</i> に指定できる範囲は、0 ~ 65535 です。 デフォル ト値は、インターフェイスのメディア速度から取得 されます。
ステップ 4	Router(config-if)# end	イネーブル EXEC モードに戻ります。

(注)

インターフェイスをデフォルト設定に戻すには、no bridge-group bridge-group-number path-cost cost コマンドを使用します。

ブリッジ グループのスイッチ プライオリティの設定

スイッチ プライオリティを設定し、スイッチがルート スイッチとして選択される可能性を高くで きます。

ブリッジ グループのスイッチ プライオリティを設定するには、イネーブル EXEC モードで次の手順を実行します。

show spanning-tree interface interface-id イネーブル EXEC コマンドは、リンクアップ動作状態に なっているポートの情報だけを表示します。それ以外の場合は、show running-config イネーブル EXEC コマンドを使用して設定を確認できます。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始
ステップ 2	Router(config)# bridge bridge-group-number priority priority	します。 ブリッジ グループのスイッチ プライオリティを設 定します。
		<i>priority</i> に指定できる範囲は、0 ~ 61440 で 4096 ずつ 増加します。デフォルトは 32768 です。数値が小さ いほど、ルート スイッチとして選択される可能性が 高まります。
		指定した値は、4096 の倍数のうち、小さい方の数値 になります。実際の数値は、ブリッジ グループ番号 にこの数値を加算して算出されます。
ステップ 3	Router(config)# end	イネーブル EXEC モードに戻ります。

スイッチをデフォルト設定に戻すには、no bridge bridge-group-number priority priority コマンドを使用します。

Hello タイムの設定

Hello タイムを変更することによって、ルート スイッチで設定メッセージが生成される間隔を設定できます。

ブリッジ グループの Hello タイムを設定するには、イネーブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始 します。
ステップ 2	Router(config)# bridge bridge-group-number hello-time seconds	ブリッジ グループの Hello タイムを設定します。 Hello タイムは、ルート スイッチによって設定メッ セージが生成される間隔です。このメッセージは、 スイッチが動作中であることを意味します。 seconds に指定できる範囲は、1 ~ 10 です。デフォ ルトは 2 です。
ステップ 3	Router(config)# end	イネーブル EXEC モードに戻ります。

スイッチをデフォルト設定に戻すには、no bridge bridge-group-number hello-time seconds コマンドを 使用します。

ブリッジ グループの転送遅延時間の設定

ブリッジ グループの転送遅延時間を設定するには、イネーブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始 します。
ステップ 2	Router(config)# bridge bridge-group-number forward-time seconds	VLAN の転送時間を設定します。転送遅延は、ポー トが、スパニングツリーのラーニングおよびリスニ ング ステートからフォワーディング ステートに移 行するまでに待機する秒数です。 seconds に指定できる範囲は、4 ~ 200 です。デフォ ルトは 15 です。
ステップ 3	Router(config)# end	イネーブル EXEC モードに戻ります。

スイッチをデフォルト設定に戻すには、no bridge bridge-group-number forward-time seconds コマンドを使用します。

ブリッジ グループの最大エージング タイムの設定

ブリッジ グループの最大エージング タイムを設定するには、イネーブル EXEC モードで次の手順 を実行します。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始 します。
ステップ 2	Router(config) # bridge bridge-group-number max-age seconds	ブリッジ グループの最大エージング タイムを設定 します。最大エージング タイムは、スイッチがスパ ニングツリー設定メッセージを受信しない状態で、 再構成を試みるまでに待機する秒数です。 seconds に指定できる範囲は、6 ~ 200 です。デフォ ルトは 20 です。
ステップ 3	Router(config)# end	イネーブル EXEC モードに戻ります。

スイッチをデフォルト設定に戻すには、no bridge bridge-group-number max-age seconds コマンドを 使用します。

STP および RSTP のステータスの確認とモニタリング

STP または RSTP のステータスを表示するには、表 7-6 に示す 1 つまたは複数のイネーブル EXEC コマンドを使用します。

表 7-6 スパニングツリー ステータスを表示するコマンド

コマンドの説明	目的
ML_Series# show spanning-tree	STP または RSTP の詳細情報を表示します。
ML_Series# show spanning-tree brief	STP または RSTP の要約情報を表示します。
ML_Series# show spanning-tree interface <i>interface-id</i>	指定したインターフェイスの STP または RSTP 情報 を表示します。
ML_Series# show spanning-tree summary [totals]	ポート ステートの要約、あるいは STP または RSTP の状態セクションの全ての行を表示します。

show spanning-tree interface *interface-id* イネーブル EXEC コマンドは、ポートがリンクアップ動作 状態になっている場合にのみ情報を表示します。それ以外の場合は、show running-config interface イネーブル EXEC コマンドを使用して設定を確認できます。

show spanning-tree イネーブル EXEC コマンドの例を次に示します。

例 7-1 show spanning-tree コマンド

Router# show spanning-tree brief

Bridge group 1 Spanning tree enabled protocol ieee Priority Root ID 32769 0005.9a39.6634 Address This bridge is the root Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Bridge ID Priority 32769 (priority 32768 sys-id-ext 1) Address 0005.9a39.6634 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Aging Time 300 Interface Role Sts Cost Prio.Nbr Type Desg FWD 19 Fa0 128.3 P2p PO0 Desg FWD 3 128.20 P2p

Router# show spanning-tree detail

Bridge group 1 is executing the ieee compatible Spanning Tree protocol Bridge Identifier has priority 32768, sysid 1, address 0005.9a39.6634 Configured hello time 2, max age 20, forward delay 15 We are the root of the spanning tree Topology change flag not set, detected flag not set Number of topology changes 2 last change occurred 00:16:45 ago from POS0 Times: hold 1, topology change 35, notification 2 hello 2, max age 20, forward delay 15 Timers: hello 0, topology change 0, notification 0, aging 300 Port 3 (FastEthernet0) of Bridge group 1 is forwarding Port path cost 19, Port priority 128, Port Identifier 128.3.

Designated root has priority 32769, address 0005.9a39.6634

Designated bridge has priority 32769, address 0005.9a39.6634 Designated port id is 128.3, designated path cost 0 Timers: message age 0, forward delay 0, hold 0 Number of transitions to forwarding state: 1 Link type is point-to-point by default BPDU: sent 641, received 0

Port 20 (POS0) of Bridge group 1 is forwarding Port path cost 3, Port priority 128, Port Identifier 128.20. Designated root has priority 32769, address 0005.9a39.6634 Designated bridge has priority 32769, address 0005.9a39.6634 Designated port id is 128.20, designated path cost 0 Timers: message age 0, forward delay 0, hold 0 Number of transitions to forwarding state: 6 Link type is point-to-point by default BPDU: sent 582, received 15

Router# show spanning-tree interface fast 0

Bridge	Group		Role	Sts	Cost	Prio.Nbr	Туре
Bridge	group	1	Desq	FWD	19	128.3	P2p

Router# show spanning-tree interface pos 0

 Bridge Group
 Role Sts Cost
 Prio.Nbr Type

 Bridge group 1
 Desg FWD 3
 128.20
 P2p

Router# show spanning-tree summary totals

Switch is in pvst mode Root bridge for: Bridge group 1

Name	Blocking	Listening	Learning	Forwarding	STP	Active

1 bridge	0	0	0	2	2

VLAN の設定

この章では、ML シリーズ カードの VLAN (仮想 LAN)設定について説明します。ここでは、 IEEE 802.1Q VLAN カプセル化の設定方法について説明します。この章で使用する Cisco IOS コマン ドの詳細については、『*Cisco IOS Command Reference*』を参照してください。

この章の内容は次のとおりです。

- VLANの概要(p.8-2)
- IEEE 802.1Q VLAN のカプセル化の設定 (p.8-3)
- IEEE 802.1Q VLANの設定(p.8-4)
- VLAN 動作のモニタリングと確認(p.8-6)

VLAN の設定は任意です。任意の手順として VLAN の設定に進む前に、一般的なインターフェイ スの設定を完了してください。

VLAN の概要

VLAN を使用することで、ネットワーク管理者は物理的な位置に基づいてではなく、論理的にユー ザをグループ化できます。VLAN は、ネットワークに付随する従来の制約を受けることなく、イン トラグループの安全なデータ転送および通信を可能にする標準 LAN のエミュレーションです。ま た、VLAN をスイッチ内部で設定されたブロードキャスト ドメインとみなすこともできます。 VLAN を設定すると、各スイッチで 複数のサブネット(または VLAN)をサポートできるため、 ルータおよびスイッチは1つの物理リンク上で複数のサブネットをサポートすることが可能にな ります。同じ VLAN に属する装置グループは、異なる LAN セグメントに配置されていても、同じ LAN セグメントに配置されている場合と同様に通信するよう設定されます。

VLAN によって、トラフィックを効率的に分離し、優れた帯域幅利用率を実現できます。VLAN は、 パケットが同じ VLAN 内のポート間だけでスイッチングされるように、物理的な LAN 構造を異な るサブネットワークに論理的に分割するため、スケーリングの問題も軽減されます。これは、セ キュリティ、ブロードキャストの抑制、およびアカウンティングにおいて非常に役立ちます。

ML シリーズ ソフトウェアは、ポートベースの VLAN および VLAN トランク ポートをサポートします。VLAN トランク ポートは、複数の VLAN のトラフィックを伝送するポートです。トランクリンク上で送信される各フレームには、1 つの VLAN にだけ属していることを示すタグが付けられます。

ML シリーズ カード ソフトウェアは、IEEE 802.1Q 規格による VLAN フレームのカプセル化をサ ポートします。Cisco ISL (スイッチ間リンク)の VLAN フレーム のカプセル化はサポートされて いません。ISL フレームは、レイヤ 2 でブロードキャストされるか、レイヤ 3 でドロップされます。

ML シリーズのスイッチングは、カードごとに最大 900 の VLAN サブインターフェイスをサポート します(たとえば、4 つのインターフェイスの 200 の VLAN では、800 の VLAN サブインターフェ イスを使用します)。最大 255 の論理 VLAN をカードごとにブリッジできます(ブリッジ グループ の数により制限される)。各 VLAN サブインターフェイスは、1 ~ 4095 の範囲の任意の VLAN ID に対して設定できます。図 8-1 に、ML シリーズ カードを備えた 2 つの ONS 15454 にまたがる 2 つ の VLAN が設定されたネットワーク トポロジーを示します。

図 8-1 ネットワーク内の装置にまたがる VLAN

IEEE 802.1Q VLAN のカプセル化の設定

ML シリーズ カードのどちらかのタイプのインターフェイス (イーサネットまたは Packet-over-SONET/SDH [POS])で、IEEE 802.1Qの VLAN カプセル化を設定できます。VLAN カプ セル化は、HDLC カプセル化が設定された POS インターフェイスではサポートされません。

ネイティブ VLAN は、ML シリーズ カードでは必ず VLAN ID 1 になります。ネイティブ VLAN 上 のフレームは通常、タグなしで送受信されます。トランク ポートでは、ネイティブ VLAN 以外の VLAN からのすべてのフレームは、タグ付きで送受信されします。

IEEE 802.1Qの VLAN カプセル化を使用する VLAN を設定するには、グローバル コンフィギュレー ション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# bridge bridge-group-number	ブリッジ グループ(VLAN)番号を割り当て、適切
	protocol type	なスパニングツリー タイプを定義します。
ステップ 2	Router(config)# interface type number	インターフェイス コンフィギュレーション モード
		を開始し、インターフェイスを設定します。
ステップ 3	Router(config-if)# no ip address	IP 処理をディセーブルにします。
ステップ 4	Router(config)# interface type	サブインターフェイス コンフィギュレーション
	number.subinterface-number	モードを開始し、サブインターフェイスを設定しま
		す。
ステップ 5	Router(config-subif)# encap dot1q vlan-number	VLAN のカプセル化を IEEE 802.1Q に設定します。
ステップ 6	Router(config-subif)# bridge-group	ネットワーク インターフェイスをブリッジ グルー
	bridge-group-number	プに割り当てます。
ステップ 7	Router(config-subif)# end	イネーブル EXEC モードに戻ります。
ステップ 8	Router# copy running-config startup-config	(任意)設定の変更を NVRAM(不揮発性 RAM)に
		保存します。

<u>》</u> (注)

ML シリーズ カードのブリッジ グループでは、そのブリッジ グループに属するインターフェイス 間で VLAN ID が同一である必要はありません。たとえば、ブリッジ グループは、ある VLAN ID のサブインターフェイスから異なる VLAN ID を持つサブインターフェイスに接続できます。さら に、ある VLAN ID で受信したフレームを別の VLAN ID で送信するよう変更できます。これは、 VLAN 変換と呼ばれます。

(注)

IP ルーティングは、デフォルトでイネーブルになっています。ブリッジングをイネーブルにするに は、no ip routing または bridge IRB コマンドを使用します。

インターフェイス上で送信されるネイティブ VLAN フレームは、通常タグなしです。インターフェ イス上で受信されるすべてのタグなしフレームは、ネイティブ VLAN に関連付けられます。ネイ ティブ VLAN は、常に VLAN 1 です。encapsulation dot1q 1 native コマンドを使用します。

IEEE 802.1Q VLAN の設定

図 8-2 に示す ML100T-12 の VLAN 設定例は、次の VLAN を表しています。

- ファスト イーサネット サブインターフェイス 0.1 は、IEEE 802.1Q ネイティブ VLAN 1 に含ま れます。
- ファスト イーサネット サブインターフェイス 0.2 は、IEEE 802.1Q VLAN 2 に含まれます。
- ファスト イーサネット サブインターフェイス 0.3 は、IEEE 802.1Q VLAN 3 に含まれます。
- ファスト イーサネット サブインターフェイス 0.4 は、IEEE 802.1Q VLAN 4 に含まれます。

図 8-2 IEEE 802.1Q VLAN のプリッジング

例 8-1 に、IEEE 802.1Q VLAN をカプセル化するための VLAN の設定方法を示します。この設定は、 ルータ A とルータ B の両方に使用します。図 8-2 に例を示します。

```
bridge 1 protocol ieee
bridge 2 protocol ieee
bridge 3 protocol ieee
bridge 4 protocol ieee
1
!
interface FastEthernet0
no ip address
Т
interface FastEthernet0.1
 encapsulation dot1Q 1 native
bridge-group 1
!
interface FastEthernet0.2
 encapsulation dot1Q 2
bridge-group 2
1
interface FastEthernet0.3
encapsulation dot1Q 3
bridge-group 3
1
interface FastEthernet0.4
encapsulation dot1Q 4
bridge-group 4
!
interface POS0
no ip address
crc 32
pos flag c2 1
interface POS0.1
encapsulation dot1Q 1 native
bridge-group 1
!
interface POS0.2
 encapsulation dot1Q 2
bridge-group 2
1
interface POS0.3
encapsulation dot1Q 3
bridge-group 3
1
interface POS0.4
 encapsulation dot1Q 4
bridge-group 4
```

例 8-1 IEEE 802.1Q VLAN カプセル化の VLAN 設定

VLAN 動作のモニタリングと確認

ML シリーズ カードで VLAN を設定したあと、イネーブル EXEC コマンド show vlans vlan-id を使用して動作をモニタリングできます。このコマンドは、設定されているすべての VLAN または特定の VLAN (VLAN ID 番号を指定)の情報を表示します。

show vlans イネーブル EXEC コマンドの例は次の通りです。

例 8-2 show vlan コマンド

ML1000-121# show vlans						
Virtual LAN ID: 1 (IEEE 802.10)	Virtual LAN ID: 1 (IEEE 802.1Q Encapsulation)					
vLAN Trunk Interfaces: POS1						
GigabitEthernet0						
This is configured as native	Vlan for the fold	Lowing interface(s	3) :			
POS1						
GigabitEthernet0						
Protocols Configured: Addre	ess:	Received:	Transmitted:			
Virtual LAN ID: 5 (IEEE 802.10)	Encapsulation)					
vLAN Trunk Interfaces: POS1.	.1					
GigabitEthernet0.1						
Protocols Configured: Addre	ess:	Received:	Transmitted:			
Bridging Bridge Group	2	157	0			
Bridging Bridge Group	2	157	0			
Protocols Configured: Addre Bridging Bridge Group Bridging Bridge Group	2 2 2	Received: 157 157	Transmitted: 0 0			

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

IEEE 802.1Q および レイヤ 2 プロトコ ル のトンネリング設定

Virtual Private Network (VPN; 仮想私設網)は、共有インフラストラクチャ(多くの場合、イーサ ネットベース)上で、プライベートネットワークと同じセキュリティ、優先順位付け、信頼性およ び管理性の要件で企業規模の接続を行います。トンネリングは、ネットワークで複数のカスタマー のトラフィックを伝送するサービス プロバイダーを対象に設計された機能です。サービス プロバ イダーは、他のカスタマーのトラフィックを低下させることなく、各カスタマーの VLAN (仮想 LAN)およびレイヤ 2 プロトコル設定を維持する必要があります。ML シリーズ カードは、 IEEE 802.1Q トンネリングおよびレイヤ 2 プロトコル トンネリングをサポートしています。

この章の内容は次のとおりです。

- IEEE 802.1Q トンネリングの概要 (p.9-2)
- IEEE 802.1Q トンネリングの設定 (p.9-5)
- VLAN 透過サービスおよび VLAN 固有サービスの概要 (p.9-8)
- レイヤ 2 プロトコル トンネリングの概要 (p.9-13)
- レイヤ 2 プロトコル トンネリングの設定 (p.9-14)

IEEE 802.1Q トンネリングの概要

多くの場合、サービス プロバイダーのビジネス カスタマーには、VLAN ID (VID)と、サポートさ れる VLAN の数について特定の要件があります。同じサービスプロバイダー ネットワーク内のさ まざまなカスタマーが必要とする VLAN の範囲は重複する場合があり、インフラストラクチャを介 したカスタマーのトラフィックが混在する場合もあります。各カスタマーに、固有の範囲の VLAN ID を割り当てると、カスタマーの設定を制限することになり、IEEE 802.1Q 仕様の 4096 という VLAN の制限を容易に超える可能性があります。

IEEE 802.1Q トンネリング(QinQ)機能を使用することにより、サービス プロバイダーは複数の VLAN を設定しているカスタマーを、1 つの VLAN を使用してサポートできます。カスタマーの VID は保持されるため、さまざまなカスタマーからのトラフィックは、同じ VLAN 上に存在するよ うに見える場合でも、サービスプロバイダーのインフラストラクチャ内では分離されています。 IEEE 802.1Q トンネリングでは、VLAN 内 VLAN 階層を使用して、タグ付きパケットに再度タグ付 けを行うことによって、VLAN スペースを拡張します。IEEE 802.1Q トンネリングをサポートする ように設定されたポートは、トンネル ポートと呼びます。トンネリングを設定するときには、トン ネリング専用の VLAN にトンネル ポートを割り当てます。各カスタマーは個別の VLAN を必要と しますが、その VLAN はカスタマーのすべての VLAN をサポートします。

通常の方法で適切な VID をタグ付けされたカスタマー トラフィックは、カスタマー装置の IEEE 802.1Q トランク ポートから ML シリーズ カードのトンネル ポートに着信します。カスタマー 装置と ML シリーズ カード間のリンクは非対称リンクです。これは、両端の片方が IEEE 802.1Q ト ランク ポートとして設定されており、もう片方がトンネル ポートとして設定されているためです。 各カスタマーの一意のアクセス VID に、トンネル ポート インターフェイスを割り当てます(図9-1)。

図 9-1 サービスプロバイダー ネットワークの IEEE 802.1Q トンネル ポート

カスタマーのトランク ポートから、ML シリーズ カードのトンネル ポートに着信するパケットに は、通常、適切な VID を持つ IEEE 802.1Q がタグ付けされています。このタグ付きパケットは、ML シリーズ カード内に元の状態のまま保たれ、パケットがトランク ポートからサービス プロバイ ダー ネットワークに発信されるときに、カスタマーの一意の VID が含まれた別のレイヤの IEEE 802.1Q タグ (メトロ タグ)付きでカプセル化されます。カスタマーの元の IEEE 802.1Q タグ は、カプセル化されたパケット内に保存されます。したがって、サービスプロバイダー インフラス トラクチャに入るパケットには、二重のタグが付けられていることになります。外側のタグにはカ スタマーのアクセス VID が格納されており、着信トラフィックの VLAN となる内部 VID が格納さ れています。

二重タグ付きパケットがサービス プロバイダーの ML シリーズ カードにある別のトランク ポート に入ると、スイッチ内でパケットが処理されるときに、外側のタグが外されます。同じコア スイッ チの別のトランク ポートからパケットが送出されるときには、同じメトロ タグがパケットに再度 追加されます。図 9-2 に、二重タグ付きパケットの構造を示します。

図 9-2 イーサネット パケットの形式 (標準、IEEE 802.1Q、および IEEE 802.1Q トンネリング)

パケットがサービスプロバイダー出力スイッチのトランク ポートに入ると、スイッチでパケットが 内部処理されるときに、外側のタグが再度除去されます。ただし、パケットがエッジ スイッチのト ンネル ポートからカスタマー ネットワークに送信されるときには、メトロ タグは追加されません。 カスタマー ネットワーク内の元の VLAN 番号を保持するために、パケットは通常の IEEE 802.1Q タ グ付きフレームとして送信されます。

図 9-1 では、カスタマー A には VLAN 30 が、カスタマー B には VLAN 40 がそれぞれ割り当てられ ています。IEEE 802.1Q タグ付きで ML シリーズ カードのトンネル ポートに入るパケットは、サー ビスプロバイダー ネットワークに入る時点で二重タグ付きになります。外側のタグには VLAN ID 30 または 40 が適宜格納され、内側のタグには元の VLAN 番号(VLAN 100 など)が格納されます。 カスタマー A と B の両方がネットワークで VLAN 100 を使用している場合でも、外側のタグが異 なるため、トラフィックはサービスプロバイダー ネットワーク内で分離された状態で保たれます。 IEEE 802.1Q トンネリングでは、各カスタマーは固有の VLAN 番号スペースを制御します。これは、 他のカスタマーやサービスプロバイダー ネットワークが使用する VLAN 番号スペースとは別のも のです。

発信トンネル ポートでは、カスタマー ネットワークの元の VLAN 番号が復元されます。カスタマー ネットワークから着信するトラフィックがタグ付けされていない場合(ネイティブ VLAN フレー ム)、これらのパケットは通常のパケットと同様にブリッジングまたはルーティングされ、サービ スプロバイダーのネットワークに送出されるときに、メトロ タグが(単一レベルのタグとして)追 加されます。

ネイティブ VLAN(VLAN1)が、サービス プロバイダー ネットワークでメトロ タグとして使用さ れている場合は、ネイティブ VID が通常は送信フレームに追加されていなくても、このタグはカス タマー トラフィックに必ず追加される必要があります。VLAN1メトロ タグがサービス プロバイ ダー ネットワークに入ったフレームに追加されないと、カスタマー VLAN タグがメトロ タグとみ なされるという、あってはならない結果を招きます。vlan dot1q tag native グローバル コンフィギュ レーション コマンドを使用して VLAN1に強制的にタグを追加し、このような状況を防ぐ必要があ ります。誤った設定のリスクを軽減するために、カスタマー トラフィックを搬送するメトロ タグ として VLAN1を使用しないようにすることを推奨します。最も望ましい設定は、VLAN1を、サー ビス プロバイダーのネットワークでプライベートに管理された VLAN として使用することです。

追加されたメトロ タグの IEEE 802.1Q Class of Service (CoS; サービス クラス)のプライオリティ フィールドは、デフォルトでは0(ゼロ)に設定されていますが、入力または出力ポリシー マップ で変更できます。

IEEE 802.1Q トンネリングの設定

ここでは、IEEE 802.1Q トンネリングの設定について説明します。内容は次のとおりです。

- IEEE 802.1Q トンネリングおよび他の機能との互換性(p.9-5)
- IEEE 802.1Q トンネルポートの設定(p.9-5)
- IEEE 802.1Qの例(p.9-7)

ML シリーズでは、デフォルトで IEEE 802.1Q トンネリングは設定されていません。

IEEE 802.1Q トンネリングおよび他の機能との互換性

IEEE 802.1Q トンネリングは、レイヤ2パケットスイッチングについては適切に機能しますが、レイヤ2機能の一部およびレイヤ3スイッチングとの互換性はありません。

- トンネル ポートはルーテッド ポートにできません。
- トンネルポートは IP Access Control List (ACL; アクセス制御リスト)をサポートしていません。
- レイヤ3のQuality of Service(QoS; サービス品質)ACL とレイヤ3情報に関連する他のQoS機能は、トンネルポートではサポートされていません。MAC(メディアアクセス制御)ベースのQoSは、トンネルポートでサポートされています。
- EtherChannel ポート グループは、IEEE 802.1Q 設定が EtherChannel ポート グループ内で矛盾が ない限り、トンネル ポートと互換性があります。
- Port Aggregation Protocol (PAgP; ポート集約プロトコル)および Unidirectional Link Detection (UDLD; 単一方向リンク検出)プロトコルは、IEEE 802.1Q トンネル ポートではサポートされ ていません。
- Dynamic Trunking Protocol (DTP; ダイナミック トランキング プロトコル)は、IEEE 802.1Q トンネリングと互換性はありません。これは、トンネル ポートとトランク ポートの非対称リンクを手動で設定する必要があるためです。
- ループバック検出は、IEEE 802.1Q トンネル ポートでサポートされています。
- ポートが IEEE 802.1Q トンネル ポートとして設定されている場合、スパニングツリーの Bridge Protocol Data Unit (BPDU; ブリッジ プロトコル データ ユニット)フィルタリングは、インター フェイスで自動的にディセーブルになります。

IEEE 802.1Q トンネル ポートの設定

ポートを IEEE 802.1Q トンネル ポートとして設定するには、イネーブル EXEC モードで次の手順を 実行します。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始 します。
ステップ 2	Router(config)# bridge bridge-number protocol bridge-protocol	ブリッジ番号を作成し、プロトコルを指定します。

	コマンドの説明	目的
ステップ 3	Router(config)# interface fastethernet number	インターフェイス コンフィギュレーション モード を開始して、トンネル ポートとして設定するイン ターフェイスを指定します。これは、カスタマース イッチに接続するサービスプロバイダー ネット ワークのエッジ ポートであることが必要です。有効 なインターフェイスには、物理インターフェイスと ポートチャネル論理インターフェイス(ポートチャ ネル1~64)があります。
ステップ 4	Router(config-if)# bridge-group number	ブリッジ グループにトンネル ポートを割り当てま す。ポートからのすべてのトラフィック(タグ付き およびタグなし)は、このブリッジグループに基づ いてスイッチングされます。ブリッジグループの他 のメンバーは、プロバイダー トランク インターフェ イスの VLAN サブインターフェイスである必要が あります。
ステップ 5	Router(config-if)# mode dot1q-tunnel	インターフェイスを IEEE 802.1Q トンネル ポートと して設定します。
ステップ 6	Router(config)# end	イネーブル EXEC モードに戻ります。
ステップ 7	Router# show dot1q-tunnel	スイッチのトンネル ポートを表示します。
ステップ 8	Router# copy running-config startup-config	(任意)コンフィギュレーション ファイルにエント リを保存します。

ML シリーズ カードの IEEE 802.1Q トンネリング用に推奨される VID の範囲は 2 ~ 4095 です。

VID1をメトロ タグとして使用する必要がある場合は、次のコマンドを使用します。 Router (config)# VLAN dot1Q tag native

インターフェイスから IEEE 802.1Q トンネルを削除するには、no mode dot1q-tunnel インターフェ イス コンフィギュレーション コマンドを使用します。

IEEE 802.1Qの例

次の例は、図 9-1 の例の設定方法を示しています。例 9-1 をルータ A に適用し、例 9-2 をルータ B に適用します。

例 9-1 ルータ A の設定

bridge 30 protocol ieee bridge 40 protocol ieee ! 1 interface FastEthernet0 no ip routing no ip address mode dot1g-tunnel bridge-group 30 1 interface FastEthernet1 no ip address mode dot1q-tunnel bridge-group 40 ! interface POS0 no ip address crc 32 pos flag c2 1 interface POS0.1 encapsulation dot10 30 bridge-group 30 1 interface POS0.2 encapsulation dot10 40 bridge-group 40

例 9-2 ルータ B の設定

```
bridge 30 protocol ieee
bridge 40 protocol ieee
1
1
interface FastEthernet0
no ip routing
no ip address
mode dot1q-tunnel
bridge-group 30
interface FastEthernet1
no ip address
mode dot1q-tunnel
bridge-group 40
1
interface POS0
no ip address
crc 32
pos flag c2 1
interface POS0.1
encapsulation dot1Q 30
bridge-group 30
1
interface POS0.2
encapsulation dot1Q 40
bridge-group 40
```

VLAN 透過サービスおよび VLAN 固有サービスの概要

ML シリーズ カードでは、VLAN 透過サービスと1 つまたは複数の VLAN 固有サービスを同じポートで組み合わせることができます。この VLAN 透過サービスおよび VLAN 固有サービスはすべて、 ポイントツーポイントまたはマルチポイントツーマルチポイントにできます。

これにより、サービス プロバイダーは、同じカスタマー ポートで、IEEE 802.1Q トンネリング (QinQ) などの VLAN 透過サービスと、特定の VLAN のブリッジングなどの VLAN 固有サービス を組み合わせることができます。たとえば、各サイトの1つのポート全体で、あるカスタマー VLAN はインターネット アクセスに接続し、他のカスタマー VLAN は単一のプロバイダー VLAN 上で別 のカスタマー サイトにトンネリングできます。表 9-1 に、VLAN 透過サービスと VLAN 固有サー ビスの違いをまとめます。

表 9-1 VLAN 透過サービスと VLAN 固有サービス

VLAN 透過サービス	VLAN 固有サービス
プリッジングのみ	ブリッジングまたはルーティング
ポート1つにつき1つのサービス	ポート 1 つにつき最大 254 の VLAN 固有サービ ス
物理インターフェイスのすべての VLAN に無差 別に適用	指定した VLAN だけに適用

VLAN 透過サービスは、Ethernet Wire Service (EWS)とも呼びます。VLAN 固有サービスは、メトロ イーサネット用語で QinQ トンネリング トランク UNI とも呼ばれます。

サブインターフェイスの VLAN 固有サービスは、物理インターフェイスの VLAN 透過サービス(多くの場合、IEEE 802.1Q トンネリング)と共存しています。VLAN 透過サービスと VLAN 固有サービス用に VLAN を設定する場合、VLAN 固有サービス設定に従います。802.1Q トンネリングを設定する必要がある場合は、通常の方法でこの VLAN 透過サービスを設定します(「IEEE 802.1Q トンネリングの設定」[p.9-5] を参照)。

VLAN 固有サービスには、VLAN に通常適用できるサービスであれば、どのサービスでも指定できます。ERMS VLAN 固有サービスを設定する場合は、通常の方法でサービスを設定します。
VLAN 透過サービスおよび VLAN 固有サービスの設定例

この例では、ML シリーズ カード A と ML シリーズ カード C のギガビット イーサネット インター フェイス 0 は、VLAN 透過サービスである IEEE 802.1Q トンネルのトランク ポートです。VLAN 10 は VLAN 透過サービスに使用されます。 VLAN 透過サービスは、ML シリーズ カード A の ギガビッ ト イーサネット インターフェイス 0 のすべてのカスタマー VLAN を通常どおり伝送します。また、 指定されていないすべての VLAN と VLAN 1 も VLAN 10 でトンネリングされます。

VLAN 30 は、VLAN 透過サービスに入らない代わりに、特定の VLAN サービスに転送され、ML シ リーズ カード A のギガビット イーサネット インターフェイス 0 と、ML シリーズ カード B のギガ ビット イーサネット インターフェイス 0 をブリッジングします。図 9-3 は、設定例 9-3、9-4、およ び 9-5 を実行する際の例として使用します。

🗷 9-3 ERMS の例

例 9-3 は、ML シリーズ カード A に適用します。

例 9-3 ML シリーズ カード A の設定

```
hostname ML-A
bridge 10 protocol rstp
bridge 30 protocol ieee
1
!
interface GigabitEthernet0
   no ip address
   no ip route-cache
   mode dot1q-tunnel
   bridge-group 10
    bridge-group 10 spanning-disabled
!
interface GigabitEthernet0.3
encapsulation dot1Q 30
no ip route-cache
bridge-group 30
interface POS0
no ip address
no ip route-cache
crc 32
Т
interface POS0.1
encapsulation dot1Q 10
no ip route-cache
bridge-group 10
1
interface POS0.3
encapsulation dot1Q 30
no ip route-cache
bridge-group 30
```

例 9-4 は、ML シリーズ カード B に適用します。

例 9-4 ML シリーズ カード B の設定

```
hostname ML-B
1
bridge 10 protocol rstp
bridge 30 protocol ieee
!
1
interface GigabitEthernet0
no ip address
1
interface GigabitEthernet0.3
encapsulation dot1Q 30
bridge-group 30
1
interface GigabitEthernet1
no ip address
shutdown
ı.
interface POS0
no ip address
crc 32
!
interface POS0.1
encapsulation dot1Q 10
bridge-group 10
1
interface POS0.3
encapsulation dot1Q 30
bridge-group 30
1
interface POS1
no ip address
crc 32
!
interface POS1.1
encapsulation dot10 10
bridge-group 10
!
interface POS1.3
 encapsulation dot10 30
 bridge-group 30
```

例 9-5 は、ML シリーズ カード C に適用します。

例 9-5 ML シリーズ カード C の設定

```
hostname ML-C
bridge 10 protocol rstp
!
1
interface GigabitEthernet0
  no ip address
   no ip route-cache
   mode dot1q-tunnel
   bridge-group 10
    bridge-group 10 spanning-disabled
!
interface POS0
no ip address
no ip route-cache
crc 32
1
interface POS0.1
encapsulation dot1Q 10
no ip route-cache
bridge-group 10
```

レイヤ2 プロトコル トンネリングの概要

サービスプロバイダー ネットワークで接続されたさまざまなサイトのカスタマーは、各種のレイヤ 2 プロトコルを実行してトポロジーをスケーリングし、ローカル サイトだけでなく、すべてのリ モート サイトも含める必要があります。Spanning Tree Protocol (STP; スパニングツリー プロトコ ル)が正常に実行されていることが必要となります。また、すべての VLAN で、サービスプロバイ ダー インフラストラクチャ内にあるローカル サイトとすべてのリモート サイトが含まれた適切な スパニングツリーを構築することが必要です。Cisco Discovery Protocol (CDP)により、ローカルお よびリモート サイトから隣接するシスコ装置を検出する必要があります。VLAN Trunking Protocol (VTP; VLAN トランキング プロトコル)により、カスタマー ネットワークのすべてのサイトで VLAN 設定に一貫性を持たせるようにする必要があります。

プロトコル トンネリングがイネーブルの場合、サービスプロバイダー インフラストラクチャの着 信側のエッジ スイッチは、特殊 MAC アドレスを使用してレイヤ 2 プロトコル パケットをカプセル 化し、サービスプロバイダー ネットワークに送信します。ネットワークのコア スイッチはこれら のパケットを処理せずに、通常のパケットとして転送します。CDP、STP、または VTP のレイヤ 2 Protocol Data Unit (PDU; プロトコル データ ユニット)は、サービスプロバイダー インフラストラ クチャを横断し、サービスプロバイダー ネットワークの出力側のカスタマー スイッチに配信され ます。同じ VLAN 上のすべてのカスタマー ポートで同じパケットが受信され、次のような結果に なります。

- 各カスタマー サイトのユーザは、STP を正常に実行できます。また、すべての VLAN はロー カル サイトだけでなく、すべてのサイトからのパラメータに基づいて、適切なスパニングツ リーを構築できます。
- CDP は、サービスプロバイダー ネットワーク経由で接続している他のシスコ装置の情報を検出し、表示します。
- VTP は、サービス プロバイダーを介してすべてのスイッチに伝播し、カスタマー ネットワー ク全体で VLAN 設定に一貫性を持たせます。

レイヤ2プロトコルトンネリングは、単独で使用することも IEEE 802.1Q トンネリングを強化する ために使用することもできます。プロトコルトンネリングが IEEE 802.1Q トンネリング ポートま たは特定の VLAN で無効になっていない場合、サービスプロバイダー ネットワークの受信側の終 端にあるリモート スイッチは PDU を受信しないため、STP、CDP、および VTP を正常に実行する ことはできません。プロトコルトンネリングがイネーブルの場合は、各カスタマー ネットワーク 内のレイヤ 2 プロトコルは、サービスプロバイダー ネットワーク内で実行するプロトコルから完全 に分離されます。IEEE 802.1Q トンネリングが設定された サービスプロバイダー ネットワーク経由 でトラフィックを送信するさまざまなサイト上のカスタマー スイッチは、カスタマー VLAN を完 全に認識するようになります。IEEE 802.1Q トンネリングを使用していない場合には、アクセス ポー トを介してカスタマー スイッチに接続し、サービスプロバイダーのアクセス ポートでトンネリン グをイネーブルにすることにより、レイヤ 2 プロトコル トンネリングをイネーブルにできます。

レイヤ2 プロトコル トンネリングの設定

レイヤ 2 プロトコル トンネリング (プロトコル単位)は、トンネル ポート、またはサービスプロ バイダー ネットワークのエッジ スイッチによってカスタマーに接続しているトンネル VLAN でイ ネーブルにします。ML シリーズ カードのトンネル ポートは、カスタマー IEEE 802.1Q トランク ポートに接続します。ML シリーズ カードは、インターフェイスおよびサブインターフェイス レベ ルで、CDP、STP、VTP のレイヤ 2 プロトコル トンネリングをサポートしています。Multiple STP (MSTP)トンネリングは、サブインターフェイス プロトコル トンネリングを通じてサポートされ ます。カスタマー スイッチに接続された ML シリーズ カードは、トンネリング処理を実行します。

トンネル ポートを介して着信 ML シリーズ スイッチに入ったレイヤ 2 PDU が、トランク ポートを 介してサービスプロバイダー ネットワークに入ると、スイッチはカスタマー PDU の宛先 MAC ア ドレスをシスコ独自の既知のマルチキャスト アドレス (01-00-0c-cd-cd-00) で上書きします。 IEEE 802.1Q トンネリングがイネーブルになっている場合、パケットは二重タグ付きになります。 外側のタグは、カスタマーメトロ タグであり、内側のタグはカスタマー VLAN タグです。コアス イッチは内側のタグを無視し、同じメトロ VLAN のすべてのトランク ポートにパケットを転送し ます。出力側の ML シリーズ スイッチは、レイヤ 2 プロトコルと MAC アドレスの適切な情報を復 元してパケットを転送します。したがって、レイヤ 2 PDU は元の状態のまま保たれ、サービスプロ バイダー インフラストラクチャを介してカスタマー ネットワークのもう一方の側に配信されま す。

ここでは、レイヤ2プロトコルトンネリングの設定について説明します。内容は次のとおりです。

- レイヤ 2 プロトコル トンネリングのデフォルト設定 (p.9-14)
- レイヤ2プロトコルトンネリングの設定に関する注意事項(p.9-14)
- ポートのレイヤ2トンネリングの設定(p.9-15)
- VLAN 単位のレイヤ 2 トンネリングの設定 (p.9-16)
- トンネリングステータスのモニタリングと確認(p.9-16)

レイヤ2 プロトコル トンネリングのデフォルト設定

表 9-2 に、レイヤ 2 プロトコル トンネリングのデフォルト設定を示します。

表 9-2 レイヤ 2 プロトコル トンネリングのデフォルト設定

機能	デフォルト設定
レイヤ 2 プロトコル トンネリング	CDP、STP、および VTP に対して無効
CoS 值	データ パケット用のインターフェイスで CoS 値が設定さ
	れている場合、その値がレイヤ2PDUのデフォルトとして
	使用されます。CoS 値が設定されていない場合、デフォル
	トはありません。これにより、ユーザが他の方法で設定し
	ない限り、既存の CoS 値が保持されるようになります。

レイヤ2プロトコルトンネリングの設定に関する注意事項

レイヤ2プロトコルトンネリングの設定に関する注意事項と動作特性は次のとおりです。

- MLシリーズカードは、Per-VLAN Protocol Tunneling (PVPT)をサポートしています。これにより、特定のサブインターフェイス (VLAN)でプロトコルトンネリングを設定し、実行できます。PVPT 設定は、サブインターフェイスレベルで行われます。
- PVPT は、接続された装置上で Multi-Session Transport (MST) BPDU を伝送する VLAN で設定 する必要があります。

- ML シリーズ カードは、CDP、STP(MSTPプロトコルおよび VTP プロトコルを含む)のトン ネリングをサポートしています。プロトコル トンネリングは、デフォルトでディセーブルに なっていますが、IEEE 802.1Q トンネル ポートまたは特定の VLAN 上で個々のプロトコルに対 してイネーブルにできます。
- トンネリングは、トランクポートではサポートされていません。トランクポートで l2protocol-tunnel インターフェイス コンフィギュレーション コマンドを入力した場合、コマン ドは受け入れられますが、ポートをトンネルポートに変更しない限り、レイヤ2トンネリング はイネーブルになりません。
- EtherChannel ポート グループは、IEEE 802.1Q 設定が EtherChannel ポート グループ内で設定されている限り、トンネル ポートと互換性があります。
- レイヤ2トンネリングがイネーブルになっているトンネルポートまたはアクセスポートから、 カプセル化された PDU(独自の宛先 MAC アドレスを持つ)を受信すると、ループを防ぐため にそのトンネルポートはシャットダウンされます。
- カプセル化を解除された PDU だけがカスタマー ネットワークに転送されます。サービスプロ バイダー ネットワーク上で動作しているスパニングツリー インスタンスは、トンネル ポート に BPDU を転送しません。トンネル ポートから転送される CDP パケットはありません。
- トンネリングされた PDU (特に STP BPDU)は、カスタマーの仮想ネットワークが正常に動作 するように、すべてのリモート サイトに配信する必要があるため、サービスプロバイダー ネッ トワーク内の PDU には、同じトンネル ポートから受信されるデータ パケットよりも高いプラ イオリティを付与できます。デフォルトでは、PDU はデータ パケットと同じ CoS 値を使用し ます。
- プロトコルトンネリングは、入力側ポイントと出力側ポイントの両方で対称的に設定する必要 があります。たとえば、STP、CDP、VTPをトンネリングする入力側ポイントを設定した場合、 同じ方法で出力側ポイントを設定する必要があります。

ポートのレイヤ2トンネリングの設定

ポートをレイヤ 2 トンネル ポートとして設定するには、イネーブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router# configuration terminal	グローバル コンフィギュレーション モードを開始しま
		す。
ステップ 2	Router(config) # bridge bridge-group-number	ブリッジ グループ番号を作成し、プロトコルを指定し
	protocol type	ます。
ステップ 3	Router(config)# 12protocol-tunnel cos	CoS 値をレイヤ2トンネリング ポートに関連付けます。
	cos-value	cos-value に指定できる有効な数値の範囲は0~7です。
ステップ 4	Router(config)# interface <i>type number</i>	インターフェイス コンフィギュレーション モードを開
		始し、トンネル ポートとして設定するインターフェイ
		スを指定します。
ステップ 5	Router(config-if)# bridge-group	ブリッジ グループをインターフェイスに割り当てま
	bridge-group-number	す。
ステップ 6	Router(config-if)# mode dot1q tunnel	インターフェイスを IEEE 802.1Q トンネル VLAN とし
		て設定します。
ステップ 7	Router(config-if)# 12protocol-tunnel {all	インターフェイスをレイヤ 2 プロトコル トンネル ポー
	cdp stp vtp]}	トとして設定し、3 つのプロトコルすべてをイネーブル
		にするか、CDP、STP、または VTP のいずれかを指定し
		てイネーブルにします。これらのプロトコルは、デフォ
		ルトではオフになっています。
ステップ 8	Router(config-if)# end	イネーブル EXEC モードに戻ります。

	コマンドの説明	目的
ステップ 9	Router# show dot1q-tunnel	スイッチのトンネル ポートを表示します。
ステップ 10	Router# copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを
		保存します。

VLAN 単位のレイヤ2トンネリングの設定

VLAN をレイヤ 2 トンネル VLAN として設定するには、イネーブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router# configuration terminal	グローバル コンフィギュレーション モードを開始しま
		す。
ステップ 2	Router(config)# bridge bridge-group-number	ブリッジ グループ番号を作成し、プロトコルを指定し
	protocol type	ます。
ステップ 3	Router(config)# 12protocol-tunnel cos	CoS 値をレイヤ2トンネリング VLAN に関連付けます。
	<i>cos-value</i>	cos-value に指定できる有効な数値の範囲は0~7です。
ステップ 4	Router(config)# interface type	サブインターフェイス コンフィギュレーション モード
	number.subinterface-number	を開始し、トンネル VLAN として設定するサブイン
		ターフェイスを指定します。
ステップ 5	Router(config-subif)# encapsulation dot1q	サブインターフェイスを IEEE 802.1Q のトンネル
	bridge-group-number	VLAN として設定します。
ステップ 6	Router(config-subif)# bridge-group	ブリッジ グループをインターフェイスに割り当てま
	bridge-group-number	す。
ステップ 7	Router(config-subif)# end	イネーブル EXEC モードに戻ります。
ステップ 8	Router# copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを
		保存します。

トンネリング ステータスのモニタリングと確認

表 9-3 に、IEEE 802.1Q およびレイヤ 2 プロトコル トンネリングのモニタリングおよび保守に使用 するイネーブル EXEC コマンドを示します。

表 9-3 トンネリングのモニタリングおよび保守に使用するコマンド

コマンドの説明	目的
show dot1q-tunnel	スイッチの IEEE 802.1Q トンネル ポートを表示
	します。
<pre>show dot1q-tunnel interface interface-id</pre>	特定のインターフェイスがトンネル ポートかど
	うかを確認します。
show 12protocol-tunnel	レイヤ 2 プロトコル トンネリング のポート情
	報を表示します。
show vlan dotlq tag native	IEEE 802.1Q トンネルの情報を表示します。

リンク集約の設定

この章では、EtherChannel と Packet-over-SONET/SDH (POS) チャネルの両方の ML シリーズ カードに対するリンク集約設定方法について説明します。この章で使用する Cisco IOS コマンドの詳細については、『*Cisco IOS Command Reference*』を参照してください。

この章の内容は次のとおりです。

- リンク集約の概要 (p.10-2)
- EtherChannel または POS チャネルでのカプセル化の概要 (p.10-9)
- EtherChannel と POS のモニタリングと確認 (p.10-12)

リンク集約の概要

ML シリーズ カードでは、EtherChannel と POS チャネルの両方を使用できます。EtherChannel は、 複数の全二重 IEEE 802.3 イーサネット インターフェイスをグループ化してスイッチ、ルータ、お よびサーバの間にフォールト トレラントな高速リンクを実現するトランキング テクノロジーで す。EtherChannel は単一の高帯域幅のルーティングまたはブリッジング エンドポイントを形成しま す。主にホストとスイッチ間の接続用に設計されたものです。ML シリーズ カードは、ブリッジさ れた POS インターフェイスまでこのリンク集約テクノロジーを拡張します。POS チャネルは、LEX カプセル化だけでサポートされます。

リンク集約には、次のような利点があります。

- 帯域幅の論理集約
- ロード バランシング
- フォールト トレランス

ポート チャネルは、POS チャネルおよび EtherChannel の両方で使用される用語です。ポート チャ ネル インターフェイスは、複数のインターフェイスで構成されている場合でも単一の論理インター フェイスとして扱われます。各ポート チャネル インターフェイスは、ファスト イーサネット、ギ ガビット イーサネット、または POS のいずれかのタイプのインターフェイスで構成されています。 すべてのポート チャネル設定は、イーサネットまたは POS インターフェイスの個々のメンバー上 ではなく、ポート チャネル(EtherChannel または POS チャネル)インターフェイスで実行する必要 があります。ポート チャネル インターフェイスを作成するには、interface port-channel インター フェイス コンフィギュレーション コマンドを入力します。

ポート チャネル の接続は IEEE 802.1Q トランキングおよびルーティング テクノロジーと完全に互 換性があります。IEEE 802.1Q トランキングでは、ポート チャネル内で複数の VLAN を伝送できま す。

各 ML100T-12、ML100X-8、または ML1000-2 カードでは、1 つの POS チャネル、2 つの POS ポートで構成されている1 つのポート チャネルをサポートしています。1 つの POS チャネルは、2 つの POS ポート容量を STS-48c または VC4-16c の最大集約容量にまとめたものです。

各 ML100T-12 は、最大 6 つの Fast Ethernet Channel (FEC; ファスト イーサネット チャネル)および 1 つの POS チャネルをサポートします。各 ML100T-8 は、最大 4 つの FEC および 1 つの POS チャネルをサポートします。最大で 4 つのファスト イーサネット ポートを 1 つの FEC に束ねて、最大で 400 Mbps の全二重ファスト イーサネットまでの帯域幅スケーラビリティを提供できます。

各 ML1000-2 は、POS チャネルを含む最大で 2 つのポート チャネルをサポートします。最大で 2 つ のギガビット イーサネット ポートを 1 つの Gigabit Ethernet Channel (GEC; ギガビット イーサネッ ト チャネル)に束ねて、ML1000-2 上で 2 Gbps の全二重集約容量を提供できます。

注意

EtherChannel インターフェイスは、レイヤ2またはレイヤ3のインターフェイスです。レイヤ3ア ドレスを物理インターフェイス上でイネーブルにしないでください。ループが発生するため、物理 インターフェイス上でブリッジ グループを割り当てないでください。

物理インターフェイスを EtherChannel (ポート チャネル)インターフェイスから削除する前に、物 理インターフェイスをディセーブルにする必要があります。物理インターフェイスをディセーブル にするには、インターフェイス コンフィギュレーション モードで shutdown コマンドを使用しま す。

ポリシングは、ポート チャネル インターフェイスではサポートされません。

ML シリーズ では、Subnetwork Access Protocol (SNAP; サブネットワーク アクセス プロトコル)や ISL (スイッチ間リンク)のカプセル化されたフレームのルーティングはサポートされません。

EtherChannel の設定

FEC または GEC を設定するには、EtherChannel インターフェイス (ポート チャネル)を作成して ネットワーク IP アドレスを割り当てます。FEC または GEC のメンバーであるインターフェイスは すべて、デュプレックスや速度などのリンク パラメータが同じである必要があります。

EtherChannel インターフェイスを作成するには、グローバル コンフィギュレーション モードで次の 手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# interface port-channel	EtherChannel インターフェイスを作成します。最大6つ
	channel-number	の FEC を ML100T-12 上に、4 つの FEC を ML100X-8 上
		に、1 つの GEC を ML1000-2 上に設定できます。
ステップ 2	Router(config-if)# ip address <i>ip-address</i>	IP アドレスとサブネット マスクを EtherChannel イン
	subnet-mask	ターフェイスに割り当てます (レイヤ 3 EtherChannel の
		場合のみ必須)。
ステップ 3	Router(config-if)# end	イネーブル EXEC モードに戻ります。
ステップ 4	Router# copy running-config startup-config	(任意)設定の変更を NVRAM(不揮発性 RAM)に保存
		します。

EtherChannel の他の設定作業については、『*Cisco IOS Configuration Fundamentals Configuration Guide*』 を参照してください。

イーサネット インターフェイスを EtherChannel に割り当てるには、グローバル コンフィギュレー ション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# interface fastethernet	EtherChannel に割り当てるインターフェイス コンフィ
	number	ギュレーション モードとしてファスト イーサネットま
	+ +_ +	たはギガビットイーサネットのうち1つを入力します。
	または	どのイーサネット インターフェイスでも EtherChannel
	Router(config)# interface gigabitethernet	に割り当てることができますが、インターフェイスは両
	number	方とも FEC または GEC のどちらか一方にする必要があ
		ります。
ステップ 2	Router(config-if)# channel-group	ファスト イーサネットまたはギガビット イーサネット
	cnannei-number	のインターフェイスを EtherChannel に割り当てます。
		チャネル番号は、EtherChannel インターフェイスに割り
		当てたチャネル番号と同じである必要があります。
ステップ 3	Router(config-if)# end	イネーブル EXEC モードに戻ります。
ステップ 4	Router# copy running-config startup-config	(任意)設定の変更を NVRAM(不揮発性 RAM)に保存
		します。

EtherChannel の設定例

図 10-1 に、EtherChannel の設定例を示します。関連するコマンドを例 10-1 (スイッチ A)と例 10-2 (スイッチ B)に示します。

図 10-1 EtherChannel の設定例

例 10-1 スイッチ A の設定

hostname Switch A bridge 1 protocol ieee 1 interface Port-channel 1 no ip address bridge-group 1 hold-queue 150 in 1 interface FastEthernet 0 no ip address channel-group 1 ! interface FastEthernet 1 no ip address channel-group 1 ! interface POS 0 no ip routing no ip address crc 32 bridge-group 1 pos flag c2 1

例 10-2 スイッチ B の設定

```
hostname Switch B
1
bridge 1 protocol ieee
1
interface Port-channel 1
no ip routing
no ip address
bridge-group 1
hold-queue 150 in
!
interface FastEthernet 0
no ip address
channel-group 1
!
interface FastEthernet 1
no ip address
channel-group 1
!
interface POS 0
no ip address
crc 32
bridge-group 1
pos flag c2 1
!
```

POS チャネルの設定

POS チャネルを設定するには、POS チャネル インターフェイス (ポート チャネル)を作成して、 任意で IP アドレスを割り当てます。POS チャネルのメンバーである POS インターフェイスはすべ て、同じポート プロパティを持ち、同じ ML シリーズ カード上にある必要があります。

(注)

POS チャネルは、LEX カプセル化だけでサポートされます。

POS チャネル インターフェイスを作成するには、グローバル コンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# interface port-channel channel-number	POS チャネル インターフェイスを作成します。ML シ リーズ カード上に 1 つの POS チャネルを設定できま す。
ステップ 2	Router(config-if)# ip address <i>ip-address subnet-mask</i>	IP アドレスとサブネット マスクを POS チャネル イン ターフェイスに割り当てます(レイヤ 3 POS チャネルの 場合のみ必須)。
ステップ 3	Router(config-if)# end	イネーブル EXEC モードに戻ります。
ステップ 4	Router# copy running-config startup-config	(任意)設定の変更を NVRAM に保存します。

注意

POS チャネル インターフェイスはルーテッド インターフェイスです。レイヤ 3 アドレスを物理イ ンターフェイス上でイネーブルにしないでください。ループが発生するため、物理インターフェイ ス上でブリッジ グループを割り当てないでください。

POS インターフェイスを POS チャネルに割り当てるには、グローバル コンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的	
ステップ 1	Router(config)# interface pos number	インターフェイス コンフィギュレーション モードを開	
		始して、POS チャネルに割り当てる POS インターフェ	
		イスを設定します。	
ステップ 2	Router(config-if)# channel-group	POS インターフェイスを POS チャネルに割り当てま	
	channel-number	す。チャネル番号は、POS チャネル インターフェイス	
		に割り当てたチャネル番号と同じにする必要がありま	
		す。	
ステップ 3	Router(config-if)# end	イネーブル EXEC モードに戻ります。	
ステップ 4	Router# copy running-config startup-config	(任意)設定の変更を NVRAM に保存します。	

POS チャネルの設定例

図 10-2 に、POS チャネルの設定例を示します。関連するコードを 例 10-3 (スイッチ A) と 例 10-4 (スイッチ B) に示します。

図 10-2 POS チャネルの例

例 10-3 スイッチ A の設定

bridge irb bridge 1 protocol ieee 1 1 interface Port-channel1 no ip address no keepalive bridge-group 1 ! interface FastEthernet0 no ip address bridge-group 1 1 interface POS0 no ip address channel-group 1 crc 32 pos flag c2 1 interface POS1 no ip address channel-group 1 crc 32 pos flag c2 1

例 10-4 スイッチ B の設定

bridge irb bridge 1 protocol ieee 1 1 interface Port-channel1 no ip address no keepalive bridge-group 1 ! interface FastEthernet0 no ip address bridge-group 1 ! interface POS0 no ip address channel-group 1 crc 32 pos flag c2 1 1 interface POS1 no ip address channel-group 1 crc 32 pos flag c2 1

EtherChannel または POS チャネルでのカプセル化の概要

FEC、GEC、または POS 上でカプセル化を設定する場合は、必ずメンバー ポートではなく、ポート チャネル インターフェイス上で IEEE802.1Q を設定します。ただし、デュプレックス モードな ど、ポート チャネルの特定の属性は、メンバー ポート レベルで設定する必要があります。また、メンバー インターフェイスには、プロトコル レベルの設定(IP アドレスやブリッジ グループの割 り当てなど)を適用しないでください。すべてのプロトコル レベル設定は、ポート チャネルまた はそのサブインターフェイス上で行う必要があります。IEEE 802.1Q カプセル化は、EtherChannel の パートナー システムでも設定する必要があります。

EtherChannel または POS チャネルでのカプセル化の設定

EtherChannel または POS チャネルでカプセル化を設定するには、グローバル コンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# interface port-channel channel-number.subinterface-number	作成したポート チャネル上でサブインターフェイスを 設定します。
ステップ 2	Router(config-subif)# encapsulation dot1q vlan-id	IEEE 802.1Q カプセル化をサブインターフェイスに割り 当てます。
ステップ 3	Router(config-subif)# bridge-group bridge-group-number	サブインターフェイスをブリッジ グループに割り当て ます。
ステップ 4	Router(config-subif)# end	イネーブル EXEC モードに戻ります。 (注) 任意で、インターフェイス コンフィギュレー ション モードで、要件を満たすためサポートされている他のインターフェイス コマンドをイ ネーブルにできます。
ステップ 5	Router# copy running-config startup-config	(任意)設定の変更を NVRAM に保存します。

EtherChannel でのカプセル化の例

図 10-3 に、EtherChannel でのカプセル化の例を示します。関連するコードを 例 10-5 (スイッチ A) と 例 10-6 (スイッチ B) に示します。

図 10-3 EtherChannel でのカプセル化の例

この EtherChannel でのカプセル化の例では、EtherChannel での IEEE 802.1Q カプセル化もサポート している 2 台のスイッチと相互運用するために、ML100T-12 カードを備えた 2 台の ONS 15454(ス イッチ A とスイッチ B)を設定する方法を示しています。この例を設定するには、次に示すスイッ チ A およびスイッチ B 両方の設定を使用します。

例 10-5 スイッチ A の設定

```
hostname Switch A
1
bridge irb
bridge 1 protocol ieee
bridge 2 protocol ieee
1
interface Port-channel1
no ip address
hold-queue 150 in
1
interface Port-channel1.1
encapsulation dot1Q 1 native
bridge-group 1
interface Port-channel1.2
encapsulation dot1Q 2
bridge-group 2
1
interface FastEthernet0
no ip address
channel-group 1
Т
interface FastEthernet1
no ip address
channel-group 1
1
interface POSO
no ip address
crc 32
pos flag c2 1
interface POS0.1
encapsulation dot1Q 1 native
bridge-group 1
!
interface POS0.2
encapsulation dot1Q 2
bridge-group 2
```

例 10-6 スイッチ B の設定

```
hostname Switch B
bridge irb
bridge 1 protocol ieee
bridge 2 protocol ieee
interface Port-channel1
no ip address
hold-queue 150 in
1
interface Port-channel1.1
encapsulation dot1Q 1 native
bridge-group 1
1
interface Port-channel1.2
encapsulation dot1Q 2
bridge-group 2
1
interface FastEthernet0
no ip address
channel-group 1
!
interface FastEthernet1
no ip address
channel-group 1
1
interface POS0
no ip address
crc 32
pos flag c2 1
1
interface POS0.1
encapsulation dot10 1 native
bridge-group 1
T.
interface POS0.2
encapsulation dot1Q 2
bridge-group 2
!
```

EtherChannel と POS のモニタリングと確認

FEC、GEC、または POS を設定すると、show interfaces port-channel コマンドを使用してステータ スをモニタリングできます。

```
例 10-7 show interfaces port-channel コマンド
```

```
Router# show int port-channel 1
Port-channel1 is up, line protocol is up
 Hardware is FEChannel, address is 0005.9a39.6634 (bia 0000.0000.0000)
 MTU 1500 bytes, BW 200000 Kbit, DLY 100 usec,
     reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation ARPA, loopback not set
  Keepalive set (10 sec)
 Unknown duplex, Unknown Speed
  ARP type: ARPA, ARP Timeout 04:00:00
   No. of active members in this channel: 2
        Member 0 : FastEthernet0 , Full-duplex, Auto Speed
       Member 1 : FastEthernet1 , Full-duplex, Auto Speed
 Last input 00:00:01, output 00:00:23, output hang never
  Last clearing of "show interface" counters never
  Input queue: 0/150/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
 Output queue :0/80 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     820 packets input, 59968 bytes
     Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
     0 watchdog, 0 multicast
     0 input packets with dribble condition detected
     32 packets output, 11264 bytes, 0 underruns
     0 output errors, 0 collisions, 0 interface resets
     0 babbles, 0 late collision, 0 deferred
     0 lost carrier, 0 no carrier
     0 output buffer failures, 0 output buffers swapped out.
```


ネットワーク プロトコルの設定

この章では、ML シリーズ カードでサポートされている IP ルーティング プロトコルを設定する方 法について説明します。ここでは、ネットワーク管理者がプロトコルを起動して実行するために必 要な情報を提供します。ただし、各プロトコルの詳細な設定情報については説明しません。詳細に ついては、『Cisco IOS IP and IP Routing Configuration Guide』および『Cisco IOS IP and IP Routing Command Reference』を参照してください。

この章の内容は次のとおりです。

- IP ルーティング プロトコルの基本設定 (p.11-2)
- IP ルーティングの設定 (p.11-5)
- スタティック ルートのモニタリング (p.11-34)
- IP ネットワークのモニタリングとメンテナンス (p.11-35)
- IP マルチキャスト ルーティングの概要 (p.11-36)
- IP マルチキャスト ルーティングの設定 (p.11-37)
- IP マルチキャスト動作のモニタリングと確認(p.11-37)

IP ルーティング プロトコルの基本設定

ML シリーズ カードでは、IP ルーティングがデフォルトでイネーブルになっています。 IP ルーティングの場合は、インターフェイスの設定に次の情報が必要です。

- IP アドレス
- IP サブネット マスク

また、次の操作が必要です。

- ルーティング プロトコルの選択
- アドバタイズする IP ネットワーク番号の割り当て

ML シリーズでは、以降で紹介するルーティング プロトコルがサポートされます。

IP ルーティング プロトコルをファスト イーサネット インターフェイス、ギガビット イーサネット インターフェイス、または Packet-over-SONET/SDH (POS) インターフェイスで実行できるように 設定するには、設定中のプロトコルに応じて、次のいずれかの手順を実行します。

RIP

Routing Information Protocol (RIP; ルーティング情報プロトコル)を設定するには、グローバルコンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# router rip	ルータ コンフィギュレーション モードを開始し、RIP を ルーティング プロトコルとして定義して、RIP ルーティ ング プロセスを開始します。
ステップ 2	Router(config-router)# network net-number	サブネット番号や個別のアドレスではなく、Internet Network Information Center(InterNIC; インターネット ネッ トワーク情報センター)のネットワーク番号に基づいて、 直接接続するネットワークを指定します。ルーティング プロセスによってインターフェイスと適切なアドレスが 関連付けられ、指定したネットワークでパケットの処理 が開始されます。
ステップ 3	Router(config-router)# exit	グローバル コンフィギュレーション モードに戻ります。

EIGRPEIGRP

Enhanced Interior Gateway Routing Protocol (EIGRP)を設定するには、グローバル コンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# router eigrp autonomous-system-number	EIGRP を IP ルーティング プロトコルとして定義し ます。
		この Autonomous System(AS; 自律システム)番号 は、ML シリーズ カードが属する AS を表します。
ステップ 2	Router(config-router)# network net-number	EIGRP を実行する直接接続されたネットワークを定 義します。
		このネットワーク番号は、ML シリーズ カードでア ドバタイズされるネットワークの番号です。
ステップ 3	Router(config-router)# exit	グローバル コンフィギュレーション モードに戻り ます。

OSPF

Open Shortest Path First (OSPF) プロトコルを設定するには、グローバル コンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# router ospf process-ID	OSPF を IP ルーティング プロトコルとして定義しま す。
		プロセス ID は、一意の OSPF ルータ プロセスを識 別します。この番号は、ML シリーズ カードの内部 のみで使用されます。このプロセス ID と他のルータ のプロセス ID を一致させる必要はありません。
ステップ 2	Router(config-router)# network net-address wildcard-mask area area-ID	特定のエリアにインターフェイスを割り当てます。 net-address:直接接続されたネットワークまたは サブネットのアドレス
		 wildcard-mask:指定されたアドレスとインター フェイスのアドレッシングを比較して、OSPFで このインターフェイスを使用するかどうかを判 断するための逆マスク
		 area:インターフェイスが属するエリアを特定 するパラメータ
		 area-ID:ネットワークアドレスに関連付けられたエリアを指定
ステップ 3	Router(config-router)# end	イネーブル EXEC モードに戻ります。

BGP

Border Gateway Protocol (BGP; ボーダー ゲートウェイ プロトコル)を設定するには、グローバル コンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# router bgp autonomous-system-number	BGP を IP ルーティング プロトコルとして定義します。
		この AS 番号は、 ML シリーズ カードが属する AS を 表します。
ステップ 2	Router(config-router) # network net-number	BGPを実行する直接接続されたネットワークを定義 します。
		このネットワーク番号は、ML シリーズ カードでア ドバタイズされるネットワークの番号です。
ステップ 3	Router(config-router)# exit	グローバル コンフィギュレーション モードに戻り ます。

IP ルーティングのイネーブル化

IP ルーティングをイネーブルにするには、イネーブル EXEC モードで次の手順を実行します。

(注)

デフォルトでは、IP ルーティングがすでにイネーブルに設定されています。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始
		します。
ステップ 2	Router(config)# ip routing	IP ルーティングをイネーブルにします(デフォル ト)。
ステップ 3	Router(config)# router ip-routing-protocol	IP ルーティング プロトコルを指定します。このス テップでは、他のコマンドも実行する場合がありま す(network [RIP] ルータ設定コマンドを使用して、 ルーティングするネットワークを指定する場合な ど)。特定のプロトコルの詳細については、この章で 後述する情報と『Cisco IOS IP and IP Routing Configuration Guide』を参照してください。
ステップ 4	Router(config-router)# end	イネーブル EXEC モードに戻ります。
ステップ 5	Router(config)# show running-config	エントリを確認します。
ステップ 6	Router(config)# copy running-config startup-config	 (任意)コンフィギュレーション ファイルにエント リを保存します。

ルーティングをディセーブルにするには、 no ip routing グローバル コンフィギュレーション コマンド(例 11-1)を使用します。

例 11-1 ルーティング プロトコルとして RIP を使用した IP ルーティングのイネーブル化

```
Router# configure terminal
Router(config)# ip routing
Router(config)# router rip
Router(config-router)# network 10.0.0.0
Router(config-router)# end
```

IP ルーティングの設定

ここの説明に従って、選択したルーティング プロトコルのパラメータを設定できます。

- RIPの設定 (p.11-5)
- OSPF の設定 (p.11-10)
- EIGRP の設定 (p.11-21)
- BGPの設定 (p.11-29)
- IS-IS の設定 (p.11-31)
- スタティック ルートの設定 (p.11-33)

RIP の設定

RIP は、小規模な同種ネットワーク向けに作成された Interior Gateway Protocol(IGP; 内部ゲートウェ イ プロトコル)です。また、RIP は、ブロードキャスト UDP データ パケットを使用し、ルーティ ング情報を交換するディスタンス ベクタ ルーティング プロトコルです。このプロトコルは RFC 1058 で規定されています。RIP の詳細については、Cisco Press 発行の『*IP Routing Fundamentals*』を 参照してください。

スイッチは、RIP を使用して、ルーティングの更新情報を 30 秒ごとに送信(アドバタイズ)しま す。ルータが他のルータから 180 秒以上更新情報を受信しないと、その発信側ルータから配信され るルートを使用不可とマーキングします。さらに 240 秒経過しても、ルータが他のルータから更新 情報を受信できない場合は、受信側ルータがその発信側ルータに関連するルーティング テーブルの エントリすべてを削除します。

RIP では、ホップ カウントを使用して、各ルートの値を評価します。ホップ カウントは、1 つの ルートで経由するルータの数を表します。直接接続したネットワークのホップ カウントは、0(ゼ ロ)です。ホップ カウントが 16 のネットワークは、到達不能であることを表します。RIP のホッ プ カウントの範囲は 0 ~ 15 と狭いので、RIP は大規模ネットワークに適していません。

ルータにデフォルトのネットワーク パスが設定されている場合は、ルータを擬似ネットワーク 0.0.0.0 にリンクするルートが RIP でアドバタイズされます。0.0.0.0 ネットワークは存在しませんが、 RIP では、デフォルトのルーティング機能を実装するためにネットワークとして処理されます。 RIP がデフォルト ネットワークを学習している場合、またはルータが最終手段としてゲートウェイを用 意しており、RIP がデフォルトのメトリックで設定されている場合は、スイッチは、デフォルトの ネットワークをアドバタイズします。 RIP は、指定されたネットワークのインターフェイスに更新 情報を送信します。インターフェイスのネットワークを指定していない場合は、 RIP の更新情報で アドバタイズされません。

表 11-1 に、RIP のデフォルト設定を示します。

表 11-1 RIP のデフォルト設定	
---------------------	--

機能	デフォルト設定
自動サマリー	イネーブル
デフォルト情報発信	ディセーブル
デフォルトのメトリック	組み込み:自動メトリック変換
IP RIP 認証キー チェーン	認証なし
	認証モード:クリア テキスト
IP RIP 受信バージョン	version ルータ コンフィギュレーション コマンドで指定
IP RIP 送信バージョン	version ルータ コンフィギュレーション コマンドで指定
IP RIP トリガー	version ルータ コンフィギュレーション コマンドで指定
IP スプリット ホライズン	メディアによって異なる
ネイバ	未定義
ネットワーク	未指定
オフセット リスト	ディセーブル
出力遅延	0ミリ秒
タイマーの基本値	更新:30秒
	無効:180秒
	ホールドダウン:180 秒
	フラッシュ:240秒
更新情報発信元の確認	イネーブル
バージョン	RIP バージョン1とバージョン2のパケットを受信
	バージョン1のパケットを送信

RIP を設定するには、ネットワークで RIP ルーティングをイネーブルにし、他のパラメータを任意 に設定します。

RIP をイネーブルにして設定するには、イネーブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始しま
		す。
ステップ 2	Router(config)# ip routing	IP ルーティングをイネーブルにします (IP ルーティン
		グがディセーブルになっている場合にのみ必須)。
ステップ 3	Router(config)# router rip	RIP ルーティング プロセスをイネーブルにし、ルータ
		コンフィギュレーション モードを開始します。
ステップ 4	Router(config-router)# network	ネットワークを RIP ルーティング プロセスに関連付け
	network-number	ます。複数の network コマンドを指定できます。RIP
		ルーティング更新は、指定したネットワークだけでイン
		ターフェイス経由で送受信されます。
ステップ 5	Router(config-router)# neighbor <i>ip-address</i>	(任意)ルーティング情報を交換する近接ルータを定義
		します。このステップでは、ブロードキャスト対象外の
		ネットワークに RIP(通常はブロードキャスト プロトコ
		ル)からのルーティング更新を送信できます。

	コマンドの説明	目的
ステップ 6	Router(config-router) # offset list	(任意)オフセット リストをルーティング メトリックに
	{[access-list-number name]} {in out}	適用し、RIP 経由で学習したルートに着信と発信のメト
		リックを増やします。オフセット リストをアクセス リ
		ストやインターフェイスで制限できます。
ステップ 7	Router(config-router)# timers basic update	(任意)ルーティング プロトコル タイマーを調整しま
	invalid holddown flush	す。すべてのタイマーの有効値の範囲は、0 ~
		4294967295 秒です。
		 update ルーティング更新を送信する間隔(秒単位)。デフォルトは 30 秒です。
		 invalid ルートが無効だと宣言されるまでの時間 (秒単位)。デフォルトは 180 秒です。
		 holddown ルーティングテーブルからルートを削除するまでに経過する時間(秒単位)。デフォルトは 180 秒です。
		 flush ルーティングの更新が延期される時間(秒 単位)。デフォルトは 240 秒です。
ステップ 8	Router(config-router)# version {1 2}	(任意)スイッチを設定し、RIP バージョン 1 または RIP
		バージョン 2 のパケットだけを送受信するようにしま
		す。デフォルトでは、スイッチは、バージョン1とバー
		ジョン 2 を受信しますが、送信するのはバージョン 1 の
		みです。
		$1 yy - Jz + \lambda = yy + ip$ rip {send receive}
		version $\{1 \mid 2 \mid 1 \}$ を使用して、1ノダーノエイスでの 業業信に使用する バージョンを制御することもできま
		医交信に使用するハーションを制御することもできま
ステップ 9	Router(config-router) # no auto summary	
~~ ~ ~ ~ ~		したでは、スイッチは、全クラスのネットワーク境界を
		通過するときにサブプレフィックスをサマリーします。
		このサマリーをディセーブルにして(RIPバージョン2)
		のみ)、サブネットとホストのルーティング情報を全ク
		ラスのネットワーク境界にアドバタイズします。
ステップ 10	Router(config-router)# no	(任意)着信する RIP ルーティング更新の送信元 IP アド
	validate-update-source	レスの検証をディセーブルにします。デフォルトでは、
		スイッチは、着信 RIP ルーティング更新の送信元 IP ア
		ドレスを検証し、送信元アドレスが無効な場合にその更
		新情報を廃棄します。通常は、この機能をイネーブルに
		することを推奨します。ただし、ネットワーク外のルー
		タがあり、その更新情報を受信する場合は、このコマン
		ドを使用できます。
ステップ 11	Router(config-router)# output-delay <i>delay</i>	(任意)送信する RIP 更新パケット間に遅延を追加しま
		す。デフォルトでは、複数のパケットを使用する RIP 更
		新内のパケット間には遅延が追加されていません。パ
		ケットをより低速な装置に送信する場合、8 ~ 50 ミリ
7= + 40	Deuten (nem frim en 1 - 1) II A	がの範囲でハケット间に建建を追加でさます。
ステッノ 12	Rouler(conig-router)# end	1 ホーノル EXEC セートに戻りより。 エントリカ 空初します
ステッノ 13	Router# snow 1p protocols	エノドリを唯祕しより。 (「音、コンコノギュ」ション コュノリにエントリケ
ステッノ 14	Router# copy running-config startup-config	(IT思) コノフィキュレーション ファイルにエントリを 保存します。

RIP ルーティング プロセスをディセーブルにするには、no router rip グローバル コンフィギュレー ション コマンドを使用します。

アクティブなルーティング プロトコル プロセスのパラメータと最新状態を表示するには、show ip protocols イネーブル EXEC コマンド (例 11-2)を使用します。

例 11-2 show ip protocols コマンドの出力 (RIP プロセスの表示)

Router# show ip prot	ocols	
Routing Protocol is	"rip"	
Sending updates ev	ery 30 secon	nds, next due in 15 seconds
Invalid after 180	seconds, ho	ld down 180, flushed after 240
Outgoing update fi	lter list fo	or all interfaces is not set
Incoming update fi	lter list fo	or all interfaces is not set
Redistributing: ri	p	
Default version co	ntrol: send	version 1, receive any version
Interface	Send	Recv Triggered RIP Key-chain
FastEthernet0	1	1 2
POS0	1	1 2
Automatic network	summarizati	on is in effect
Maximum path: 4		
Routing for Networ	ks:	
192.168.2.0		
192.168.3.0		
Routing Information	n Sources:	
Gateway	Distance	Last Update
192.168.2.1	120	00:00:23
Distance: (default	is 120)	

RIP データベース内のサマリー アドレス エントリを表示するには、show ip rip database イネーブル EXEC コマンドを使用します (例 11-3)。

例 11-3 show ip rip database コマンドの出力

Router# show ip rip database 192.168.1.0/24 auto-summary 192.168.1.0/24 [1] via 192.168.2.1, 00:00:24, POS0 192.168.2.0/24 auto-summary 192.168.2.0/24 directly connected, POS0 192.168.3.0/24 auto-summary 192.168.3.0/24 directly connected, FastEthernet0

RIP 認証

RIP バージョン 1 では、認証がサポートされません。RIP バージョン 2 のパケットを送受信するに は、インターフェイスで RIP 認証をイネーブルにできます。キー チェーンは、インターフェイスで 使用できるキー セットを表します。キーチェーンを設定していない場合は、認証が実行されませ ん。デフォルトでも同様です。

このスイッチでは、RIP 認証がイネーブルのインターフェイスで2つの認証モード(平文とメッセー ジダイジェスト キー [MD5]) がサポートされています。デフォルトは、平文です。

インターフェイスに RIP 認証を設定するには、イネーブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始しま
		す。
ステップ 2	Router(config)# interface interface-id	インターフェイス コンフィギュレーション モードを開
		始し、設定するインターフェイスを指定します。
ステップ 3	Router(config-if)# ip rip authentication key-chain name-of-chain	RIP 認証をイネーブルにします。
ステップ 4	<pre>Router(config-if)# ip rip authentication mode {text md5}</pre>	平文による認証(デフォルト)または MD5 ダイジェス ト認証を使用するようにインターフェイスを設定しま す。
ステップ 5	Router(config-if)# end	イネーブル EXEC モードに戻ります。
ステップ 6	Router# show running-config interface [interface-id]	エントリを確認します。
ステップ 7	Router# copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを 保存します。

平文認証に戻すには、no ip rip authentication mode インターフェイス コンフィギュレーション コ マンドを使用します。認証を実行しない場合は、no ip rip authentication key-chain インターフェイ ス コンフィギュレーション コマンドを使用します。

サマリー アドレスとスプリット ホライズン

ブロードキャスト型 IP ネットワークに接続され、ディスタンス ベクタ ルーティング プロトコルを 使用するルータは、通常、スプリット ホライズン メカニズムを使用してルーティング ループの発 生を抑えます。スプリット ホライズンでは、ルータがルート情報をアドバタイズするのを、情報発 信側のインターフェイスで防ぎます。この機能によって、通常(特にリンクに障害がある場合) 複 数のルータ間で通信が最適化されます。

(注)

スプリット ホライズンをディセーブルにしないとアプリケーションが正しくルートをアドバタイ ズできない場合を除き、通常は、スプリットホライズンをイネーブルにすることを推奨します。

RIP を実行するインターフェイスを設定し、ダイヤルアップ クライアント用ネットワーク アクセス サーバ上のサマリー ローカル IP アドレス プールをアドバタイズするには、ip summary-address rip インターフェイス コンフィギュレーション コマンドを使用します。

インターフェイスを設定し、サマリー ローカル IP アドレス プールをアドバタイズして、このイン ターフェイスでスプリット ホライズンをディセーブルにするには、イネーブル EXEC モードで次 のステップを実行します。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始しま
		す。
ステップ 2	Router(config)# interface interface-id	インターフェイス コンフィギュレーション モードを開
		始し、設定するレイヤ3インターフェイスを指定します。
ステップ 3	Router(config-if)# ip address <i>ip-address subnet-mask</i>	IP アドレスと IP サブネットを設定します。

	コマンドの説明	目的
ステップ 4	Router(config-if)# ip summary-address rip <i>ip-address ip-network-mask</i>	IP アドレスのサマリーと IP ネットワーク マスクを設定 します。
ステップ 5	Router(config-if)# no ip split horizon	インターフェイスでのスプリット ホライズンをディ セーブルにします。
ステップ 6	Router(config-if)# end	イネーブル EXEC モードに戻ります。
ステップ 7	Router# show ip interface interface-id	エントリを確認します。
ステップ 8	Router# copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを 保存します。

IP サマリーをディセーブルにするには、no ip summary-address rip ルータ設定コマンドを使用します。

(注)

スプリット ホライズンをイネーブルにすると、自動サマリーもインターフェイスでのサマリー アドレス (ip summary-address rip ルータ コンフィギュレーション コマンドで設定したサマリー アドレス) もアドバタイズされません。

OSPF の設定

ここでは、OSPF プロトコルの設定方法を簡単に説明します。OSPF のコマンドの詳細については、 『Cisco IOS IP and IP Routing Command Reference』の「OSPF Commands」の章を参照してください。

OSPF は、IP ネットワーク用に特別に設計された IGP であり、外部で派生したルーティング情報の IP サブネット化とタギングをサポートします。OSPF では、パケット認証が可能で、パケットの送 受信時に IP マルチキャストを使用します。シスコ製品では、RFC 1253 の OSPF MIB がサポートさ れています。

シスコ製品は、次の機能を持つ OSPF バージョン 2の規格に準拠しています。

- スタブエリア スタブエリアの定義がサポートされます。
- ルート再配布 IP ルーティング プロトコルが学習したルートを他の IP ルーティング プロトコルに再配布できます。これは、ドメイン内では、EIGRP や RIP などのプロトコルで学習したルートを OSPF がインポートしたり、エクスポートしたりできることを表します。
- 認証 エリア内の近接ルータで平文と MD5 による認証がサポートされます。
- ルーティング インターフェイス パラメータ サポートされている設定可能なパラメータには、インターフェイス出力コスト、再送間隔、インターフェイス送信遅延、ルータのプライオリティ、ルータのデッドおよび Hello インターバル、認証キーなどがあります。
- 仮想リンク 仮想リンクがサポートされます。
- Not-So-Stubby-Area (NSSA; 準スタブエリア) RFC 1587

OSPFでは、通常、多数の内部ルータ、複数のエリアに接続された Area Border Router (ABR; エリ ア境界ルータ)、および Autonomous System Boundary Router (ASBR; 自律システム境界ルータ)の 間で調整を行う必要があります。最小設定では、すべてのデフォルト パラメータ値、認証設定(認 証なし)、およびエリアに割り当てられたインターフェイスを使用します。使用中の環境をカスタ マイズする場合は、すべてのルータで設定を調整する必要があります。

表 11-2 にデフォルトの OSPF 設定を示します。

機能	デフォルト設定
インターフェイスのパラメー	コスト:デフォルト値は未設定
タ	再送間隔:5秒
	送信遅延:1 秒
	プライオリティ:1
	Hello インターバル:10 秒
	デッド インターバル:Hello インターバルの 4 倍
	認証なし
	パスワード未指定
	MD5 認証ディセーブル
エリア	認証タイプ:0(認証なし)
	デフォルトのコスト:1
	範囲:ディセーブル
	スタブ : スタブ エリア未定義
	NSSA: NSSA エリア未定義
自動コスト	100 Mbps
デフォルト情報発信元	ディセーブル。イネーブルにした場合、デフォルトのメトリック 設定は 10 で、外部ルート タイプのデフォルト値は Type 2 です。
デフォルトのメトリック	組み込み、自動メトリック変換、各ルーティング プロトコルに適 切なメトリック
長距離 OSPF	dist1(すべてのルートが 1 エリア内に存在): 110 dist2(2 つのエリア間のすべてのルート): 110 dist3(他のルーティング ドメインからのルート): 110
OSPF データベース フィルタ	ディセーブル。すべての発信 Link-State Advertisements (LSA; リン クステート アドバタイズメント) がインターフェイスにフラッ ディングされます。
IP OSPF 名前検索	ディセーブル
隣接関係変更ログ	イネーブル
ネイバ	未指定
ネイバ データベース フィル	ディセーブル。すべての発信 LSA がネイバにフラッディングされ
グ ネットロークエリマ	より。 ニッセーブル
	フィビーフル OSDE IIティング プロセフキ定義
$\frac{n-y}{D}$	「ディヤーブル
タイマー LSA グループ ペー シング	240 秒
タイマー Shortest Path First	SPF 遅延:5 秒
(SPF; 最短パス優先)	SPF 待機時間:10秒

表 11-2 OSPF のデフォルト設定

表11-2 OSPI	「のデフォノ	レト設定	(続き)
------------	--------	------	------

機能	デフォルト設定
仮想リンク	エリア ID またはルータ ID は未定義
	Hello インターバル:10 秒
	再送間隔:5秒
	送信遅延:1秒
	デッド インターバル:40 秒
	認証キー:キー未定義
	MD5:キー未定義

図 11-1 に OSPF を使用した IP ルーティング プロトコルの例を示します。

OSPF をイネーブルにするには、OSPF ルーティング プロセスを作成し、このルーティング プロセ スに関連付ける IP アドレスの範囲を指定して、その範囲に関連付けるエリア ID を割り当てる必要 があります。

OSPF をイネーブルにするには、イネーブル EXEC モードを開始し、次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始しま
		す。
ステップ 2	Router(config)# router ospf process-id	OSPF ルーティングをイネーブルにし、ルータ コンフィ ギュレーション モードを開始します。プロセス ID は、 ローカルに割り当てられ、内部的に使用される識別パラ メータです。この ID には、どの正の整数でも指定でき ます。各 OSPF ルーティング プロセスには、一意の値 を指定します
ステップ 3	Router(config)# network address wildcard-mask area area-id	OSPF を実行するインターフェイスと、そのインター フェイスのエリア ID を定義します。1 つのコマンドで 1 つ以上のインターフェイスを特定の OSPF エリアに関 連付けるには、ワイルドカード マスクを使用します。エ リア ID は、10 進値または IP アドレスです。
ステップ 4	Router(config)# end	イネーブル EXEC モードに戻ります。
ステップ 5	Router# show ip protocols	エントリを確認します。
ステップ 6	Router# copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを 保存します。

OSPF ルーティング プロセスを終了するには、no router ospf *process-id* グローバル コンフィギュ レーション コマンドを使用します。

例 11-4 に OSPF ルーティング プロセスの設定例を示します。この例では、プロセス番号 1 を割り 当てます。例 11-5 に、OSPF プロセス ID の確認に使用する、コマンド出力を示します。

例 11-4 OSPF ルーティング プロセスの設定

Router(config)# router ospf 1
Router(config-router)# network 192.168.1.0 0.0.0.255 area 0

例 11-5 show ip protocols イネーブル EXEC コマンドの出力

```
Router# show ip protocols
Routing Protocol is "ospf 1"
 Outgoing update filter list for all interfaces is not set
 Incoming update filter list for all interfaces is not set
 Router ID 192.168.3.1
 Number of areas in this router is 1. 1 normal 0 stub 0 nssa
 Maximum path: 4
 Routing for Networks:
   192.168.2.0 0.0.0.255 area 0
   192.168.3.0 0.0.0.255 area 0
 Routing Information Sources:
                Distance
   Gateway
                                Last Update
   192.168.2.1 110
                                00:03:34
                       110
                                00:03:34
 Distance: (default is 110)
```

OSPF インターフェイス パラメータ

インターフェイスに固有の OSPF パラメータを変更するには、ip ospf インターフェイス コンフィ ギュレーション コマンドを使用します。これらのパラメータを変更する必要はありませんが、一部 のインターフェイス パラメータ(Hello インターバル、デッド インターバル、および認証キー)は、 接続されたネットワーク内のすべてのルータで一致している必要があります。これらのパラメータ を変更する場合は、ネットワーク内のすべてのルータの値に互換性があることを確認してください。

(注)

ip ospf インターフェイス コンフィギュレーション コマンドは、すべて任意です。

OSPF インターフェイス パラメータを変更するには、イネーブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始しま す。
ステップ 2	Router(config)# interface <i>interface-id</i>	インターフェイス コンフィギュレーション モードを開 始し、設定するレイヤ 3 インターフェイスを指定しま す。
ステップ 3	Router(config-if)# ip ospf cost	(任意)インターフェイスでのパケット送信コストを明 示的に指定します。
ステップ 4	Router(config-if)# ip ospf retransmit-interval seconds	(任意)リンクステート アドバタイズメントの送信間隔 を秒単位で指定します。範囲は、1 ~ 65535 秒です。デ フォルト値は、5 秒です。
ステップ 5	Router(config-if)# ip ospf transmit-dela y seconds	(任意)リンク ステート 更新パケットを送信するまでの 待機時間を設定します。範囲は、1 ~ 65535 秒です。デ フォルトは 1 秒です。
ステップ 6	Router(config-if)# ip ospf priority number	(任意)ネットワークの OSPF 指定ルータを決定するた めのプライオリティを設定します。範囲は 0 ~ 255 で す。デフォルトは 1 です。
ステップ 7	Router(config-if)# ip ospf hello-interval seconds	(任意)OSPFインターフェイスで Hello パケットを送信 する間隔を秒単位で設定します。この値は、1 つのネッ トワーク上にあるすべてのノードで統一する必要があ ります。範囲は、1 ~ 65535 秒です。デフォルトは 10 秒 です。
ステップ 8	Router(config-if)# ip ospf dead-interval seconds	(任意)装置の最後の Hello パケットが検出されてから OSPF ルータが停止していることをネイバが宣言するま での時間を秒単位で設定します。この値は、1 つのネッ トワーク上にあるすべてのノードで統一する必要があ ります。範囲は、1 ~ 65535 秒です。デフォルトは、Hello インターバルの4倍です。
ステップ 9	Router(config-if)# ip ospf authentication-key key	(任意)近接 OSPF ルータが使用するパスワードを割り 当てます。このパスワードには、キーボードで入力でき る文字列を 8 バイトの長さまで指定できます。OSPF 情 報を交換するために、同一ネットワーク上のすべての近 接ルータに同じパスワードを指定する必要があります。

	コマンドの説明	目的
ステップ 10	Router(config-if)# ip ospf message digest-key keyid md5 key	(任意)認証をイネーブルにします。
		 keyid 1 ~ 255の識別子
		• key 16 バイトまでの英数字パスワード
ステップ 11	Router(config-if)# ip ospf database-filter all out	(任意)OSPF LSA パケットがインターフェイスにフ ラッディングされるのを防ぎます。デフォルトでは、 OSPF が同じエリア内のすべてのインターフェイス (LSA が到達済みのインターフェイスを除く)に新しい LSA をフラッディングします。
ステップ 12	Router(config-if)# end	イネーブル EXEC モードに戻ります。
ステップ 13	Router# show ip ospf interface [<i>interface-name</i>]	OSPF 関連のインターフェイス情報を表示します。
ステップ 14	Router# copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを 保存します。

設定したパラメータ値を削除する場合、またはデフォルト値に戻す場合は、これらのコマンドの no 形式を使用します。例 11-6 に show ip ospf interface イネーブル EXEC コマンドの出力を示します。

例 11-6 show ip ospf interface イネーブル EXEC コマンドの出力

```
Router# show ip ospf interface
FastEthernet0 is up, line protocol is up
 Internet Address 192.168.3.1/24, Area 0
 Process ID 1, Router ID 192.168.3.1, Network Type BROADCAST, Cost: 1
 Transmit Delay is 1 sec, State DR, Priority 1
  Designated Router (ID) 192.168.3.1, Interface address 192.168.3.1
 No backup designated router on this network
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   Hello due in 00:00:01
  Index 2/2, flood gueue length 0
  Next 0x0(0)/0x0(0)
 Last flood scan length is 0, maximum is 0
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 0, Adjacent neighbor count is 0
  Suppress hello for 0 neighbor(s)
POSO is up, line protocol is up
 Internet Address 192.168.2.2/24, Area 0
  Process ID 1, Router ID 192.168.3.1, Network Type BROADCAST, Cost: 1
 Transmit Delay is 1 sec, State DR, Priority 1
  Designated Router (ID) 192.168.3.1, Interface address 192.168.2.2
  Backup Designated router (ID) 192.168.2.1, Interface address 192.168.2.1
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   Hello due in 00:00:05
  Index 1/1, flood gueue length 0
 Next 0x0(0)/0x0(0)
 Last flood scan length is 2, maximum is 2
  Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 1, Adjacent neighbor count is 1
   Adjacent with neighbor 192.168.2.1 (Backup Designated Router)
  Suppress hello for 0 neighbor(s)
```

OSPF エリア パラメータ

任意で複数の OSPF エリア パラメータを設定できます。これらのパラメータには、エリア、スタブ エリア、および NSSA への不正アクセスを防ぐためにパスワードベースで保護する認証がありま す。スタブ エリアは、外部ルート情報が送信されないエリアです。代わりに、ABR によって AS 外 の宛先について、スタブ エリアへのデフォルトの外部ルートが作成されます。NSSA では、すべて の LSA がコアからエリアにフラッディングされるわけではありませんが、再配布により AS の外部 ルートをエリア内にインポートできます。

経路集約は、アドバタイズされたアドレスを1つのサマリールートに統合し、他のエリアでアドバタイズする機能です。ネットワーク番号が連続している場合は、area range ルータコンフギュレーションコマンドを使用して、ABRを設定し、その範囲内のすべてのネットワークをカバーするサマリールートをアドバタイズできます。

OSPF の area ルータ設定コマンドは、すべてオプションです。

エリアパラメータを設定するには、イネーブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的
7=		
ステッノー	Router# configure terminal	ッローハル コノフィキュレーション モートを開始しま す。
ステップ 2	Router(config)# router ospf process-id	OSPF ルーティングをイネーブルにし、ルータ コンフィ ギュレーション モードを開始します。
ステップ 3	Router(config)# area area-id authentication	(任意)指定したエリアへの不正アクセスに対してパス ワードベースの保護を可能にします。この ID は、10 進 値または IP アドレスです。
ステップ 4	Router(config)# area area-id authentication message-digest	(任意)このエリアで MD5 認証をイネーブルにします。
ステップ 5	Router(config)# area area-id stub [no-summary]	(任意)エリアをスタブ エリアとして定義します。 no-summary キーワードを指定すると、ABR がスタブエ リア内にサマリー リンク アドバタイズメントを送信す るのを防ぐことができます。
ステップ 6	Router(config)# area area-id nssa {no-redistribution default-information-originate no-summary}	(任意)エリアを NSSA として定義します。同一エリア 内のすべてのルータは、このエリアが NSSA であること を認識している必要があります。次のいずれかのキー ワードを指定します。
		 no-redistribution ルータが NSSA ABR であり、 redistribute コマンドを使用して NSSA 以外の通常 のエリア内にルートをインポートする場合に選択 します。
		 default-information-originate ABR で NSSA 内に タイプ 7 の LSA をインポートする場合に選択しま す。
		 no-summary NSSA内にサマリーLSAを送信しない場合に選択します。
ステップ 7	Router(config)# area area-id range address-mask	(任意)アドレスの範囲を指定し、その範囲に1つのルートをアドバタイズします。このコマンドは、ABR だけで使用します。
	コマンドの説明	目的
---------	--	---
ステップ 8	Router(config)# end	イネーブル EXEC モードに戻ります。
ステップ 9	Router# show ip ospf [process-id]	OSPF ルーティング プロセスの全般情報を表示するか、 または、指定したプロセス ID について情報を表示して 確認します。
ステップ 10	Router# copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを 保存します。

設定したパラメータ値を削除する場合、またはデフォルト値に戻す場合は、これらのコマンドの no 形式を使用します。例 11-7 に、show ip ospf database および show ip ospf イネーブル EXEC コマン ドの出力を示します。

例 11-7 show ip ospf database および show ip ospf イネーブル EXEC コマンドの出力

Router# show ip ospf database

OSPF Router with ID (192.168.3.1) (Process ID 1)

Router Link States (Area 0)

Link ID	ADV Router	Age	Seq#	Checksum	Link	count
192.168.2.1	192.168.2.1	428	0x80000003	0x004AB8	2	
192.168.3.1	192.168.3.1	428	0x80000003	0x006499	2	
	Net Link States	(Area O)				
Link ID	ADV Router	Age	Seq#	Checksum		
192.168.2.2	192.168.3.1	428	0x80000001	0x00A4E0		

Router# show ip ospf

Routing Process "ospf 1" with ID 192.168.3.1 Supports only single TOS(TOS0) routes Supports opaque LSA SPF schedule delay 5 secs, Hold time between two SPFs 10 secs Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs Number of external LSA 0. Checksum Sum 0x000000 Number of opaque AS LSA 0. Checksum Sum 0x000000 Number of DCbitless external and opaque AS LSA 0 Number of DoNotAge external and opaque AS LSA 0 Number of areas in this router is 1. 1 normal 0 stub 0 nssa External flood list length 0 Area BACKBONE(0) Number of interfaces in this area is 2 Area has no authentication SPF algorithm executed 4 times Area ranges are Number of LSA 3. Checksum Sum 0x015431 Number of opaque link LSA 0. Checksum Sum 0x000000 Number of DCbitless LSA 0 Number of indication LSA 0 Number of DoNotAge LSA 0 Flood list length 0

OSPF のその他の動作パラメータ

ルータ コンフィギュレーション モードでは、他の OSPF パラメータも任意で設定できます。

- 経路集約 他のプロトコルからのルートを再配布する場合は、各ルートが外部 LSA 内で個別 にアドバタイズされます。OSPF リンク状態データベースのサイズを減らすには、 summary-address ルータ コンフギュレーション コマンドを使用して、指定したネットワーク アドレスとマスクに含まれるすべての再配布ルートについて1つのルータをアドバタイズしま す。
- 仮想リンク OSPFでは、すべてのエリアをバックボーン エリアに接続する必要があります。
 1つの仮想リンクのエンドポイントとして 2 つの ABR を設定することにより、バックボーンの
 導通性が損なわれた場合に仮想リンクを確立できます。設定情報には、他の仮想エンドポイント(他の ABR)の ID、2 つのルータが共通して把握するバックボーン以外のリンク(中継エリア)などが含まれます。スタブエリア経由で仮想リンクを設定することはできません。
- デフォルト ルート OSPF ルーティング ドメイン内にルートの再配布を個別に設定すると、そのルートが自動的に ASBR になります。ASBR によって OSPF ルーティング ドメイン内にデフォルト ルートを強制的に作成できます。
- OSPFのすべての show イネーブル EXEC コマンド表示で Domain Name Server (DNS; ドメイン ネーム サーバ)名を使用すると、ルータ ID またはネイバ ID でルータを表示する場合よりも、 ルータを識別しやすくなります。
- デフォルトのメトリック OSPFは、インターフェイスの帯域幅に基づいてそのインターフェ イスの OSPF メトリックを計算します。このメトリックは、帯域幅で除算された ref-bw として 計算されます。ref のデフォルト値は 10 で、帯域幅(bw)は、bandwidth インターフェイス コ ンフィギュレーション コマンドで判別する値です。高帯域幅を持つ複数のリンクについては、 より大きい数値を指定して、これらのリンクのコストを区別できます。
- 管理距離 ルーティング情報の送信元の信頼性について 0 ~ 255 の整数で評価します。値が 大きいほど、信頼性が低いことを表します。管理距離が 255 の場合は、ルーティング情報の送 信元がまったく信頼できず、無視する必要があります。OSPF では、3 種類の管理距離(エリア 内のルート [intra-area]、他のエリアへのルート [interarea]、および再配布によって学習された他 のルーティングドメインからのルート [external])を使用します。管理距離の値は、どれにでも 変更できます。
- 受動インターフェイス イーサネット上の2つの装置の間にあるインターフェイスは、1つの ネットワーク セグメントだけを表すので、OSPF が送信側インターフェイスに対して Hello パ ケットを送信するのを防ぐには、送信側の装置を受動インターフェイスとして設定する必要が あります。両方の装置は、受信インターフェイス用の Hello パケットで互いを識別できます。
- ルート計算タイマー OSPF がトポロジー変更を受信してから SPF 計算を開始するまでの遅 延時間を設定できます。2つの SPF 計算の間の待機時間も設定できます。
- ネイバ変更のログ OSPF ネイバの状態が変化した場合に Syslog メッセージを送信するよう にルータを設定できます。この場合、ルータの変化を高度なビューで表示できます。

これらの OSPF パラメータを設定するには、イネーブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始しま
		す。
ステップ 2	Router(config)# router ospf process-id	OSPF ルーティングをイネーブルにし、ルータ コンフィ
		ギュレーション モードを開始します。
ステップ 3	Router(config)# summary-address	(任意) 1 つのサマリー ルートだけをアドバタイズする
	address-mask	ように、再配布ルートのアドレスと IP サブネット マス
		クを指定します。

	コマンドの説明	目的
ステップ 4	Router(config)# area area-id virtual-link router-id [hello-interval seconds] [retransmit-interval seconds] [trans] {[authentication-key key] [message-digest-key key-id md5 key]}	(任意)仮想リンクを確立し、そのパラメータを設定します。パラメータの定義については、「OSPF インターフェイス パラメータ」(p.11-14)を参照してください。 仮想リンクのデフォルトについては、表 11-2 を参照してください。
ステップ 5	Router(config)# default-information originate [always] [metric metric-value] [metric-type type-value] [route-map map-name]	(任意)ASBR が強制的に OSPF ルーティング ドメイン 内にデフォルト ルートを作成します。 パラメータは、す べて任意です。
ステップ 6	Router(config)# ip ospf name-lookup	(任意)DNS 名検索を設定します。デフォルトではディ セーブルに設定されています。
ステップ 7	Router(config)# ip auto-cost reference-bandwidth <i>ref-bw</i>	(任意)アドレスの範囲を指定し、その範囲に 1 つのルー トをアドバタイズします。このコマンドは、ABR だけ で使用します。
ステップ 8	Router(config)# distance ospf {[inter-area dist1] [inter-area dist2] [external dist3]}	(任意) OSPF の距離の値を変更します。各ルート タイ プのデフォルトの距離は 110 です。指定できる範囲は 1 ~ 255 です。
ステップ 9	Router(config)# passive-interface type number	(任意)指定したインターフェイス経由での Hello パケッ トの送信を停止します。
ステップ 10	Router(config)# timers spf spf-delay spf-holdtime	 (任意)ルート計算タイマーを設定します。 spf-holdtime 0 ~ 65535の整数を入力します。デフォルトは5秒です。値0は、遅延させないことを表します。 spf-holdtime 0 ~ 65535の整数を入力します。デフォルトは10秒です。値0は、遅延させないことを表します。
ステップ 11	Router(config)# ospf log-adj-changes	(任意)ネイバの状態が変化した場合に、Syslog メッセー ジを送信します。
ステップ 12	Router(config)# end	イネーブル EXEC モードに戻ります。
ステップ 1 3	Router# show ip ospf [process-id [area-id]] database	指定したルータの OSPF データベースに関連する情報 のリストを表示します。一部のキーワード オプション については、「OSPF のモニタリング」(p.11-21)を参照 してください。
ステップ 14	Router# copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを 保存します。

LSA グループ ペーシングの変更

OSPF の LSA グループ ペーシング機能では、ルータをより効率的に使用できるように、ルータに よって OSPF LSA がグループ化され、更新機能、チェックサム機能、およびエージング機能の発生 頻度が設定されます。この機能は、デフォルトでイネーブルになっています。デフォルトのペーシ ング間隔は4分ですが、通常は、このパラメータを変更する必要はありません。最適なグループ ペーシング間隔は、ルータが更新、チェックサム、およびエージングを行う LSA の数に反比例し ます。たとえば、データベースに約10,000 個の LSA があるような場合は、ペーシング間隔の値を 減らすと、より効率化できます。データベースのサイズが非常に小さい場合(LSA 数が40 ~ 100 の場合)は、ペーシング間隔の値を10 ~ 20分に増やすと、やや効率化されます。

OSPF LSA ペーシングを設定するには、イネーブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始しま
		す。
ステップ 2	Router(config)# router ospf process-id	OSPF ルーティングをイネーブルにし、ルータ コンフィ
		ギュレーション モードを開始します。
ステップ 3	Router(config)# timers lsa-group-pacing seconds	LSA のグループ ペーシングを変更します。
ステップ 4	Router(config)# end	イネーブル EXEC モードに戻ります。
ステップ 5	Router# show running-config	エントリを確認します。
ステップ 6	Router# copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを 保存します。

デフォルト値に戻すには、no timers Isa-group-pacing ルータ コンフィギュレーション コマンドを使用します。

ループバック インターフェイス

OSPFでは、インターフェイスに設定されている最も数値の高い IP アドレスをルータ ID として使用します。このインターフェイスが故障したり、取り外されたりした場合は、OSPF のプロセスで新しいルータ ID を再計算し、インターフェイスからすべてのルーティング情報を再送する必要があります。IP アドレスを使用してループバック インターフェイスを設定した場合、OSPF はこの IP アドレスをルータ ID として使用します。他のインターフェイスがより数値の高い IP アドレスを 持っている場合でも同様です。ループバック インターフェイスで障害が発生することはないので、この方法により安定性が向上します。OSPF では、他のインターフェイスよりループバック イン ターフェイスが自動的に優先され、すべてのループバック インターフェイスの中で最も数値の高い IP アドレスを持つループバック インターフェイスが選択されます。

ループバック インターフェイスを設定するには、イネーブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始しま
		す。
ステップ 2	Router(config)# interface loopback 0	ループバック インターフェイスを作成し、インター
		フェイス コンフィギュレーション モードを開始しま
		す。
ステップ 3	Router(config)# ip address address mask	このインターフェイスに IP アドレスを割り当てます。
ステップ 4	Router(config)# end	イネーブル EXEC モードに戻ります。
ステップ 5	Router# show ip interface	エントリを確認します。
ステップ 6	Router# copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを
		保存します。

ループバック インターフェイスをディセーブルにするには、no interface loopback 0 グローバル コ ンフィギュレーション コマンドを使用します。

OSPF のモニタリング

IP ルーティング テーブル、キャッシュ、およびデータベースの内容など、特定の統計を表示できます。

表 11-3 に統計を表示するためのイネーブル EXEC コマンドの一部をリストします。show ip ospf database イネーブル EXEC コマンド オプションとコマンド出力内のフィールドの詳細については、 *『Cisco IOS IP and IP Routing Command Reference』*を参照してください。

表 11-3 Show IP OSPF 統計コマンド

コマンドの説明	目的
<pre>Router(config) # show ip ospf [process-id]</pre>	OSPF ルーティング プロセスの全般情報を表示 します。
<pre>Router(config)# show ip ospf [process-id] database [router] [link-state-id]</pre>	OSPF データベース関連情報のリストを表示し ます。
Router(config)# show ip ospf border-routes	内部 OSPF ルーティング ABR テーブルおよび ASBR テーブルのエントリを表示します。
Router(config)# show ip ospf interface [interface-name]	OSPF 関連のインターフェイス情報を表示しま す。
Router(config)# show ip ospf neighbor [interface-name] [neighbor-id] detail	OSPF インターフェイスのネイバ情報を表示し ます。
Router(config)# show ip ospf virtual-links	OSPF 関連の仮想リンク情報を表示します。

EIGRP の設定

EIGRP は、Interior Gateway Routing Protocol (IGRP)をシスコが独自に拡張したバージョンです。 EIGRPでは、IGRPと同じディスタンスベクタアルゴリズムと距離情報を使用していますが、EIGRP のコンバージェンスのプロパティと運用効率は、大きく向上しました。

コンバージェンス テクノロジーでは、Diffusing Update Algorithm (DUAL; 拡散更新アルゴリズム) というアルゴリズムを採用しています。このアルゴリズムでは、ルート計算中は常にループしない ことが保証されており、トポロジー変更に関係するすべての装置を同時に同期させることができま す。トポロジー変更の影響を受けないルータは、再計算に関係しません。

IP EIGRP によりネットワークの規模が拡大します。RIP では、ネットワークの最大幅は、15 ホップ でした。IGRP をイネーブルにすると、最大 224 ホップが可能です。EIGRP メトリックでは数千ホッ プがサポートされるので、ネットワークを拡大する場合の唯一の障害は、トランスポート層のホッ プカウントになります。EIGRP では、IP パケットが 15 個のルータを経由したあと、EIGRP が宛先 までのネクスト ホップを学習している場合だけに、転送制御フィールドの値が増加します。宛先ま でのネクスト ホップとして RIP ルートが使用された場合は、転送制御フィールドの値が通常どおり に増加します。

EIGRP には、次の機能があります。

- 高速コンバージェンス
- 宛先の状態が変化した場合の差分更新。ルーティング テーブルの内容全体を送信する代わりに、EIGRPパケットに必要な帯域幅を最小限に抑えます。
- IGRP より低い CPU 使用率(完全に更新されたパケットは、受信するたびに処理する必要がないため)
- プロトコルに関係なく、近接ルータ情報を学習するネイバ検出メカニズム
- Variable-Length Subnet Mask (VLSM; 可変長サブネット マスク)

- 任意の経路集約
- EIGRP による大規模ネットワークへの拡大

EIGRPには、次の4つの基本的なコンポーネントがあります。

- ネイバ検出および回復は、ルータが、直接接続されたネットワーク上の他のルータについて動的に学習するために使用するプロセスです。ルータは、ネイバが到達不能または動作不能になった場合も検出できる必要があります。ネイバ検出および回復機能では、定期的に少量のHelloパケットを送信するだけなので、オーバーヘッドが少なくてすみます。Cisco IOS ソフトウェアでは、Helloパケットを受信している限り、ネイバが機能しているものと判断されます。この状態にあると判断された場合、近接ルータはルーティング情報を交換できます。
- ・高信頼性転送プロトコルにより、すべてのネイバに EIGRP パケットを確実に順序どおりに転送できます。マルチキャスト パケットとユニキャスト パケットが混在している場合でも転送が可能です。EIGRP パケットには、確実に送信する必要があるパケットとその必要がないパケットがあります。効率化するために、必要な場合に限って信頼性を確保します。たとえば、マルチアクセスネットワークにはマルチキャスト機能(イーサネットなど)がありますが、すべてのネイバに Hello パケットを確実に送信する必要はありません。そのため、EIGRP では、マルチキャスト Hello パケットを確実に送信する必要はありません。そのため、EIGRP では、マルチキャスト Hello パケットを1 つ送信し、そのパケット内でそのパケットの確認応答が必要なので、パケット内でそのことを通知します。転送の信頼性を確保するには、確認応答を受信していないパケットがある場合に、すぐにマルチキャスト パケットを送信するように設定します。この方法により、速度が異なるリンクがある場合にも、コンバージェンス時間を短く抑えることができます。
- DUAL 有限状態マシンは、すべてのルート計算を決定するプロセスです。このプロセスは、すべてのネイバからアドバタイズされたすべてのルートをトラッキングします。DUAL は、距離情報(メトリック)を使用して、効率がいいループフリー パスを選択します。また、DUAL は、サクセサ候補に基づいて、ルーティングテーブルに挿入するルートを選択します。サクセサとは、パケット転送に使用する近接ルータを指します。サクセサとなる近接ルータは、宛先までの最短コスト パスが設定されていて、ルーティング ループに関与しないことが保証されています。サクセサ候補がないにもかかわらず、ネイバが宛先をアドバタイズしている場合は、再計算が必要です。新しいサクセサは、このような方法で決定されます。ルートの再計算時間は、コンバージェンス時間に影響します。再計算には、大量のプロセッサ リソースが集中的に必要なので、できるだけ再計算しない方が便利です。トポロジー変更が発生すると、DUAL によってサクセサ候補がテストされます。サクセサ候補が検出されると、不必要な再計算を避けるために、その候補が使用されます。
- プロトコル依存型モジュールは、ネットワーク層プロトコル固有のタスクを実行します。この タイプのモジュールの例として、IP にカプセル化された EIGRP パケットを送受信する IP EIGRP モジュールがあげられます。このモジュールは、EIGRP パケットの解析、および新着情 報の DUAL への通知も処理します。EIGRP は、DUAL にルーティングを決定するように要求し ますが結果は IP ルーティング テーブルに保存されます。EIGRP は、他の IP ルーティング プロ トコルが学習したルートも再配布します。

表 11-4 にデフォルトの EIGRP 設定を示します。

表 11-4 EIGRP のデフォルト設定

機能	デフォルト設定
自動サマリー	イネーブル。サブプレフィックスは、全クラスを使用したネット ワーク境界を通過するときに、そのネットワーク境界に集約され ます。
デフォルト情報	外部ルートが許可され、再配布時に IGRP プロセスまたは EIGRP プロセスの間でデフォルトの情報が渡されます。

表 11-4	EIGRP	のデフォ	ルト設定・	(続き))
--------	-------	------	-------	------	---

機能	デフォルト設定	
デフォルトのメトリック	デフォルトのメトリックを使用せずに、接続されたルートとイン ターフェイスのスタティックルートだけを再配布できます。この メトリックには、次の情報が含まれています。	
	• 帯域幅:0 Kbps 以上	
	• 遅延(10マイクロ秒単位):0、または39.1ナノ秒の倍数であ る正数	
	 信頼性:0~255の任意の数値(255は信頼性100%) 	
	 ロード:有効帯域幅。0 ~ 255の任意の数値(255 はロード 100%) 	
	 MTU: ルートの最大伝送ユニット サイズ(バイト単位).0または正の整数 	
距離	内部距離:90	
	外部距離:170	
EIGRP 近隣ルータの変更ログ	ディセーブル。隣接関係の変更はログに記録されません。	
IP 認証キーチェーン		
IP 認証モード	認証なし	
IP 帯域幅(%)	50 %	
IP Hello 間隔	低速 Nonbroadcast Multiaccess (NBMA)ネットワークの場合は 60 秒、その他のネットワークの場合は 5 秒	
IP 待機時間	低速 NBMA ネットワークの場合は 180 秒、他のすべてのネット ワークの場合は 15 秒	
IP スプリット ホライズン	イネーブル	
IP サマリー アドレス	サマリー集約アドレスは未定義	
メトリックの重み	tos : 0	
	k1 および k3:1	
	k2、k4、および k5:0	
ネットワーク	未指定	
オフセットリスト	ディセーブル	
ルータ EIGRP	ディセーブル	
メトリック設定	ルート マップでのメトリックは未設定	
トラフィック共有	メトリックの割合に比例して分散	
分散	1 (等コスト ロード バランシング)	

EIGRP ルーティング プロセスを作成するには、EIGRP をイネーブルにして、ネットワークを関連 付けます。EIGRP は、指定されたネットワークのインターフェイスに更新情報を送信します。イン ターフェイスのネットワークを指定しない場合は、EIGRP の更新情報でアドバタイズされません。

EIGRP ルータ モード コマンド

EIGRP を設定するには、イネーブル EXEC モードで次の手順を実行します。ルーティング プロセスの設定は必須ですが、それ以外は任意です。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始しま す。
ステップ 2	Router(config)# router eigrp autonomous-system-number	EIGRP ルーティング プロセスをイネーブルにし、ルー タ コンフィギュレーション モードを開始します。AS 番 号により他の EIGRP ルータへのルートが指定されま す。この番号は、ルーティング情報のタグ付けに使用さ れます。
ステップ 3	Router(config)# network network-number	ネットワークを EIGRP ルーティング プロセスに関連付 けます。EIGRP は、指定されたネットワークのインター フェイスに更新情報を送信します。インターフェイスの ネットワークを指定していない場合は、IGRP または EIGRP の更新情報でアドバタイズされません。
ステップ 4	Router(config)# eigrp log-neighbor-changes	(任意)EIGRP ネイバ変更のログをイネーブルにし、ルー ティング システムの安定性をモニタリングします。
ステップ 5	Router(config)# metric weights tos k1 k2 k3 k4 k5	 (任意) EIGRP メトリックを調整します。デフォルト値は、ほとんどのネットワークで効率的に運用できるように慎重に決定されていますが、カスタマイズすることもできます。 <u> </u>
		スタる場合は、
ステップ 6	<pre>Router(config)# offset list [{access-list-number name}] { in out } offset[type-number]</pre>	(任意)オフセット リストをルーティング メトリックに 適用し、EIGRP 経由で学習したルートに着信と発信の メトリックを増やします。オフセット リストをアクセ ス リストやインターフェイスで制限できます。
ステップ 7	Router(config)# no auto-summary	(任意) ネットワークレベルのルートへのサプネット ルートの自動サマリーをディセーブルにします。
ステップ 8	Router(config)# ip summary-address eigrp autonomous-system-number address-mask	(任意)サマリー集約を設定します。
ステップ 9	Router(config)# end	イネーブル EXEC モードに戻ります。
ステップ 10	Router# show ip protocols	エントリを確認します。
ステップ 11	Router# copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを 保存します。

この機能をディセーブルにする場合、またはデフォルト値に戻す場合は、これらのコマンドの no 形式を使用します。例 11-8 に show ip protocols イネーブル EXEC コマンドの出力を示します。 例 11-8 show ip protocols イネープル EXEC コマンドの出力 (EIGRP の場合)

Router# show ip protocols Routing Protocol is "eigrp 1" Outgoing update filter list for all interfaces is not set Incoming update filter list for all interfaces is not set Default networks flagged in outgoing updates Default networks accepted from incoming updates EIGRP metric weight K1=1, K2=0, K3=1, K4=0, K5=0 EIGRP maximum hopcount 100 EIGRP maximum metric variance 1 Redistributing: eigrp 1 Automatic network summarization is in effect Automatic address summarization: 192.168.3.0/24 for POS0 192.168.2.0/24 for FastEthernet0 Maximum path: 4 Routing for Networks: 192.168.2.0 192.168.3.0 Routing Information Sources: Distance Gateway Last Update 00:03:16 192.168.2.1 90 Distance: internal 90 external 170

EIGRP インターフェイス モード コマンド

他の任意の EIGRP パラメータは、インターフェイス ベースで設定できます。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始しま す.
ステップ 2	Router(config)# interface <i>interface-id</i>	インターフェイス コンフィギュレーション モードを開 始し、設定するレイヤ 3 インターフェイスを指定しま す。
ステップ 3	Router(config)# ip bandwidth-percent eigrp autonomous-system-number percent	(任意)インターフェイスで EIGRP に使用できる帯域幅 の最大パーセンテージを設定します。デフォルトは 50 % です。
ステップ 4	Router(config)# ip summary-address eigrp autonomous-system-number address mask	(任意)指定したインターフェイスについて、サマリー 集約アドレスを設定します(自動サマリーをイネーブル にしている場合は、通常不要)。
ステップ 5	Router(config)# ip hello-interval eigrp autonomous-system-number seconds	(任意)EIGRP ルーティング プロセスの Hello 時間間隔 を変更します。範囲は、1 ~ 65535 秒です。低速 NBMA ネットワークのデフォルトは 60 秒、他のすべてのネッ トワークのデフォルトは 5 秒です。
ステップ 6	Router(config)# ip hold-time eigrp autonomous-system-number seconds	 (任意)EIGRP ルーティングプロセスの待機時間間隔を変更します。範囲は、1 ~ 65535 秒です。低速 NBMAネットワークのデフォルトは 180 秒、他のすべてのネットワークのデフォルトは 15 秒です。 <u> </u>

イネーブル EXEC モードを開始し、次の手順を実行します。

	コマンドの説明	目的
ステップ 7	Router(config)# no ip split-horizon eigrp autonomous-system-number	(任意) スプリット ホライズンをディセーブルにし、 ルート情報を発信したインターフェイス上にあるルー タがそのルート情報をアドバタイズできるようにしま す。
ステップ 8	Router# end	イネーブル EXEC モードに戻ります。
ステップ 9	Router# show ip eigrp interface	EIGRP がアクティブなインターフェイスとこれらのイ ンターフェイスに関する EIGRP 情報を表示します。
ステップ 10	Router# copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを 保存します。

この機能をディセーブルにする場合、またはデフォルト値に戻す場合は、これらのコマンドの no 形式を使用します。例 11-9 に show ip eigrp interface イネーブル EXEC コマンドの出力を示します。

例 11-9 show ip eigrp interface イネーブル EXEC コマンドの出力

Router# **show ip eigrp interface** IP-EIGRP interfaces for process 1

		Xmit Queue	Mean	Pacing Time	Multicast	Pending
Interface	Peers	Un/Reliable	SRTT	Un/Reliable	Flow Timer	Routes
POO	1	0/0	20	0/10	50	0
Fa0	0	0 / 0	0	0/10	0	0

EIGRP ルート認証の設定

EIGRP のルート認証では、EIGRP ルーティング プロトコルからのルーティング更新を MD5 認証 し、承認されていない送信元から権限がないルーティング メッセージや不正ルーティング メッ セージを受信するのを防ぐことができます。

認証をイネーブルにするには、イネーブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的			
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始しま			
		す。			
ステップ 2	Router(config)# interface interface-id	インターフェイス コンフィギュレーション モードを開			
		始し、設定するレイヤ3インターフェイスを指定しま			
		す。			
ステップ 3	Router(config-if)# ip authentication mode eigrp autonomous-system-number md5	IP EIGRP パケットで MD5 認証をイネーブルにします。			
ステップ 4	Router(config-if)# ip authentication key-chain eigrp autonomous-system-number key-chain	IP EIGRP パケットの認証をイネーブルにします。			
ステップ 5	Router(config-if)# exit	グローバル コンフィギュレーション モードに戻りま す。			
ステップ 6	Router(config)# key chain name-of-chain	キーチェーンを指定し、キーチェーン コンフィギュ レーション モードを開始します。ステップ 4 で設定し た名前を指定します。			
ステップ 7	Router(config-keychain)# key number	キーチェーン コンフィギュレーション モードで、キー 番号を指定します。			

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

	コマンドの説明	目的
ステップ 8	Router(config-keychain)# key-string text	キーチェーンのキー コンフィギュレーション モード
ステップ 9	Router(config-keychain-key)# accept-lifetime start-time {infinite end-time duration seconds}	 で、キー文字列を指定します。 (任意)キーを受信できる期間を指定します。 start-time と end-time の構文には、hh:mm:ss Month date year または hh:mm:ss date Month year のいずれかを使用 します。デフォルトの start-time (および指定可能な最 も古い日付)は、1993年1月1日です。デフォルトの
ステップ 10	Router(config-keychain-key)# send-lifetime start-time { infinite end-time duration seconds}	end-time と duration に制限はありません。 (任意)キーを送信できる期間を指定します。 start-time と end-time の構文には、hh:mm:ss Month day year または hh:mm:ss day Month year のいずれかを指定しま す。デフォルトの start-time (および指定可能な最も古 い日付)は、1993年1月1日です。デフォルトの end-time と duration に制限はありません。
ステップ 11	Router(config)# end	イネーブル EXEC モードに戻ります。
ステップ 12	Router# show key chain	認証キー情報を表示します。
ステップ 13	Router# copy running-config startup-config	(任意)コンフィギュレーション ファイルにエントリを 保存します。

機能をディセーブルにするか、または設定値をデフォルトに戻す場合は、これらのコマンドの no 形式を指定します。

EIGRP のモニタリングとメンテナンス

ネイバテーブルからネイバを削除できます。各種の EIGRP ルーティング統計情報も表示できます。 表 11-5 に、ネイバを削除して統計情報を表示するイネーブル EXEC コマンドを示します。コマン ド出力のフィールドの詳細については、『*Cisco IOS IP and IP Routing Command Reference*』を参照し てください。

表 11-5 IP EIGRP の Clear コマンドと Show コマンド

コマンドの説明	目的
Router# clear ip eigrp neighbors { <i>ip-address</i> <i>interface</i> }	ネイバ テーブルからネイバを削除します。
Router# show ip eigrp interface [<i>interface</i>] [<i>as-number</i>]	EIGRP に設定したインターフェイスの情報 を表示します。
Router# show ip eigrp neighbors [type-number]	EIGRP で検出されたネイバを表示します。
Router# show ip eigrp topology {autonomous-system-number [ip-address] mask}	特定のプロセスについて EIGRP トポロ ジーテーブルを表示します。
Router# show ip eigrp traffic [autonomous-system-number]	すべての EIGRP プロセス、または指定した EIGRP プロセスについて送受信されたパ ケットの数を表示します。

例 11-10 に show ip eigrp interface イネーブル EXEC コマンドの出力を示します。

例 11-11 に show ip eigrp neighbors イネーブル EXEC コマンドの出力を示します。

例 11-12 に show ip eigrp topology イネーブル EXEC コマンドの出力を示します。

例 11-13 に show ip eigrp traffic イネーブル EXEC コマンドの出力を示します。

例 11-10 show ip eigrp interface イネープル EXEC コマンドの出力

Router# **show ip eigrp interface** IP-EIGRP interfaces for process 1

		Xmit Queue	Mean	Pacing Time	Multicast	Pending
Interface	Peers	Un/Reliable	SRTT	Un/Reliable	Flow Timer	Routes
POO	1	0/0	20	0/10	50	0
Fa0	0	0/0	0	0/10	0	0

例 11-11 show ip eigrp neighbors イネーブル EXEC コマンドの出力

Router# show ip eigrp neighbors IP-EIGRP neighbors for process 1 H Address Interface Hold Uptime SRTT RTO Q Seq Type (sec) (ms) Cnt Num 0 192.168.2.1 PO0 13 00:08:15 20 200 0 2

例 11-12 show ip eigrp topology イネーブル EXEC コマンドの出力

```
Router# show ip eigrp topology
IP-EIGRP Topology Table for AS(1)/ID(192.168.3.1)
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
    r - reply Status, s - sia Status
P 192.168.1.0/24, 1 successors, FD is 30720
    via 192.168.2.1 (30720/28160), POS0
P 192.168.2.0/24, 1 successors, FD is 10752
    via Connected, POS0
P 192.168.3.0/24, 1 successors, FD is 28160
    via Connected, FastEthernet0
```

例 11-13 show ip eigrp traffic イネーブル EXEC コマンドの出力

```
Router# show ip eigrp traffic

IP-EIGRP Traffic Statistics for process 1

Hellos sent/received: 273/136

Updates sent/received: 5/2

Queries sent/received: 0/0

Replies sent/received: 0/0

Acks sent/received: 1/2

Input queue high water mark 1, 0 drops

SIA-Queries sent/received: 0/0

SIA-Replies sent/received: 0/0
```

BGP と CIDR

Border Gateway Protocol (BGP)は、AS 間でループフリーなルーティング情報交換を自動的に保証 するようにドメイン間のルーティング システムをセットアップするための Exterior Gateway Protocol (EGP; 外部ゲートウェイ プロトコル)です。BGP では、各ルートが、ネットワーク番号、 情報が通過した AS (AS パス)のリスト、および他のパス属性のリストで構成されます。

レイヤ 3 のスイッチングでは、Classless Interdomain Routing (CIDR)を含む BGP バージョン 4 がサ ポートされます。CIDR では、集約ルートを作成してスーパーネットにすることで、ルーティング テーブルのサイズを減らすことができます。CIDR により、BGP 内のネットワーク クラスの概念が 取り除かれ、IP プレフィックスのアドバタイズがサポートされます。CIDR のルートは、OSPF、 EIGRP、および RIP で伝送されます。

BGP の設定

BGP ルーティングを設定するには、グローバル コンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的			
ステップ 1	Router(config)# ip routing	IP ルーティングをイネーブルにします (デフォル			
		۲),			
ステップ 2	Router(config)# router bgp autonomous-system	BGP をルーティング プロトコルとして定義して、			
		BGP ルーティング プロセスを開始します。			
ステップ 3	Router(config-router)# network network-number	ネットワークがこの AS に対してローカルであるこ			
	[mask network-mask] [route-map	とを表すフラグを設定し、BGP テーブルにそのフラ			
		グを追加します。			
ステップ 4	Router(config-router)# end	イネーブル EXEC モードに戻ります。			

例 11-14 に BGP ルーティングの設定例を示します。

例 11-14 BGP ルーティングの設定

Router(config)# ip routing
Router(config)# router bgp 30
Router(config-router)# network 192.168.1.1
Router(config-router)# neighbor 192.168.2.1
Router(config-router)# end

BGP ルーティング設定の詳細については、『*Cisco IOS IP and IP Routing Configuration Guide*』の「Configuring BGP」の章を参照してください。

BGP 設定の確認

表 11-6 に BGP 設定を表示するための共通 EXEC コマンドの一部を示します。また、例 11-15 に表 11-6 でリストされたコマンドの出力を示します。

コマンドの説明	目的		
Router# show ip protocols [summary]	プロトコル設定を表示します。		
Router# show ip bgp neighbor	各ネイバへの BGP 接続と TCP 接続の詳細情報を表示します。		
Router# show ip bgp summary	すべての BGP 接続のステータスを表示します。		
Router# show ip bgp	BGP ルーティング テーブルの内容を表示します。		

表 11-6 BGP の Show コマンド

例 11-15 BGP 設定情報 Router# show ip protocols Routing Protocol is "bgp 1" Outgoing update filter list for all interfaces is not set Incoming update filter list for all interfaces is not set IGP synchronization is enabled Automatic route summarization is enabled Redistributing: connected Neighbor(s): Address FiltIn FiltOut DistIn DistOut Weight RouteMap 192.168.2.1 Maximum path: 1 Routing for Networks: Routing Information Sources: Gateway Distance Last Update Distance: external 20 internal 200 local 200 Router# show ip bgp neighbor BGP neighbor is 192.168.2.1, remote AS 1, internal link BGP version 4, remote router ID 192.168.2.1 BGP state = Established, up for 00:08:46 Last read 00:00:45, hold time is 180, keepalive interval is 60 seconds Neighbor capabilities: Route refresh: advertised and received(new) Address family IPv4 Unicast: advertised and received Received 13 messages, 0 notifications, 0 in queue Sent 13 messages, 0 notifications, 0 in queue Route refresh request: received 0, sent 0 Default minimum time between advertisement runs is 5 seconds For address family: IPv4 Unicast BGP table version 3, neighbor version 3 Index 1, Offset 0, Mask 0x2 2 accepted prefixes consume 72 bytes Prefix advertised 2, suppressed 0, withdrawn 0 Number of NLRIs in the update sent: max 2, min 0 Connections established 1; dropped 0 Last reset never Connection state is ESTAB, I/O status: 1, unread input bytes: 0 Local host: 192.168.2.2, Local port: 179 Foreign host: 192.168.2.1, Foreign port: 11001 Enqueued packets for retransmit: 0, input: 0 mis-ordered: 0 (0 bytes) Event Timers (current time is 0x45B7B4): Timer Starts Wakeups Next 13 Retrans 0 0×0 TimeWait 0 0 0×0 9 13 0×0 AckHold SendWnd 0 0 0×0 0 0 KeepAlive 0×0 GiveUp 0 0 0x0PmtuAger 0 0 0×0 DeadWait 0 0 0x0 iss: 3654396253 snduna: 3654396567 sndnxt: 3654396567 sndwnd: 16071 irs: 3037331955 rcvnxt: 3037332269 rcvwnd: 16071 delrcvwnd: SRTT: 247 ms, RTTO: 663 ms, RTV: 416 ms, KRTT: 0 ms minRTT: 4 ms, maxRTT: 300 ms, ACK hold: 200 ms Flags: passive open, nagle, gen tcbs Datagrams (max data segment is 1460 bytes): Rcvd: 15 (out of order: 0), with data: 13, total data bytes: 313 Sent: 22 (retransmit: 0), with data: 12, total data bytes: 313

Router# show ip bgp summary

313

BGP router identifier 192.168.3.1, local AS number 1 BGP table version is 3, main routing table version 3 3 network entries and 4 paths using 435 bytes of memory 2 BGP path attribute entries using 120 bytes of memory 0 BGP route-map cache entries using 0 bytes of memory 0 BGP filter-list cache entries using 0 bytes of memory BGP activity 3/6 prefixes, 4/0 paths, scan interval 60 secs V Neighbor AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd 192.168.2.1 4 1 14 14 3 0 0 00:09:45 2 Router# show ip bgp BGP table version is 3, local router ID is 192.168.3.1 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal Origin codes: i - IGP, e - EGP, ? - incomplete Network Next Hop Metric LocPrf Weight Path * i192.168.1.0 192.168.2.1 0 100 0 2 * i192.168.2.0 192.168.2.1 0 100 0 ? *> 0.0.0.0 0 32768 ? *> 192.168.3.0 32768 ? 0.0.0.0 0

IS-IS の設定

Intermediate System-to-Intermediate System (IS-IS) ルーティングを設定するには、グローバル コン フィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# router isis [tag]	IS-IS を IP ルーティング プロトコルとして定義します。
ステップ 2	Router(config-router)# net network-entity-title	ルーティング プロセスについて Network Entity Title (NET)を設定します。NET には、名前とアドレスを指 定できます。
ステップ 3	Router(config-router)# interface <i>interface-type interface-id</i>	インターフェイス コンフィギュレーション モードを開 始します。
ステップ 4	Router(config-if)# ip address <i>ip-address mask</i>	このインターフェイスに IP アドレスを割り当てます。
ステップ 5	Router(config-if)# ip router isis [<i>tag</i>]	このインターフェイスで IS-IS を実行することを指定し ます。
ステップ 6	Router(config-if)# end	イネーブル EXEC モードに戻ります。

例 11-16 に IS-IS ルーティングの設定例を示します。

例 11-16 IS-IS ルーティングの設定

```
Router(config)# router isis
Router(config-router)# net 49.0001.0000.0000.000a.00
Router(config-router)# interface gigabitethernet 0
Router(config-if)# ip router isis
Router(config-if)# end
```

IS-IS ルーティング設定の詳細については、『*Cisco IOS IP and IP Routing Configuration Guide*』の「Configuring Integrated IS-IS」の章を参照してください。

IS-IS 設定の確認

IS-IS 設定を確認するには、表 11-7 に示した EXEC コマンドを使用します。例 11-17 に表 11-7 のコ マンドとその出力の例を示します。

表 11-7 IS-IS の Show コマンド

コマンドの説明	目的
Router# show ip protocols [summary]	プロトコル設定を表示します。
Router# show isis database	IS-IS リンク状態データベースを表示します。
Router# show clns neighbor	ES と IS のネイバを表示します。

ML シリーズでは、Connectionless Network Service (CLNS; コネクションレス型ネットワーク サービス)プロトコルのルーティングがサポートされません。

例 11-17 IS-IS の設定

```
Router# show ip protocols
Routing Protocol is "isis"
 Invalid after 0 seconds, hold down 0, flushed after 0
 Outgoing update filter list for all interfaces is not set
 Incoming update filter list for all interfaces is not set
 Redistributing: isis
 Address Summarization:
   None
 Maximum path: 4
 Routing for Networks:
   FastEthernet0
   POS0
 Routing Information Sources:
                Distance
115
                                 Last Update
   Gatewav
    192.168.2.1
                                 00:06:48
 Distance: (default is 115)
```

Router# show isis database

IS-IS Level-1 Link State Database: LSP Seq Num LSP Checksum LSP Holdtime LSPID ATT/P/OL Router_A.00-00 0x0000003 0xA72F 581 0/0/0 0x00000001 0xA293 0x00000004 0x79F9 Router_A.02-00 581 0/0/0 * 0x0000004 Router.00-00 582 0/0/0 IS-IS Level-2 Link State Database: LSPTD LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL Router_A.00-00 589 0x0000004 0xF0D6 0/0/0 0x0000001 0x328C 0x0000004 0x6A09 Router_A.02-00 581 0/0/0 Router.00-00 * 0x0000004 586 0/0/0

Router# show clns neighbors

System	Id	Interface	SNPA	State	Holdtime	Туре	Protocol
Router_2	A	POO	0005.9a39.6790	Up	7	L1L2	IS-IS

スタティック ルートの設定

スタティック ルートは、ユーザが定義するルートです。パケットは、ユーザが指定したパスを通っ て、送信元と宛先の間で移動します。スタティック ルートは、ルータが特定の宛先までのルートを 作成できない場合に重要になります。また、最終手段としてゲートウェイを指定し、ルーティング できないパケットをすべてそのゲートウェイに送信する場合にも便利です。

スタティックルートを設定するには、イネーブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的				
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始しま				
		す。				
ステップ 2	Router(config)# ip route prefix mask	スタティック ルートを設定します。例 11-18 に例を示し				
	{ address interface } [distance]	ます。				
ステップ 3	Router(config)# end	イネーブル EXEC モードに戻ります。				
ステップ 4	Router# copy running-config startup-config	(任意)コンフィギュレーション ファイルにエントリを				
		保存します。				

例 11-18 スタティック ルート

Router(config)# ip route 0.0.0.0 0.0.0.0 192.168.2.1

スタティック ルートを削除するには、no ip route *prefix mask* {*address* | *interface*} グローバル コン フィギュレーション コマンドを使用します。スタティック IP ルートの情報を表示するには、show ip routes イネーブル EXEC コマンドを使用します (例 11-19)。

例 11-19 show ip route イネーブル EXEC コマンドの出力(スタティック ルートを設定した場合)

```
Router# show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
Gateway of last resort is 192.168.2.1 to network 0.0.0.0C 192.168.2.0/24 is directly connected, POS0
C 192.168.3.0/24 is directly connected, FastEthernet0
```

S* 0.0.0.0/0 [1/0] via 192.168.2.1

show ip route イネーブル EXEC コマンドの出力では、ルーティング プロトコルのコードが表示されます。表 11-8 に、これらのルーティング プロトコルに関するデフォルトの管理距離を示します。

ルートソース	デフォルトの距離
接続されたインターフェイス	0
スタティック ルート	1
EIRGP サマリー ルート	5
外部 BGP	20
内部 EIGRP	90
OSPF	110

表 11-8 ルーティング プロトコルのデフォルトの管理距離

ルートソース	デフォルトの距離
RIP	120
外部 EIGRP	170
内部 BGP	200
不明	225

表 11-8 ルーティング プロトコルのデフォルトの管理距離 (続き)

スタティック ルートのモニタリング

スタティック ルートの統計情報を表示するには、show ip route コマンドを使用します (例 11-20)。 show ip イネーブル EXEC コマンドのオプションとコマンド出力内のフィールドの詳細については、 『Cisco IOS IP and IP Routing Command Reference』を参照してください。

例 11-20 show ip route コマンドの出力 (スタティック ルートを設定した場合)

Router# show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area * - candidate default, U - per-user static route, o - ODR P - periodic downloaded static route Gateway of last resort is 192.168.2.1 to network 0.0.0.0

- С 192.168.2.0/24 is directly connected, POSO
- 192.168.3.0/24 is directly connected, FastEthernet0 С
- S* 0.0.0.0/0 [1/0] via 192.168.2.1

IP ネットワークのモニタリングとメンテナンス

特定のキャッシュ、テーブル、またはデータベースの内容をすべて削除できます。また、特定の統計情報も表示できます。ルートのクリアやステータスの表示には、表 11-9 のイネーブル EXEC コマンドを使用します。

表 11-9 IP ルートのクリアまたはルート ステータスの表示を行うコマンド

コマンドの説明	目的
Router# clear ip route {network [mask	IP ルーティング テーブルから 1 つまたは複数の
*]}	ルートをクリアします。
Router# show ip protocols	パラメータとアクティブなルーティング プロト
	コル プロセスの状態を表示します。
Router# show ip route [{address [mask]	ルーティング テーブルの現在の状態を表示しま
[longer-prefixes] [protocol [process-id]}]	す。
Router# show ip interface <i>interface</i>	インターフェイスの詳細情報を表示します。
Router# show ip interface brief	すべてのインターフェイスの状態に関する要約
	情報を表示します。
Router# show ip route summary	ルーティング テーブルの現在の状態を要約して
	表示します。
Router# show ip route supernets-only	スーパーネットを表示します。
Router# show ip cache	IP トラフィックのスイッチングに使用するルー
	ティング テーブルを表示します。
Router# show route-map [map-name]	設定済みのすべてのルート マップまたは指定し
	たルート マップだけを表示します。

IP マルチキャスト ルーティングの概要

ネットワークの規模が拡大するにつれて、マルチキャスト トラフィックを必要としているセグメントとそれ以外のセグメントを判断する上で、マルチキャスト ルーティングの重要性が非常に高まります。IP マルチキャストでは、IP トラフィックを1つまたは多数の送信元から多数の宛先に伝播させることができます。1つのパケットを各宛先に送信するのではなく、1つのパケットを1つの IP 宛先グループ アドレスによって識別されるマルチキャスト グループに送信します。

IP マルチキャストの最も重要なコンポーネントは、Internet Group Management Protocol (IGMP)で す。ホストは、IGMP メッセージを ML シリーズ カードに送信して、マルチキャスト グループのメ ンバーシップを識別します。トラフィックは、マルチキャスト グループのすべてのメンバーに送信 されます。1 つのホストを同時に複数のグループのメンバーに指定することも可能です。また、ホ ストがデータ送信先グループのメンバーである必要はありません。インターフェイスで Protocol Independent Multicast (PIM; プロトコル独立型マルチキャスト)をイネーブルにすると、同じイン ターフェイスで IGMP の操作もイネーブルになります。

ML シリーズ カードでは、PIM ルーティング プロトコルと Auto-RP 設定がサポートされます。

PIMには、トラフィック密度環境(密および疎)に関する3種類の動作モードがあります。これらのモードは、dense(密)モード、sparse(疎)モード、および疎/密モードと呼ばれます。

PIM の密モードでは、ダウンストリーム ネットワークがそこに転送されるデータグラムの受信を要求していると見なします。ML シリーズ カードは、プルーニングや切り捨てが発生するまで、すべての発信インターフェイスですべてのパケットを転送します。PIM の密モードをイネーブルにしているインターフェイスは、タイムアウトするまでマルチキャスト データ ストリームを受信できます。次の条件下では、PIM の密モードが最も便利です。

- 送信側と受信側が近接して存在している。
- ネットワーク間で受信側より送信側が少ない。
- マルチキャスト トラフィックのストリームが一定である。

PIM の疎モードでは、トラフィックで明示的に要求されていない限り、ダウンストリーム ネット ワークがグループに対するマルチキャスト パケットの転送を要求していないとみなします。PIM の 疎モードでは、パケットを正しくルーティングするための登録ポイントとして使用する Rendezvous Point (RP; ランデブー ポイント)を定義します。

送信側がデータを送信する場合は、そのデータを RP に送信します。ML シリーズ カードでデータ を受信する準備が整っている場合は、このカードが RP に登録されます。データ ストリームが送信 側から RP 経由で受信側に送信され始めると、データ パス内にある ML シリーズ カードが不要な ホップ (RP を含む)を自動的に削除してパスを最適化します。

PIM の疎モードは、マルチポイント データ ストリームが多く、各マルチキャスト ストリームがネットワーク内の比較的少数の LAN に送信される環境に適しています。次の条件下では、PIM の疎モードが最も便利です。

- グループ内に受信側がほとんどない。
- 送信側と受信側の間が WAN リンク で区切られている。
- マルチキャスト トラフィックのストリームが途切れがちである。

) ML シリーズ カードでは、Reverse Path Forwarding(RPF; リバース パス転送)マルチキャストがサ ポートされますが、RPF ユニキャストはサポートされません。

IP マルチキャスト ルーティングの設定

IP マルチキャスト ルーティングを設定するには、グローバル コンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的	
ステップ 1	Router(config)# ip multicast-routing	ML シリーズ カードで IP マルチキャストをイネーブル	
		にします。	
ステップ 2	Router(config)# interface type number	インターフェイスを設定するために、インターフェイス	
		コンフィギュレーション モードを開始します。	
ステップ 3	Router(config-if)# ip pim {dense-mode	このコマンドを入力する各インターフェイスで IP マル	
	sparse mode sparse-dense-mode }	チキャスト ルーティングを実行します。 dense(密)モー	
		ド、sparse (疎) モード、または疎 / 密モードを指定す	
		る必要があります。	
ステップ 4	Router(config)# ip pim rp-address	マルチキャスト グループの RP を設定します。	
	rendezvous-point ip-address		
ステップ 5	Router(config-if)# end	イネーブル EXEC モードに戻ります。	
ステップ 6	Router# copy running-config startup-config	(任意)設定の変更を NVRAM に保存します。	

IP マルチキャスト動作のモニタリングと確認

IP マルチキャスト ルーティングの設定後に、イネーブル EXEC モードで表 11-10 のコマンドを実行 すると、設定した IP マルチキャスト ルーティングの動作をモニタリングして確認できます。

表 11-10	IP マルチキャスト	・ルーティング	の Show コマンド
---------	------------	---------	-------------

コマンドの説明	目的
Router# show ip mroute	完全なマルチキャスト ルーティング テーブルと処理済 みパケットの複合統計を表示します。
Router# show ip pim neighbor	このコマンドを EXEC モードで使用すると、Cisco IOS ソフトウェアで検出された PIM のネイバが表示されま す。
Router# show ip pim interface	PIM に設定したインターフェイスの情報を表示します。
Router# show ip pim rp	このコマンドを EXEC モードで使用すると、関連するマ ルチキャスト ルーティング エントリとともにキャッ シュされたアクティブな RP が表示されます。

IRB の設定

この章では、MLシリーズのカードに Integrated Routing and Bridging (IRB; 統合ルーティングおよび ブリッジング)を設定する方法を説明します。この章で使用する Cisco IOS のコマンドについては、 *Cisco IOS Command Reference* 』を参照してください。

この章の主な内容は次のとおりです。

- IRBの概要 (p.12-2)
- IRBの設定 (p.12-3)
- IRB の設定例 (p.12-5)
- IRB のモニタリングと確認 (p.12-7)

ML シリーズでは、Cisco ISL (スイッチ間リンク)と Cisco Dynamic Trunking Protocol (DTP) はサ ポートされませんが ML シリーズのブロードキャストでこれらの形式は転送されます。装置間の接 続に ISL または DTP を使用しないことを推奨します。シスコの装置によっては、デフォルトで ISL または DTP を使用するものがあります。

IRB の概要

ネットワークによっては、複数のセグメント内でローカル トラフィックをブリッジングし、これらのセグメント上のホストをルーティング対象ネットワーク上のホストまたは ML シリーズ カードに接続する必要がある場合があります。たとえば、ブリッジトポロジーをルーティング トポロジーに移行するために、ブリッジド セグメントの一部をルーテッド ネットワークに接続するような場合です。

IRB 機能を使用すると、指定したプロトコルを1つの ML シリーズ カード内のルーテッド インター フェイスやブリッジ グループの間でルーティングできます。具体的には、ローカルまたはルーティ ング不能のトラフィックは同じブリッジ グループ内のブリッジド インターフェイス間でブリッジ され、ルーティング可能なトラフィックは他のルーテッド インターフェイスまたはブリッジ グ ループにルーティングされます。

ブリッジングはデータリンク層で実行され、ルーティングはネットワーク層で実行されるため、そ れぞれのプロトコル設定モデルが異なります。たとえば IP の場合、ブリッジ グループ インター フェイスは同じ1つのネットワークに属し、1つの共同の IP ネットワーク アドレスがあります。一 方、各ルーテッド インターフェイスは、個別のネットワークを表し、独自の IP ネットワーク アド レスを取得しています。IRB では、Bridge Group Virtual Interface (BVI; ブリッジ グループ仮想イン ターフェイス)の概念を使用して、これらのインターフェイスで特定のプロトコルのパケット交換 を可能にします。

BVI は、ML シリーズ カード内の仮想インターフェイスとして、通常の*ルーテッドイン*ターフェイ スと同様に機能します。BVI は、ブリッジングをサポートしませんが、ML シリーズ カード内の ルーテッド インターフェイスに対して、対応するブリッジ グループを表します。インターフェイ ス番号は、BVI とブリッジ グループの間のリンクとなります。

IRB を設定する前に、次の点に注意してください。

- ブリッジ グループでのデフォルトのルーティングまたはブリッジング(IRB がイネーブルな場合)の動作は、すべてのパケットがブリッジされます。BVI でIP トラフィックのルーティングを明示的に設定してください。
- Local-Area Transport (LAT) などのルーティングできないプロトコルは、必ずブリッジされます。ルーティングできないトラフィックのブリッジングをディセーブルにすることはできません。
- IRB を使用して特定のプロトコルをブリッジおよびルーティングする場合、ブリッジド イン ターフェイスでプロトコル属性を設定しないでください。BVI でプロトコル属性を設定することはできますが、ブリッジング属性を設定することはできません。
- 1つのブリッジにより複数のネットワークセグメントが1つの大きいフラットネットワークに リンクされます。1つのルーテッドインターフェイスから着信したパケットを複数のブリッジ ドインターフェイス間でブリッジングするには、そのブリッジグループを1つのインターフェ イスで表す必要があります。
- 1 つの BVI グループ内のすべてのポートで Maximum Transmission Unit (MTU; 最大伝送ユニット)の設定を同一にする必要があります。

IRB の設定

IRB を設定するには、次の手順を実行します。

- 1. ブリッジ グループとルーテッド インターフェイスを設定します。
 - a. ブリッジングをイネーブルにします。
 - b. インターフェイスをブリッジ グループに割り当てます。
 - c. ルーティングを設定します。
- 2. IRB をイネーブルにします。
- 3. BVI を設定します。
 - a. BVIをイネーブルにして、ルーティングされたパケットを受け付けます。
 - **b.** BVI でルーティングをイネーブルにします。
- 4. ルーテッド インターフェイスで IP アドレスを設定します。
- 5. IRB 設定を確認します。

BVI を設定してルーティングをイネーブルにした場合、ブリッジ グループ内のセグメントにあるホ スト宛てのパケットがルーテッド インターフェイスに着信すると、BVI にルーティングされ、ブ リッジング エンジンに転送されます。このパケットは、ブリッジング エンジンからブリッジド イ ンターフェイス経由で送出されます。同様に、ルーテッド インターフェイスにあるホスト宛てのパ ケットがブリッジド インターフェイスに着信すると、このパケットは、まず BVI に送信されます。 さらに、このパケットは、BVI からルーティング エンジンに転送され、このルーティング エンジ ンからルーテッド インターフェイスに送信されます。

ブリッジ グループとそのブリッジ グループ内のインターフェイスを設定するには、グローバル コンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# bridge bridge-group protocol {ieee rstp}	1 つまたは複数のブリッジ グループを定義します。
ステップ 2	Router(config)# interface type number	インターフェイス コンフィギュレーション モードを開 始します。
ステップ 3	Router(config-if)# bridge-group bridge-group	インターフェイスを特定のブリッジ グループに割り当 てます。
ステップ 4	Router(config-if)# end	イネーブル EXEC モードに戻ります。

IRB と BVI をイネーブルにして設定するには、グローバル コンフィギュレーション モードで次の 手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# bridge irb	IRB をイネーブルにします。 トラフィックのブリッジン グを有効にします。
ステップ 2	Router(config)# interface bvi bridge-group	BVI に対応するブリッジ グループの番号を割り当て、 BVI を設定します。各ブリッジ グループに対応させる ことができる BVI は、1 つだけです。
ステップ 3	Router(config-if)# ip address <i>ip-address ip-address ip-address-subnet-mask</i>	ルーテッド インターフェイスに IP アドレスを設定しま す。
ステップ 4	Router(config-if)# exit	インターフェイス コンフィギュレーション モードを終 了します。

	コマンドの説明	目的
ステップ 5	Router(config)# bridge bridge-group route protocol	BVI をイネーブルにして、対応するブリッジ グループ から受信したルーティング可能パケットをルーティン グします。
		BVI を使用して対応するブリッジ グループから他の ルーテッド インターフェイスにルーティングするプロ トコルごとに、このコマンドを実行してください。
ステップ 6	Router(config)# end	イネーブル EXEC モードに戻ります。
ステップ7	Router# copy running-config startup-config	(任意) 設定の変更を NVRAM (不揮発性 RAM) に保存 します。

IRB の設定例

図 12-1 は、IRB の設定例です。例 12-1 はルータ A の設定コードを、例 12-2 はルータ B の設定コードを表しています。

図 12-1 IRB の設定

例 12-1 ルータ A の設定

```
bridge irb
bridge 1 protocol ieee
bridge 1 route ip
1
!
interface FastEthernet0
ip address 192.168.2.1 255.255.255.0
1
interface POS0
no ip address
crc 32
bridge-group 1
pos flag c2 1
!
interface POS1
no ip address
crc 32
bridge-group 1
pos flag c2 1
1
interface BVI1
ip address 192.168.1.1 255.255.255.0
!
router ospf 1
log-adjacency-changes
network 192.168.1.0 0.0.0.255 area 0
network 192.168.2.0 0.0.0.255 area 0
```

例 12-2 ルータ B の設定

```
bridge irb
bridge 1 protocol ieee
bridge 1 route ip
!
1
interface FastEthernet0
ip address 192.168.3.1 255.255.255.0
!
interface POS0
no ip address
crc 32
bridge-group 1
pos flag c2 1
1
interface POS1
no ip address
crc 32
bridge-group 1
pos flag c2 1
!
interface BVI1
ip address 192.168.1.2 255.255.255.0
!
router ospf 1
log-adjacency-changes
network 192.168.1.0 0.0.0.255 area 0
network 192.168.3.0 0.0.0.255 area 0
```

IRB のモニタリングと確認

表 12-1 に、IRB をモニタリングおよび確認するためのイネーブル EXEC コマンドを示します。

表 12-1 IRB をモニタリングおよび確認するためのコマンド

コマンドの説明	目的
Router# show interfaces bvi bvi-interface-number	BVI MAC (メディア アクセス制御) アドレスや 処理統計情報などの BVI 情報を表します。 <i>bvi-interface-number</i> は BVI インターフェイ スに割り当てられたブリッジグループの番号で す。
Router# show interfaces [type-number] irb	次のプロトコルについて BVI 情報を表示します。
	 このブリッジド インターフェイスから他の ルーテッド インターフェイスにルーティン グできるプロトコル(ただし、ルーティン グ可能なパケットに限る)
	 このブリッジド インターフェイスがブリッ ジングするプロトコル

show interfaces bvi コマンドおよび show interfaces irb コマンドの出力例を次に示します。

例 12-3 IRB のモニタリングと確認

```
Router# show interfaces bvi1
BVI1 is up, line protocol is up
 Hardware is BVI, address is 0011.2130.b340 (bia 0000.0000.0000)
 Internet address is 100.100.1/24
 MTU 1500 bytes, BW 145152 Kbit, DLY 5000 usec,
    reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation ARPA, loopback not set
 ARP type: ARPA, ARP Timeout 04:00:00
 Last input 03:35:28, output never, output hang never
 Last clearing of "show interface" counters never
 Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
 Queueing strategy: fifo
 Output queue: 0/0 (size/max)
 5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
    0 packets input, 0 bytes, 0 no buffer
    Received 0 broadcasts (0 IP multicast)
    0 runts, 0 giants, 0 throttles
    0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
    1353 packets output, 127539 bytes, 0 underruns
    0 output errors, 0 collisions, 0 interface resets
    0 output buffer failures, 0 output buffers swapped out
Router# show interfaces irb
BVT1
Software MAC address filter on BVI1
 Hash Len Address Matches Act
                                         Type
 0x00: 0 ffff.ffff. 0 RCV Physical broadcast
GigabitEthernet0
Bridged protocols on GigabitEthernet0:
 clns
           iρ
Software MAC address filter on GigabitEthernet0
 Hash Len Address Matches Act
                                          Type
                           0 RCV Physical broadcast
 0x00: 0 ffff.ffff.ffff
                               0 RCV IP multicast
 0x58: 0 0100.5e00.0006
                              0 RCV IP multicast
 0x5B: 0 0100.5e00.0005
 0x65: 0 0011.2130.b344
                               0 RCV Interface MAC address
 0xC0: 0 0100.0ccc.cccc
                               0 RCV CDP
 0xC2: 0 0180.c200.0000
                               0 RCV IEEE spanning tree
POSO
Routed protocols on POSO:
 ip
Bridged protocols on POSO:
 clns
        ip
Software MAC address filter on POSO
 Hash Len Address
                     Matches Act
                                          Type
 0x00: 0 ffff.ffff 9 RCV Physical broadcast
 0x58: 0 0100.5e00.0006
                               0 RCV IP multicast
 0x5B: 0 0100.5e00.0005
                           1313 RCV IP multicast
 0x61: 0 0011.2130.b340
                             38 RCV Interface MAC address
                               0 RCV Bridge-group Virtual Interface
 0x61: 1 0011.2130.b340
 0x65: 0 0011.2130.b344
                               0 RCV Interface MAC address
 0xC0: 0 0100.0ccc.cccc
                             224 RCV CDP
 0xC2: 0 0180.c200.0000
                              0 RCV IEEE spanning tree
POS1
SPR1
Bridged protocols on SPR1:
 clns ip
Software MAC address filter on SPR1
 Hash Len Address Matches Act
                                          Type
                          0 RCV Physical broadcast
 0x00: 0 ffff.ffff.fff
 0x60: 0 0011.2130.b341
                               0 RCV Interface MAC address
 0x65: 0 0011.2130.b344
                               0 RCV Interface MAC address
 0xC0: 0 0100.0ccc.cccc
                              0 RCV CDP
 0xC2: 0 0180.c200.0000
                              0 RCV IEEE spanning tree
```

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

表12-1に、表示される重要なフィールドを説明します。

表 12-2 show interfaces irb コマンドで出力されるフィールドの説明

フィールド	説明
Routed protocols on	指定したインターフェイスに対して設定されたルーテッ ド プロトコルの一覧
Bridged protocols on	指定したインターフェイスに対して設定されたブリッジ ド プロトコルの一覧
Software MAC address filter on	指定したインターフェイスに対するソフトウェア MAC アドレス フィルタ情報の表
Hash	この MAC アドレス エントリの鍵付きリストのハッシュ キー / 相対位置
Len	このハッシュ チェインの開始要素へのこのエントリの長 さ
Address	正準(イーサネット順の)MAC アドレス
Matches	この MAC アドレスに一致した受信パケットの数
Routed protocols on	指定したインターフェイスに対して設定されたルーテッ ド プロトコルの一覧
Bridged protocols on	指定したインターフェイスに対して設定されたブリッジ ド プロトコルの一覧

VRF Lite の設定

この章では、ML シリーズ カードの VPN (仮想私設網) Routing and Forwarding Lite (VRF Lite)の 設定方法について説明します。この章で使用する Cisco IOS コマンドの詳細については、『*Cisco IOS Command Reference*』を参照してください。この章の内容は次のとおりです。

- VRF Lite の概要 (p.13-2)
- VRF Lite の設定 (p.13-3)
- VRF Lite の設定例 (p.13-4)
- VRF Lite のモニタリングと確認 (p.13-9)

ブリッジングをすでに設定している場合は、任意の手順である VRF Lite の設定に進むことができ ます。

VRF Lite の概要

VRF は、複数のルーティング インスタンスを提供する IP ルーティングの拡張機能です。VRF は、 各 VPN に個別の IP ルーティング テーブルと転送テーブルを提供します。また、Provider Equipment (PE)のルータ間で Multi-Protocol internal BGP (MP-iBGP) とともに使用し、レイヤ 3 MPLS-VPN を提供します。ただし、ML シリーズの VRF 実装では、MP-iBGP は含まれていません。VRF Lite を使用した場合、ML シリーズは PE 拡張機能または Customer Equipment (CE) 拡張機能とみなさ れます。VRF Lite が PE 拡張機能とみなされるのは、VRF を持つためです (MP-iBGP は備えていま せん)。また、CE 拡張機能ともみなされるのは、この CE は 複数の VRF を持ち、1 台の CE ボック スで多数のカスタマーに対応できるためです。

VRF Lite を使用すると、MLシリーズのCEは、さまざまなカスタマーを対象に、PE とのインターフェイスおよびサブインターフェイスを複数持つことができます(通常のCE が対象にするのは1 カスタマーのみ)。CE は VRF(ルーティング情報)をローカルで保持し、接続されている PE に VRF を配信することはありません。CE はカスタマーのルータまたは Internet Service Provider (ISP; インターネット サービス プロバイダー)PE のルータからトラフィックを受信すると、VRF 情報を 使用して、適切なインターフェイスやサブインターフェイスにトラフィックを直接送信します。

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

VRF Lite の設定

VRF Lite を設定するには、次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# <i>ip vrf vrf-name</i>	VRF コンフィギュレーション モードを開始し、VRF 名 を指定します。
ステップ 2	Router(config-vrf)# rd route-distinguisher	VPN Route Distinguisher (RD)を作成します。RDでは、 ルーティング テーブルおよび転送テーブルを作成し、 VPN のデフォルトの RD を指定します。カスタマーの IPv4 プレフィックスの先頭に RD が追加されることで、 VPN-IPv4 プレフィックスをグローバルに一意にしま す。
		RD は、Autonomous System (AS; 自律システム)番号と 任意の数値で構成される ASN 関連 RD か、または IP ア ドレスと任意の数値で構成される IP アドレス相対 RD のどちらかです。
		次のいずれかの形式で route-distinguisher を入力で きます。
		16 ビット AS 番号:32 ビット数値 たとえば、101:3
		32 ビット IP アドレス:16 ビット数値 たとえば、192.168.122.15:1
ステップ 3	Router(config-vrf) # route-target { import export both } route-distinguisher	指定した VRF に対する、インポートまたはエクスポート(またはその両方)ルートの対象コミュニティー覧を 作成します。
ステップ 4	Router(config-vrf)# import map route-map	(任意)指定したルート マップを VRF に関連付けます。
ステップ 5	Router(config-vrf)# exit	現在のコンフィギュレーション モードを終了し、グ ローバル コンフィギュレーション モードを開始しま す。
ステップ 6	Router(config)# interface type number	インターフェイスを指定し、インターフェイス コン フィギュレーション モードを開始します。
ステップ 7	Router(config-vrf)# ip vrf forwarding vrf-name	インターフェイスまたはサブインターフェイスに VRF を関連付けます。
ステップ 8	Router(config-if)# end	イネーブル EXEC モードに戻ります。
ステップ 9	Router# copy running-config startup-config	(任意)設定の変更を NVRAM(不揮発性 RAM)に保存 します。

例 13-1 は、VRF の設定例を示しています。この例では、VRF 名は customer_a、RD は 1:1、インター フェイス タイプはファスト イーサネット 0.1 番です。

例 13-1 VRF の設定

Router(config)# ip vrf customer_a
Router(config-vrf)# rd 1:1
Router(config-vrf)# route-target both 1:1
Router(config)# interface fastEthernet 0.1
Router(config-subif)# ip vrf forwarding customer_a

VRF Lite の設定例

図 13-1 に、VRF Lite の設定例を示します。ルータ A とルータ B の設定は、例 13-2 および例 13-3 で それぞれ説明しています。関連付けられているルーティング テーブルは、例 13-4 ~例 13-9 に示し ています。

例 13-2 ルータ_A の設定

```
hostname Router_A
1
ip vrf customer_a
rd 1:1
route-target export 1:1
route-target import 1:1
!
ip vrf customer_b
rd 2:2
route-target export 2:2
route-target import 2:2
1
bridge 1 protocol ieee
bridge 2 protocol ieee
bridge 3 protocol ieee
1
1
interface FastEthernet0
no ip address
1
interface FastEthernet0.1
encapsulation dot1Q 2
ip vrf forwarding customer_a
ip address 192.168.1.1 255.255.255.0
bridge-group 2
1
interface FastEthernet1
no ip address
1
interface FastEthernet1.1
```

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド
```
encapsulation dot1Q 3
ip vrf forwarding customer_b
ip address 192.168.2.1 255.255.255.0
bridge-group 3
1
interface POS0
no ip address
crc 32
no cdp enable
pos flag c2 1
Т
interface POS0.1
encapsulation dot1Q 1 native
ip address 192.168.50.1 255.255.255.0
bridge-group 1
1
interface POS0.2
encapsulation dot1Q 2
ip vrf forwarding customer_a
ip address 192.168.100.1 255.255.255.0
bridge-group 2
1
interface POS0.3
encapsulation dot10 3
ip vrf forwarding customer_b
ip address 192.168.200.1 255.255.255.0
bridge-group 3
!
router ospf 1
log-adjacency-changes
network 192.168.50.0 0.0.0.255 area 0
1
router ospf 2 vrf customer_a
log-adjacency-changes
network 192.168.1.0 0.0.0.255 area 0
network 192.168.100.0 0.0.0.255 area 0
1
router ospf 3 vrf customer_b
log-adjacency-changes
network 192.168.2.0 0.0.0.255 area 0
network 192.168.200.0 0.0.0.255 area 0
!
```

例 13-3 ルータ_Bの設定

```
hostname Router_B
ip vrf customer a
rd 1:1
route-target export 1:1
route-target import 1:1
1
ip vrf customer_b
rd 2:2
route-target export 2:2
route-target import 2:2
1
bridge 1 protocol ieee
bridge 2 protocol ieee
bridge 3 protocol ieee
1
1
interface FastEthernet0
no ip address
1
interface FastEthernet0.1
encapsulation dot10 2
ip vrf forwarding customer_a
ip address 192.168.4.1 255.255.255.0
bridge-group 2
1
interface FastEthernet1
no ip address
1
interface FastEthernet1.1
encapsulation dot10 3
ip vrf forwarding customer_b
ip address 192.168.5.1 255.255.255.0
bridge-group 3
T
interface POS0
no ip address
crc 32
no cdp enable
pos flag c2 1
!
interface POS0.1
 encapsulation dot1Q 1 native
ip address 192.168.50.2 255.255.255.0
bridge-group 1
Т
interface POS0.2
encapsulation dot1Q 2
ip vrf forwarding customer_a
ip address 192.168.100.2 255.255.255.0
bridge-group 2
1
interface POS0.3
encapsulation dot1Q 3
ip vrf forwarding customer_b
ip address 192.168.200.2 255.255.255.0
bridge-group 3
Т
router ospf 1
log-adjacency-changes
network 192.168.50.0 0.0.0.255 area 0
1
router ospf 2 vrf customer_a
log-adjacency-changes
network 192.168.4.0 0.0.0.255 area 0
network 192.168.100.0 0.0.0.255 area 0
1
```

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

```
router ospf 3 vrf customer_b
log-adjacency-changes
network 192.168.5.0 0.0.0.255 area 0
network 192.168.200.0 0.0.0.255 area 0
```

例 13-4 ルータ_A のグローバル ルーティング テーブル

Router_A# sh ip route Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area * - candidate default, U - per-user static route, o - ODR P - periodic downloaded static route

Gateway of last resort is not set

C 192.168.50.0/24 is directly connected, POS0.1

例 13-5 ルータ_A の customer_a VRF ルーティング テーブル

Router_A# show ip route vrf customer_a Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area * - candidate default, U - per-user static route, o - ODR P - periodic downloaded static route

Gateway of last resort is not set

- 0 192.168.4.0/24 [110/2] via 192.168.100.2, 00:15:35, POS0.2
- C 192.168.1.0/24 is directly connected, FastEthernet0.1
- C 192.168.100.0/24 is directly connected, POS0.2

例 13-6 ルータ_A の customer_b VRF ルーティング テーブル

Router_A# show ip route vrf customer_b

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area * - candidate default, U - per-user static route, o - ODR P - periodic downloaded static route

Gateway of last resort is not set

- C 192.168.200.0/24 is directly connected, POS0.3
- 0 192.168.5.0/24 [110/2] via 192.168.200.2, 00:10:32, POS0.3
- C 192.168.2.0/24 is directly connected, FastEthernet1.1

例 13-7 ルータ_B のグローバル ルーティング テーブル

Router_B# sh ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area * - candidate default, U - per-user static route, o - ODR P - periodic downloaded static route

Gateway of last resort is not set

C 192.168.50.0/24 is directly connected, POS0.1

例 13-8 ルータ_Bの customer_a VRF ルーティング テーブル

Router_B# sh ip route vrf customer_a

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area * - candidate default, U - per-user static route, o - ODR P - periodic downloaded static route

Gateway of last resort is not set

C 192.168.4.0/24 is directly connected, FastEthernet0.1

0 192.168.1.0/24 [110/2] via 192.168.100.1, 00:56:24, POS0.2

C 192.168.100.0/24 is directly connected, POS0.2

例 13-9 ルータ_Bの customer_b VRF ルーティング テーブル

Router_B# show ip route vrf customer_b Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area * - candidate default, U - per-user static route, o - ODR P - periodic downloaded static route

Gateway of last resort is not set

- C 192.168.200.0/24 is directly connected, POS0.3
- C 192.168.5.0/24 is directly connected, FastEthernet1.1
- O 192.168.2.0/24 [110/2] via 192.168.200.1, 00:10:51, POS0.3

VRF Lite のモニタリングと確認

表 13-1 に、VRF Lite のモニタリングおよび確認に使用するイネーブル EXEC コマンドを示します。

表 13-1 VRF Lite のモニタリングと確認に使用するコマ	ンド	t
-----------------------------------	----	---

コマンドの説明	目的
Router# show ip vrf	VRF とインターフェイスのセットを表示しま
	す。
Router# show ip route vrf vrf-name	VRFの IP ルーティング テーブルを表示します。
Router# show ip protocols vrf vrf-name	VRF のルーティング プロトコル情報を表示し
	ます。
Router# ping vrf vrf-name ip ip-address	特定の VRF を持つ IP アドレスの ping を実行し ます。

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

QoS の設定

この章では、ML シリーズ カードに組み込まれている Quality of Service (QoS; サービス品質)機能、 およびシステム レベルとインターフェイス レベルの両方で QoS スケジューリングをマップする方 法について説明します。

この章の内容は次のとおりです。

- QoSの概要 (p.14-2)
- ML シリーズの QoS (p.14-4)
- RPR Ø QoS (p.14-11)
- QoSの設定 (p.14-13)
- QoS 設定のモニタリングおよび確認(p.14-19)
- QoSの設定例 (p.14-20)
- マルチキャスト QoS およびプライオリティ マルチキャスト キューイングの概要(p.14-25)
- マルチキャスト プライオリティ キューイング QoS の設定 (p.14-27)
- CoS ベースパケットの統計情報の概要(p.14-28)
- CoS ベースパケット統計情報の設定 (p.14-29)
- IP SLA の概要 (p.14-31)

ML シリーズ カードでは、Cisco IOS の Modular QoS CLI(MQC; モジュラ QoS コマンドライン イン ターフェイス)を使用します。MQC の一般的な設定の詳細については、次の Cisco IOS のマニュア ルを参照してください。

• 『Cisco IOS Quality of Service Solutions Configuration Guide, Release 12.2』には、次の URL からア クセスできます。

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122mindx/l22index.htm

• 『Cisco IOS Quality of Service Solutions Command Reference, Release 12.2』には、次の URL からア クセスできます。

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fqos_r/index.htm

QoS の概要

QoS は、サービス セットに対して重要度の低いサービスによる損害を受けないように、優先または 特別な処理を行うネットワークの機能です。ML シリーズカードでは、QoS を使用して、SONET/SDH 回線に多重化されている各サービスに対して動的に伝送帯域幅を割り当てています。QoS によっ て、ML シリーズ カードを設定して各サービスに個別の処理レベルを提供できます。各レベルは、 損失や遅延を含めて、帯域幅のサービス要素によって定義されます。Service-Level Agreement(SLA; サービス レベル契約)は、これらのサービス要素の保証されたレベルのことです。

QoS メカニズムには、3 つの基本的なステップがあります。トラフィックのタイプを分類し、それ ぞれのタイプに対応して実行するアクションを指定し、さらに、アクションを実行する場所を指定 します。以降では、ML シリーズ カードがユニキャスト トラフィックに対してこれらの手順をどの ように実行するかを説明します。プライオリティ マルチキャスト トラフィックと宛先アドレスが 不明なトラフィックに対する QoS は、「マルチキャスト QoS およびプライオリティ マルチキャスト キューイングの概要」(p.14-25)で詳しく説明している別のメカニズムで処理します。

IP およびイーサネットのプライオリティ メカニズム

データに QoS を適用する場合、IP パケットまたはイーサネット フレームをマーキングまたは識別 する方法が必要となります。識別ができると、特定のプライオリティを個々の IP パケットまたは イーサネット フレームに割り当てることができます。IP 優先順位または IP Differentiated Service Code Point (DSCP) フィールドは、IP パケットに優先順位を付けます。また、イーサネット フレー ムには、イーサネット Class of Service (CoS; サービス クラス)(IEEE 802.1p で定義された CoS)が 使用されます。以降で、IP 優先順位とイーサネット CoS の詳細について説明します。

IP 優先順位および DSCP

IP 優先順位は、IPv4 ヘッダーの Type of Service (ToS; サービス タイプ)フィールドの 3 ビットの優 先順位ビットを使用して、各 IP パケットの CoS を指定します (RFC 1122)。IPv4 ToS フィールドの 最上位 3 ビットは、最大 8 つの別個のクラスを提供します。8 つのクラスのうち 6 つはサービスの 分類に使用され、残りの 2 つは予約されています。ネットワーク エッジでは、クライアント装置ま たはルータによって IP 優先順位が割り当てられるため、後続の各ネットワーク要素は、順次、決 定済みのポリシーまたは SLA に基づいてサービスを提供できます。

IP DSCP は IPv4 ヘッダーの 6 ビットを使用して、各 IP パケットの CoS を指定します (RFC 2474)。 図 14-1 に、IP 優先順位と DSCP を示します。DSCP フィールドは、使用可能な 64 個のクラスのい ずれかにパケットを分類します。ネットワーク エッジで、IP DSCP はクライアント装置またはルー タによって割り当てられるため、後続の各ネットワーク要素は、決定済みのポリシーまたは SLA に 基づいてサービスを提供できます。

図 14-1 IP 優先順位と DSCP

イーサネット CoS

イーサネット CoS は、4 バイトの IEEE 802.1Q (VLAN [仮想 LAN]) ヘッダー内の3 ビットを参照 して、イーサネット フレームがスイッチド ネットワークを通過する際にフレームのプライオリ ティを指示します。IEEE 802.1Q ヘッダーの CoS ビットは、一般に IEEE 802.1p ビットと呼ばれま す。3 ビットの CoS ビットは、8 つのクラスを提供します。これは IP 優先順位によって提供される 数と一致しています。実際に多くのネットワークでは、パケットはレイヤ2 とレイヤ3 の両方のド メインを経由する場合があります。ネットワークでの QoS を維持するために、IP ToS をイーサネッ ト CoS にマップすることも、逆にイーサネット CoS を IP ToS にマップすることもできます(リニ ア マッピングや1 対 1 マッピングなど)。これは、それぞれのメカニズムで 8 つのクラスをサポー トしているためです。同様に、一連の DSCP 値(64 クラス)は、8 つの各イーサネット CoS 値に マップできます。図 14-2 に、イーサネット プロトコル ヘッダーで 2 バイトの Ethertype と 2 バイト のタグ (IEEE 802.1Q タグ) で構成された IEEE 802.1Q イーサネット フレームを示します。

ML シリーズの QoS

ML シリーズの QoS は、入力インターフェイス、ブリッジ グループ(VLAN)、イーサネット CoS、 IP 優先順位、IP DSCP、または Resilient Packet Ring (RPR; 復元パケット リング)-CoS に基づいて、 ネットワーク内の各パケットを分類します。パケットがクラス フローに分類されたあと、パケット がカードを経由する際に各パケットに詳細な QoS 機能を適用できます。図 14-3 に、ML シリーズの QoS フローを示します。

ML シリーズ カードが提供するポリシングによって、接続装置は事前定義された帯域幅量(レート 制限)を超えてネットワークに送信しないことが保証されます。ポリシング機能を使用すると、イ ンターフェイスでカスタマーに使用可能な Committed Information Rate(CIR; 認定情報速度)と Peak Information Rate(PIR; 最大情報速度)を実行できます。また、ポリシングは、ネットワークに許容 されている情報の統計的特性を把握するのに役立ちます。これに基づきトラフィック エンジニアリ ングの観点から、コミットされる帯域幅の量がネットワークで使用可能なこと、ネットワークに適 切な比率で最大帯域幅をオーバーサブスクライブすることが、より効果的に保証できるようになり ます。ポリシング アクションは分類別に適用されます。

プライオリティ マーキングは、イーサネット IEEE 802.1p CoS ビットまたは RPR-CoS ビットを ML シリーズ カードから送出するときに設定できます。マーキング機能は、外側の IEEE 802.1p タグで 動作し、QinQ パケットの着信時にパケットにタグ付けするメカニズムを提供します。この Service Provider(SP;サービス プロバイダー)で作成された QoS インジケータだけに基づいて、後続のネッ トワーク要素は QoS を提供できます。

クラス別フローキューイングによって、超過ネットワーク帯域幅へのアクセスを適正化し、帯域幅 を割り当てて SLA をサポートできるほか、ネットワーク リソースを多く必要とするアプリケー ションにも十分に対応できます。バッファは、共有リソース プールからキューに動的に割り当てら れます。割り当てプロセスには、迅速なシステム ロードと各キューへの帯域幅の割り当てが含まれ ています。このプロセスによって、バッファ割り当てが最適化されます。ML シリーズの輻輳管理 は、出力スケジューラの廃棄適性に加え、テールドロップ メカニズムを通じて行われます。

ML シリーズでは、Weighted Deficit Round Robin (WDRR)スケジューリング プロセスを使用して、 超過帯域幅へのアクセスを適正化するとともに、各クラス フローのスループットを保証します。

アドミッション制御は、MLシリーズカードでサービスが設定されるたびに起動するプロセスで、 QoSリソースが過度にコミットされていないかどうかを確認します。特に、アドミッション制御は、 インターフェイス上でコミットされる帯域幅の合計がインターフェイスの総帯域幅を上回る場合、 設定を受け入れないようにします。

分類

分類は、単一のパケット分類基準または分類基準の組み合わせ(論理 AND と OR)に基づいて行う ことができます。カードに定義できるクラスの総数は 254 個です(デフォルト クラスは含まれませ ん)。パケットの分類は、モジュラ CLI の class-map コマンドを使用して設定します。RPR を経由 するトラフィックに対して、入力インターフェイスと RPR-CoS のいずれかまたは両方を分類基準 として使用できます。

ポリシング

デュアル漏出バケット ポリシング機能は、既知のレート(CIR)で1つめのバケット(CIR バケット)がトークンで満杯になった場合のプロセスです。CIR はオペレータが設定できるパラメータです。図 14-4 に、デュアル漏出バケット ポリシング機能モデルを示します。トークンは最大レベル(ポリシング機能での Burstable Committed [BC; バースト可能認定]トラフィック量)までバケットを満たします。1つめのバケットの非適合パケットは、オーバーフローパケットです。これらのパケットは、2つめの漏出バケット(PIR バケット)に渡されます。既知のレート(PIR)で2つめの漏出バケットがこれらのトークンで満杯になります。PIR は、オペレータが設定できるパラメータです。トークンは最大レベル(BP)まで PIR バケットを満たします。BP は、ポリシング機能での最大バースト可能トラフィック量です。2つめのバケットの非適合パケットは、オーバーフローパケットです。これらのパケットにポリシング機能の定義によって廃棄またはマーキングできます。

デュアル漏出バケット ポリシング機能では、CIR に適合するパケットは適合パケットであり、CIR に適合せず PIR に適合するパケットは超過パケットです。また、PIR と CIR のどちらにも適合しな いパケットは違反パケットです。

ポリシング機能によるマーキングおよび廃棄

ML シリーズ カードのポリシング機能では、適合パケットを送信することも、マーキングして送信 することもできます。超過パケットは、送信、マーキングして送信、または廃棄できます。違反パ ケットは、送信、マーキングして送信、または廃棄できます。デュアルレート ポリシング機能また は 3 種ポリシング機能の主な用途は、適合パケットを CoS ビット 21 でマーキング、および超過パ ケットを CoS ビット 1 でマーキング、違反パケットの廃棄です。そのため、後続のネットワーク装 置は、各 SLA を認識せずに、これらのプライオリティ マーキングに基づいてフレームまたはパケッ ト単位で適切な QoS 処理を適用できます。

場合によっては、特定の入力クラスのトラフィックをすべて廃棄することが望ましい場合がありま す。トラフィックの廃棄は、police 96000 conform-action drop exceed-action drop という形式で、クラ スを指定した police コマンドを使用することで行えます。

送信前に、マーキングされたパケットにプロバイダー提供の Q タグが挿入されている場合、マーキングはプロバイダー Q タグだけに影響します。Q タグを受信すると、その Q タグは再度マーキングされます。マーキングされたパケットが RPR リング上で転送されると、マーキングは RPR-CoS ビットにも影響を与えます。

Q タグが挿入されると(QinQ)、マーキングは追加された Q タグに影響を与えます。Q タグが含ま れる入力パケットが透過的にスイッチングされると、既存の Q タグがマーキングされます。パケッ トに Q タグが含まれていない場合は、マーキングは特に意味を持ちません。

ローカル スケジューラは、CoS 設定やグローバル CoS コミット定義には関係なく、すべての非適 合パケットを廃棄可能として処理します。RPR 実装の場合、Discard Eligible (DE; 廃棄適性)パケッ トは、RPR ヘッダーの DE ビットを使用してマーキングされます。CoS コミットまたはポリシング アクションに基づく廃棄適性は、ML シリーズ カード スケジューラに対してローカルですが、RPR リングに対してはグローバルです。

キューイング

ML シリーズ カードのキューイングでは、共有バッファ プールを使用してさまざまなトラフィック キューにメモリを動的に割り当てます。ML シリーズ カードが使用するバッファ プールの総量は 12 MB メモリです。イーサネット ポートが 6 MB のメモリを共有し、Packet-over-SONET/SDH(POS) ポートが残りの 6 MB を共有します。メモリ スペースの割り当ては、1500 バイトずつ増加します。

各キューには、キューのクラス帯域幅割り当ておよび設定されているキューの数に基づいて、割り 当てられるバッファ数に上限があります。通常、この上限は共有バッファ容量の 30 ~ 50 % です。 各キューへの動的バッファ割り当ては、追加のバッファリングを必要とするキューの数に基づいて 減らすことができます。動的割り当てメカニズムは、サービス コミットメントに応じて適正化を図 るとともに、システム トラフィック負荷の範囲全体でシステム スループットを最適化します。

Low Latency Queue (LLQ; 低遅延キュー)は、重みを無限大に設定するか、または 100 % 帯域幅を コミットして定義されます。LLQ を定義するときには、その特定クラスの入口でポリシング機能を 定義し、LLQ が使用する最大帯域幅を制限する必要があります。そうしないと、LLQ が帯域幅全 体を占有し、他のユニキャスト キューが帯域幅を使用できなくなる恐れがあります。

ML シリーズでは、ユーザ定義可能な 400 個のキューをサポートしています。これらのキューは、 分類および帯域幅割り当て定義に従って割り当てられます。スケジューリングに使用する分類で は、ポリシング アクションのあとにフレームおよびパケットを分類するので、ポリシング機能を入 カフレームおよびパケットの CoS ビットのマーキングや変更に使用する場合、新しい値をキューイ ングおよびスケジューリング用のトラフィックの分類に適用できます。ML シリーズでは、4000 個 のパケットのバッファリングが可能です。

スケジューリング

スケジューリングは、WDRRを実行する一連のスケジューラと、各出力ポートに関連付けられているキューに入れられたトラフィックのプライオリティ スケジューリング メカニズムによって行われます。

キューの通常のラウンド ロビン サービスは定期的に実行できますが、異なるキューでさまざまな パケット サイズを使用すると不均等が生じます。この問題は、Deficit Round Robin (DRR) スケ ジューリングによって解決されます。パケット サイズが大きすぎたために、前回のラウンドで キューがパケットを送信できなかった場合、各ラウンドでキューに入る前回のクレジット量の剰余 (量子)は、次のラウンドの量子に追加されます。

WDRR は、DRR の量子の概念を拡張し、各キューのスループットに重み付けします。キューごと に異なる重みが設定されており、ラウンドの各キューに割り当てられた量子は、そのスケジューラ が処理するすべてのキューにおけるキューの相対重みに比例します。

サービス プロビジョニング プロセスの結果として、重みが各キューに割り当てられます。ポリシ ングとポリシー マッピング プロビジョニングを組み合わせると、このような重みと WDRR スケ ジューリング プロセスによって、QoS コミットメントが各サービス フローに確実に提供されるよ うになります。

図 14-5 に、ML シリーズ カードのキューイングとスケジューリングを示します。

図 14-5 キューイングおよびスケジューリング モデル

重み付け構造によって、トラフィックを 1/2048 のポート レートでスケジューリングできます。こ れは、ギガビット イーサネット ポートを出るトラフィックでは約 488 Kbps、OC-12c ポートから出 るトラフィックでは約 293 Kbps、ファスト イーサネット ポートを出るトラフィックでは約 49 Kbps に相当します。

ユニキャストキューは、出力ポートの出力サービスポリシー実装として作成されます。各ユニキャ ストキューには、コミット済み帯域幅が割り当てられ、キューの重みはそのポート用に定義されて いるすべてのユニキャストキューのコミット済み帯域幅の正規化によって決定されます。どの キューでもコミット済み帯域幅を超えるトラフィックは、キューの相対重みに従ってスケジューラ で処理されます。 LLQ は、出力ポートの出力サービス ポリシー実装として作成されます。各 LLQ キューは、100 % のコミット済み帯域幅が割り当てられ、低遅延で処理されます。LLQ による帯域幅の使用を制限するには、LLQ トラフィック クラスの入口で厳格なポリシング機能を実装する必要があります。

DE を使用すると、あるパケットはコミット済みとして処理し、別のパケットはスケジューラで DE として処理できます。イーサネット フレームでは、RPR-CoS および DE ビットが RPR トラフィッ クに使用される場合に、CoS (IEEE 802.1p) ビットがコミット済みパケットと DE パケットの識別 に使用されます。輻輳が発生し、キューが満杯になり始めると、DE パケットはコミット済みパケッ トよりも低いテールドロップ スレッシュホールドに達します。コミット済みパケットは、コミット 済み負荷総量がインターフェイス出力を超えるまでは廃棄されません。あらゆる状況で均等性を保 証しながら共有バッファ プールを最大限に使用できるように、カードのテールドロップ スレッ シュホールドは動的に調整されます。

制御パケットと L2 トンネリング プロトコル

ML シリーズ カードで生成される制御パケットは、データ パケットよりも高いプライオリティが割 り当てられます。外部レイヤ2およびレイヤ3制御パケットはデータ パケットとして処理され、ブ ロードキャスト キューに割り当てられます。ML シリーズ カードの Bridge Protocol Data Uni(BPDU; ブリッジ プロトコル データ ユニット)の優先順位付けでは、マルチキャストおよびブロードキャ スト キューに送信するトンネリングされたレイヤ2 BPDU に、より高い廃棄値が与えられます。し たがって、マルチキャストおよびブロードキャスト キューの他のパケットよりもプライオリティは 高くなります。レイヤ 2 トンネリング プロトコルのイーサネット CoS (IEEE 802.1p) は、ML シ リーズ カードによって割り当てることができます。

出力プライオリティ マーキング

出力プライオリティ マーキングを使用すると、オペレータはカードを出るパケットの IEEE 802.1p CoS ビットを割り当てることができます。このマーキングにより、オペレータは、パケットに対し て行う必要のある QoS 処理をダウンストリーム ノードにシグナリングするメカニズムとして、CoS ビットを使用することが可能になります。この機能は、最も外側の IEEE 802.1p CoS フィールドで 動作します。プライオリティ マーキングを QinQ 機能と共に使用すると、ユーザ トラフィック (内 側の Q タグ) はネットワークを透過的に経由できるようになります。さらに、ネットワークがレイ ヤ 2 で QoS 処理を内部的にシグナリングする方法も提供できます。

プライオリティ マーキングは、分類プロセスのあとに行われます。したがって、以前に識別された 分類条件のいずれかを基準として使用して、発信 IEEE 802.1p CoS フィールドを設定できます。た とえば、特定の CoS 値を特定のブリッジ グループにマップできます。

プライオリティ マーキングは、MQC set-cos コマンドを使用して設定します。IEEE 802.1Q タグの ないパケットが何らかの方法でカードを出たとすると、set-cos コマンドはそのパケットでは有効で なくなります。IEEE 802.1Q タグ(通常タグまたは QinQ タグ)がパケットに挿入されると、その挿 入されたタグには set-cos プライオリティが設定されます。入力パケットに IEEE 802.1Q タグが存在 し、出力パケットで保持されている場合、そのタグのプライオリティは変更されます。入力イン ターフェイスが QinQ アクセス ポートであり、set-cos ポリシーマップが入力タグのプライオリティ に基づいて分類を行う場合、これはユーザ プライオリティに基づく分類となります。これは、ユー ザタグのプライオリティによって、SP タグのプライオリティを決める 1 つの方法です。パケット が set-cos ポリシーマップに一致しないときには、保持されているタグのプライオリティは変更され ず、挿入された IEEE 802.1Q タグのプライオリティはいずれも0 に設定されます。

出力サービス ポリシーの set-cos コマンドは、ユニキャスト トラフィックにだけ適用されます。マ ルチキャストおよびブロードキャスト トラフィックのプライオリティ マーキングは、入力サービ ス ポリシーに対するポリシング プロセスの set-cos アクション以外ではできません。

入力プライオリティ マーキング

入力プライオリティマーキングは、ある1つのポートのすべての入力パケットに対して、または分類に一致するすべての入力パケットに対して、または測定されたレートに基づいて実行できます。 ある1つの入力クラスのパケットすべてに対するマーキングは、police 96000 conform-action set-cos-transmit exceed-action set-cos-transmit ポリシング コマンドでも行うことができます。 [class-default] だけを含むポリシーマップとともにこのコマンドを使用すると、すべての入力パケッ トがその値にマーキングされます。レートに基づくプライオリティマーキングついては、「ポリシング機能によるマーキングおよび廃棄」(p.14-6)を参照してください。

QinQ 実装

階層型 VLAN または IEEE 802.1Q トンネリング機能により、SP は特定のポート(UNI)から受信す るカスタマー VLAN を透過的に伝送し、SP ネットワーク上で転送できます。この機能は QinQ とも 呼ばれ、すべてのカスタマー フレームに IEEE 802.1Q タグを追加することによって実行されます。

QinQ 機能を使用すると、SP は複数の VLAN を設定しているカスタマーを 1 つの VLAN でサポートできます。QinQ はカスタマーの VLAN ID を保存するため、別のカスタマーからのトラフィック が元は同じ VLAN ID を共有していた場合でも、SP のインフラストラクチャ内でさまざまなカスタ マーからのトラフィックを分離します。また、QinQ は、VLAN 内 VLAN 階層を使用してタグ付き パケットに再度タグ付けすることによって、VLAN スペースを拡張します。SP タグが追加される と、QinQ ネットワークでは通常、QinQ カプセル化フレームの IP ヘッダーまたはカスタマー イーサネット IEEE 802.1Q タグが認識できなくなります。

ML シリーズ カードでは、QinQ アクセス ポート (IEEE 802.1Q トンネル ポートまたは QinQ UNI ポート)は、カスタマーの CoS および IP precedence または IP DSCP 値を認識できます。したがっ て、SP タグにカスタマーの IP precedence、IP DSCP または CoS ビットを反映する適切な CoS ビッ トを割り当てることができます。QinQ ネットワークでは、QoS は SP タグの IEEE 802.1p ビットに 基づいて実装されます。ML シリーズ カードは、パケットが二重にタグ付けされると、カスタマー の CoS、IP precedence、または DSCP 値を認識できません (パケットが QinQ サービスの送信ポイン トを離れているため)。

図 14-6 に、ML シリーズ カードの QinQ 実装を示します。

🗷 14-6 QinQ

ML シリーズ カードは、QinQ ネットワークの IEEE 802.1Q トンネリング装置として使用できます。 また、追加された QinQ タグの CoS ビットにカスタマー フレームの CoS ビットをコピーするオプ ションも用意されています。このようにして、SP の QinQ ネットワークは、個々のカスタマー フ レームに必要な QoS 処理を完全に認識できます。

フロー制御ポーズと QoS

インターフェイスでフロー制御とポートベース ポリシングが両方ともイネーブルな場合、フロー制 御は帯域幅を処理します。ポリシング機能は、不適合フローを検出すると、インターフェイスのポ リシング機能定義を使用して、パケットを廃棄またはマーク解除します。

(注)

リンク集約を使用している場合は、ML シリーズ カード インターフェイスで QoS およびポリシン グはサポートされません。

出力シェーピングは ML シリーズ カードではサポートされていません。

RPR の QoS

RPR で VLAN ブリッジングを設定する場合、RPR および RPR QoS の基本設定でリング上のすべて の ML シリーズ カードを設定する必要があります。SLA とブリッジングの設定は、IEEE 802.1Q の VLAN CoS が RPR CoS にコピーされるカスタマー RPR アクセス ポイントでのみ必要です。この IEEE 802.1Q の VLAN CoS のコピーは、set-cos action コマンドで上書きできます。CoS コミット ルー ルは、RPR リングの入口で適用されます。

パケットに VLAN ヘッダーが含まれていない場合、次のルールを使用して、非 VLAN トラフィックの RPR CoS が設定されます。

- **1.** デフォルトの CoS は 0 です。
- CoS が割り当てられているパケットが着信すると、割り当てられている CoS はデフォルトに置 き換えられます。IP パケットがローカルで生成されると、IP 優先順位設定は CoS 設定を置き 換えます。
- 3. 入力ポリシー マップには、set-cos アクションが含まれます。
- 出力ポリシー マップには、set-cos アクションが含まれます(ブロードキャストまたはマルチ キャストパケットを除く)。

RPR ヘッダーには、CoS 値と DE インジケータが格納されます。RPR DE は、コミットされていな いトラフィックに対して設定されます。

ML シリーズ カード RPR 中継トラフィックは、POS ポートから RPR 周辺の POS ポートに発信する トラフィックとして定義され、レイヤ $2 \cos$ によってのみ分類できます。他の一致ルールは無視さ れます。これは、Cisco Metro Ethernet Solution の CoS ベース QoS モデル用に設計され、ML シリー ズ カード専用に実装した RPR の QoS です。

このレイヤ2の CoS 依存は、DSCP ベースの出力ポリシー マップが ML シリーズ カード上で RPR と正常に動作するのを妨げます。DSCP ベースのポリシーマップを使用すると、すべての中継トラ フィックがクラス デフォルトとして不正に処理されます。これにより、中継ステーションで輻輳が 発生したときに、DSCP プライオリティに関係なく、中継トラフィックが廃棄されます。

DSCP ベースの出力ポリシー マップの限界には対処法があります。各 RPR フレームには、独自の3 ビットの CoS マーキングがあり、通常 VLAN COS からコピーされます。これは、中継 RPR トラ フィック用に「match cos」分類が行われるフィールドです。入力ステーションの DSCP 一致に基づ いて RPR COS をマーキングしてから、中継ステーションの RPR COS に基づいて分類できます。こ の方法は最大 8 つのクラスをサポートできます。9 つのクラス (class-default を含め)を使用する場 合、この対処法を使用するために 2 つのクラスを組み合わせる必要があります。

例 14-1 に、DSCP 限界を解決するクラスおよびポリシー マップ定義コンフィギュレーションを示します。Voice クラスと Call-Sig クラスを組み合わせることで、9 つのクラスを 8 つのクラスに変更する例も示します。

「match cos 0」はいずれのクラス マップの定義にも含めないでください。VLAN タグなしイーサネット パケットは、イーサネットからの入力で必ず COS 0 として処理されるからです。「match cos 0」を使用すると、イーサネットから着信するすべてのトラフィックとの一致が誤って行われます。

class-map match-any Bulk-Data match ip dscp af11 match cos 3 class-map match-any Crit-Data match ip dscp af21 af31 match cos 7 class-map match-any Net-Management match ip dscp cs2 match cos 2 class-map match-any Video match ip dscp cs4 af41 match cos 4 class-map match-any Voice description Includes Voice and Call Signalling match ip dscp ef match ip dscp cs3 match cos 5 class-map match-any Routing match ip dscp cs6 match cos 6 class-map match-any Scavenger match ip dscp csl match cos 1 policy-map MAN-OoS-DSCP class Voice priority percent 4 set cos 5 class Bulk-Data bandwidth percent 20 set cos 3 class Crit-Data bandwidth percent 20 set cos 7 class Net-Management bandwidth percent 2 set cos 2 class Video bandwidth percent 5 set cos 4 class Routing bandwidth percent 2 set cos 6 class Scavenger bandwidth percent 1 set cos 1 class class-default bandwidth percent 45 set cos 0

例 14-1 DSCP 限界を解決するクラスおよびポリシー マップ定義コンフィギュレーション

QoS の設定

このセクションでは、MQC を使用して ML シリーズ カードの QoS 機能を設定するタスクについて 説明します。ML シリーズ カードは、MQC の全機能をサポートするわけではありません。

クラスベースの QoS 機能を設定してイネーブルにするには、以降で説明する手順を実行します。

- トラフィック クラスの作成 (p.14-13)
- トラフィック ポリシーの作成 (p.14-14)
- インターフェイスへのトラフィックポリシーの適用 (p.14-18)
- CoS ベース QoS の設定 (p.14-18)

QoS の設定例については、「QoS の設定例」(p.14-20)を参照してください。

トラフィック クラスの作成

トラフィック クラスを作成するには、class-map グローバル コンフィギュレーション コマンドを使用します。class-map コマンドの構文は次のとおりです。

class-map [match-any | match-all] class-map-name
no class-map [match-any | match-all] class-map-name

match-all および match-any オプションは、トラフィック クラスに複数の一致条件が設定されている 場合にのみ指定する必要があります。class-map match-all コマンドは、パケットが指定のトラフィッ ク クラスに適合するために、トラフィック クラスのすべての一致条件が満たされる必要がある場 合に使用します。class-map match-any コマンドは、パケットが指定のトラフィック クラスに適合 するためには、トラフィック クラスの一致条件のうち1つだけが満たされる必要がある場合に使用 します。match-all も match-any キーワードも指定されていない場合、トラフィック クラスは class-map match-all コマンドと同様に動作します。

一致条件を含むトラフィック クラスを作成するには、class-map グローバル コンフィギュレーション コマンドを使用してトラフィック クラス名を指定し、必要に応じて表 14-1 の match コマンドを使用します。

コマンドの説明	目的
Router(config)# class-map class-map-name	トラフィック クラスのユーザ定義名を指定します。名前には、最大 40 文字の英数字を指定できます。match-all も match-any も指定しな い場合、トラフィック クラスのメンバーとして分類するには、トラ フィックがすべての一致条件を満たす必要があります。
	デフォルトの一致条件はありません。
	複数の一致条件がサポートされます。class-map コマンドの match-all および match-any サブコマンドによって制御されるとおり、コマンド は条件のすべてまたはいずれかを照合します。
Router(config)# class-map match-all class-map-name	トラフィック クラスに入るトラフィックを、トラフィック クラスの メンバーとして分類するには、すべての一致条件を満たす必要がある ことを指定します。
Router(config)# class-map match-any class-map-name	トラフィック クラスに入るトラフィックを、トラフィック クラスの メンバーとして分類するには、一致条件のいずれか1つを満たす必要 があることを指定します。
Router(config-cmap)# match any	すべてのパケットを照合することを指定します。

表 14-1 トラフィック クラス コマンド

表 14-1 トラフィック クラス コマンド (続き)

コマンドの説明	目的
Router(config-cmap)# match bridge-group bridge-group-number	ブリッジグループ番号を指定します。パケットの内容はこのブリッジ グループ番号に対して照合され、そのクラスに属するかどうかが判別 されます。
Router(config-cmap) # match cos cos-number	CoS 値を指定します。パケットの内容はこの CoS 値に対して照合され、そのクラスに属するかどうかが判別されます。
<pre>Router(config-cmap)# match input-interface interface-name</pre>	一致条件として使用する入力インターフェイスの名前を指定します。 パケットはこの一致条件に対して照合され、そのクラスに属するかど うかが判別されます。
	RPR で使用する Shared Packet Ring (SPR; 共有パケット リング) イン ターフェイスである SPR1 は、ML シリーズ カードの有効なインター フェイス名です。SPR インターフェイスの詳細については、第17章 「RPR の設定」を参照してください。
	インターフェイスの INPUT (冗長) に適用する場合、input-interface の選択は有効ではありません。
Router(config-cmap)# match ip dscp ip-dscp-value	一致条件として使用する最大 8 つの DSCP 値を指定します。各サービス コード ポイントに指定できる値は、0 ~ 63 です。
Router (config-cmap)# match ip precedence ip-precedence-value	一致条件として使用する最大 8 つの IP 優先順位値を指定します。

トラフィック ポリシーの作成

トラフィック ポリシーを設定するには、policy-map グローバル コンフィギュレーション コマンド を使用して、トラフィック ポリシー名を指定し、以降に示すコンフィギュレーション コマンドを 使用してトラフィック クラスを関連付けます。このトラフィック クラスは、class-map コマンドと 1 つ以上の QoS 機能で設定したものです。class コマンドを使用すると、トラフィック クラスはト ラフィック ポリシーに関連付けられます。class コマンドは、ポリシーマップ コンフィギュレーショ ン モードを開始してから発行する必要があります。トラフィック ポリシーの QoS ポリシーが定義 されている場合、class コマンドを入力すると、自動的にポリシーマップ クラス コンフィギュレー ション モードになります。

ポリシー マップの任意のクラスで、帯域幅またはプライオリティ アクションを使用するときには、 match-any コマンドで定義され、そのポリシー マップに帯域幅またはプライオリティ アクションが 設定されているクラスが存在している必要があります。これは、ある帯域幅が割り当てられたデ フォルト クラスに、すべてのトラフィックを確実に分類できるようにするためです。そのクラスを 使用することを予定していない場合や、デフォルト トラフィックに対して帯域幅を予約する必要が ない場合には、最小帯域幅を割り当てることができます。

次の例は、ポリシーマップ クラス コンフィギュレーション モードのトラフィック ポリシーで適用 できる QoS ポリシーの詳細です。

policy-map コマンドの構文は次のとおりです。

policy-map policy-name
no policy-map policy-name

class コマンドの構文は次のとおりです。

class class-map-name no class class-map-name

一致条件を満たさないすべてのトラフィックは、デフォルト トラフィック クラスに属します。ユー ザはデフォルト トラフィック クラスを設定できますが、削除することはできません。

トラフィックポリシーを作成するには、必要に応じて表14-2のコマンドを使用します。

表 14-2 トラフィック ポリシー コマンド

コマンドの説明	目的	
Router (config)# policy-map policy-name	設定するトラフィック ポリシーの名前を指定します。名前には、最 大 40 文字の英数字を指定できます。	
Router (config-pmap)# class class-map-name	事前定義されたトラフィック クラスの名前を指定します。このクラ スは、class-map コマンドで設定したクラスであり、トラフィックを トラフィック ポリシーに分類するために使用します。	
Router (config-pmap)# class class-default	トラフィック ポリシーの一部として作成するデフォルト クラスを指 定します。	
Router (config-pmap-c)# bandwidth { <i>bandwidth-kbps</i> percent <i>percent</i> }	輻輳時におけるトラフィック クラスへの最小帯域幅保証を指定しま す。最小帯域幅保証は、Kbps(キロビット/秒)または使用可能帯域 幅全体のパーセンテージで指定できます。	
	ML シリーズ カードでの有効な選択肢は次のとおりです。	
	• Kbps で指定したレート	
	 使用可能帯域幅全体のパーセンテージ(1~100) 	
	1 つのポリシー マップに複数のクラスおよび帯域幅アクションが指 定されている場合、帯域幅指定時に同じ選択肢を使用する必要があり ます(キロビットまたは%)。	
	(注) bandwidth コマンドを使用すると、超過トラフィック(設定したコミットを超えるトラフィック)には、他のトラフィック クラスと比較してそのトラフィック クラスの相対的な帯域幅コミットメントに応じて、使用可能帯域幅が割り当てられます。同じコミットが設定された2つのクラスの超過トラフィックは、使用可能帯域幅に同等にアクセスできます。最小コミットが設定されたクラスの超過トラフィックには、高いコミットが設定されたクラスの超過帯域幅と比較して最小限の使用可能帯域幅だけが割り当てられます。	
	 ★ (注) 実際に設定できる帯域幅(Kbps または Mbps)はポートごとで、MLシリーズカードの設定によって異なります。show interface コマンドは、ポートの最大帯域幅を表示します(たとえば、BW 100000 キロビット)。インターフェイスに適用されたすべての帯域幅とプライオリティアクション、およびcos priority-mcast 帯域幅の合計は、ポートの合計帯域幅を超えることはできません。 	

表 14-2 トラフィック ポリシー コマンド (続き)

コマンドの説明	目的
Router (config-pmap-c) # police cir-rate-bps normal-burst-byte [max-burst-byte] [pir pir-rate-bps] [conform-action {set-cos-transmit transmit drop}] [exceed-action {set-cos-transmit drop}] [violate-action {set-cos-transmit drop}]	ポリシー マップが入力に適用されているときに、現在選択されてい るクラスのポリシング機能を定義します。ポリシングは、出口ではな く入口でのみサポートされています。
	 cir-rate-bps には、bps(ビット/秒)で平均 CIR を指定します。指 定できる範囲は 96000 ~ 800000000 です。
	 normal-burst-byte には、CIR のバースト サイズをバイトで指定します。指定できる範囲は 8000 ~ 64000 です。
	 (任意) maximum-burst-byte には、PIR のバーストをバイトで指定 します。指定できる範囲は 8000 ~ 64000 です。
	 (任意) pir-rate-bps には、平均 PIR トラフィック レートを bps で 指定します。指定できる範囲は 96000 ~ 800000000 です。
	• (任意)適合アクション オプションは次のとおりです。
	- CoS プライオリティ値を設定して送信
	- パケットの送信(デフォルト)
	- パケットの廃棄
	• (任意)超過アクション オプションは次のとおりです。
	- CoS 値を設定して送信
	- パケットの廃棄(デフォルト)
	 (任意)違反アクションは、pir が設定された場合にのみ有効です。 違反アクションオプションは次のとおりです。
	- CoS 値を設定して送信
	- パケットの廃棄(デフォルト)

表 14-2 トラフィック ポリシー コマンド (続き)

コマンドの説明	目的	
Router (config-pmap-c)# priority <i>kbps</i>	 現在選択しているクラスの低遅延キューイングを指定します。このコマンドは、出力にのみ適用できます。ポリシーマップを出力に適用している場合は、このクラスに対して完全プライオリティが設定された出力キューを作成します。有効なレート選択肢は、Kbps だけです。 (注) priority コマンドは、デフォルトのクラスには適用されません。 	
	 (注) プライオリティ アクションを使用すると、プライオリティレートとして指定されたレートに関係なく、そのクラスのトラフィックには 100%の CIR が与えられます。他の帯域幅コミットメントをインターフェイスに確実に適合させるには、この出力クラスにトラフィックを配信する可能性があるすべてのインターフェイスの入力でポリシング機能を設定し、最大レートを指定したプライオリティレートに制限する必要があります。 	
	★ (注) 実際に設定できる帯域幅(Kbps または Mbps)はポートごとで、MLシリーズカードの設定によって異なります。show interface コマンドは、ポートの最大帯域幅を表示します(たとえば、BW 100000キロビット)。インターフェイスに適用されたすべての帯域幅とプライオリティアクション、およびcos priority-mcast 帯域幅の合計は、ポートの合計帯域幅を超えることはできません。	
Router (config-pmap-c)# set cos cos-value	 CoS 値またはパケットに関連付ける値を指定します。指定できる範囲は0~7です。 このコマンドは、出力に適用したポリシーマップでのみ使用できます。このコマンドは、現在選択しているクラスの発信パケットに設定する VLAN CoS プライオリティを指定します。QinQ を使用する場合最上位の VLAN タグがマーキングされます。発信パケットに VLAI タグがない場合、アクションは無効になります。このアクションはポリシング機能によって set-cos アクションが実行されたあとに、パケットに適用されます。したがって、ポリシング機能のアクションによって設定された CoS は上書きされます。 	
	パケットがポリシング機能によりマーキングされてインターフェイ スから転送され、しかもインタフェースにトラフィック クラスの set-cos アクションが割り当てられている場合、ポリシング アクショ ンで指定された値は、IEEE 802.1p CoS フィールドの設定に優先しま す。 このコマンドも、RPR インターフェイスで ML シリーズを出て行く パケットの RPR ヘッダーに CoS 値を設定します	

インターフェイスへのトラフィック ポリシーの適用

トラフィック ポリシーをインターフェイスに適用し、ポリシーを適用する必要のある方向(イン ターフェイスへの着信パケット、またはインターフェイスからの送信パケット)を指定するには、 service-policy インターフェイス コンフィギュレーション コマンドを使用します。指定した方向で インターフェイスに適用できるトラフィック ポリシーは1つだけです。

インターフェイスからトラフィック ポリシーを削除する場合は、このコマンドの no 形式を使用します。service-policy コマンドの構文は次のとおりです。

service-policy {input | output} policy-map-name
no service-policy {input | output} policy-map-name

トラフィック ポリシーをインターフェイスに適用するには、グローバル コンフィギュレーション モードで、必要に応じて次のコマンドを使用します。

ステップ 1	Router(config)# interface <i>interface-id</i>	インターフェイス コンフィギュレーション モードを開 始し、ポリシー マップを適用するインターフェイスを 指定します。
		有効なインターフェイスは、物理イーサネットと POS インターフェイスに制限されています。
		★ ポリシーマップは、SPR インターフェイス、サブインターフェイス、ポート チャネル インターフェイス、ポート チャネル インターフェイス、または Bridge Group Virtual Interface (BVI; ブリッジ グループ仮想インターフェイス)には適用できません。
ステップ 2	Router(config-if)# service-policy output policy-map-name	インターフェイスの出力方向に適用するトラフィック ポリシーの名前を指定します。トラフィック ポリシー は、そのインターフェイスを出るすべてのトラフィック を評価します。
ステップ 3	Router(config-if)# service-policy input policy-map-name	インターフェイスの入力方向に適用するトラフィック ポリシーの名前を指定します。トラフィック ポリシー は、そのインターフェイスに入るすべてのトラフィック を評価します。

CoS ベース QoS の設定

cos commit *cos-value* グローバル コマンドを使用すると、ML シリーズ カードでネットワーク イン ターフェイスに着信するパケットの QoS 処理を、per-customer-queue ポリシング機能ではなく、添 付されてくる CoS 値に従って行わせることができます。

CoS ベース QoS は、表 14-3 に示す 1 つの cos commit cos-value グローバル コマンドで実行できます。

表14-3 CoS	6 Commit	コマン	ンド
-----------	----------	-----	----

コマンドの説明	目的
Router(config) # cos-commit cos-value	CIR として <i>cos-value</i> 以上の CoS が設定された着信 パケットと、DE としてこの値より小さい CoS が設 定されたパケットにラベルを付けます。

QoS 設定のモニタリングおよび確認

ML シリーズ カードの QoS を設定したあと、さまざまな show コマンドを使用して、クラス マップ およびポリシー マップの設定を表示できます。トラフィック クラスまたはトラフィック ポリシー に関する情報を表示するには、EXEC モードで、必要に応じて次のコマンドのいずれかを使用しま す。表 14-4 に、QoS ステータスに関連するコマンドを示します。

表 14-4 QoS ステータスに関するコマンド

コマンドの説明	目的
Router# show class-map name	ユーザ固有のトラフィック クラスの情報を表示し ます。
Router# show policy-map	設定されているすべてのトラフィック ポリシーを 表示します。
Router# show policy-map name	ユーザ固有のポリシー マップを表示します。
Router# show policy-map interface <i>interface</i>	インターフェイスに適用されたすべての入力および 出力ポリシーの設定を表示します。このコマンドに よって表示される統計情報はサポートされていない ため、0が表示されます。

例 14-2 に、QoS コマンドの例を示します。

例 14-2 QoS ステータス コマンドの例

```
Router# show class-map
Class Map match-any class-default (id 0)
Match any
Class Map match-all policer (id 2)
Match ip precedence 0
Router# show policy-map
Policy Map police_f0
```

class policer police 1000000 10000 conform-action transmit exceed-action drop

Router# show policy-map interface

FastEthernet0

service-policy input: police_f0

class-map: policer (match-all)
 0 packets, 0 bytes
 5 minute offered rate 0 bps, drop rate 0 bps
 match: ip precedence 0

class-map: class-default (match-any)
 0 packets, 0 bytes
 5 minute offered rate 0 bps, drop rate 0 bps
 match: any
 0 packets, 0 bytes
 5 minute rate 0 bps

QoS の設定例

このセクションでは、特定のコマンドとネットワーク設定の例について説明します。

- トラフィック クラスの定義例
- トラフィック ポリシーの作成例
- class-map match-any および class-map match-all コマンドの例
- match spr1 インターフェイスの例
- ML シリーズの VoIPの例
- ML シリーズのポリシングの例
- ML シリーズの CoS ベース QoS の例

トラフィック クラスの定義例

例 14-3 に、インターフェイス fastethernet0 への着信トラフィックと一致する class1 というクラス マップの作成方法を示します。

例 14-3 クラス インターフェイス コマンドの例

Router(config)# class-map class1
Router(config-cmap)# match input-interface fastethernet0

例 14-4 に、IP precedence 値 5、6、7 が設定された着信トラフィックと一致する class2 というクラス マップの作成方法を示します。

例 14-4 クラス IP precedence コマンドの例

Router(config)# class-map match-any class2
Router(config-cmap)# match ip precedence 5 6 7

この例の567のように、複数の値を指定する一致ルールが class-map に含まれている場合、 class-map をデフォルトの match-all ではなく、 match-any にする必要があります。 match-any class-map を指定 しないと、エラー メッセージが表示され、そのクラスは無視されます。 サポートされている複数 の値を使用できるコマンドは、 match cos、 match ip precedence、 および match ip dscp です。

例 14-5 に、ブリッジ グループ 1 に基づいた着信トラフィックと一致する class3 というクラス マップの作成方法を示します。

例 14-5 クラス マップ ブリッジ グループ コマンドの例

Router(config)# class-map class3
Router(config-cmap)# match bridge-group 1

トラフィック ポリシーの作成例

例 14-6 では、policy1 というトラフィック ポリシーは、ポリシー仕様(デフォルト クラスの帯域幅 割り当て要求など)と、2 つの追加クラス(class1 および class2)を含むように定義されています。 これらのクラスの一致条件は、トラフィック クラスで定義済みです。「トラフィック クラスの作成」 (p.14-13)を参照してください。

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

例 14-6 トラフィック ポリシーの作成例

```
Router(config)# policy-map policy1
Router(config-pmap)# class class-default
Router(config-pmap-c)# bandwidth 1000
Router(config-pmap)# exit
```

Router(config-pmap)# class class1
Router(config-pmap-c)# bandwidth 3000
Router(config-pmap)# exit

Router(config-pmap)# class class2
Router(config-pmap-c)# bandwidth 2000
Router(config-pmap)# exit

class-map match-any および class-map match-all コマンドの例

ここでは、class-map match-any コマンドと class-map match-all コマンドの違いについて説明しま す。match-any および match-all オプションは、複数の一致条件が存在するときに、パケットをどの ように評価するかを決定します。パケットがトラフィック クラスのメンバーとみなされるために は、すべての一致条件(match-all)または一致条件のいずれか 1 つ(match-any)を満たす必要が あります。

例 14-7 に、class-map match-all コマンドを使用して設定したトラフィック クラスを示します。

例 14-7 class-map match-all コマンドの例

Router(config)# class-map match-all cisco1
Router(config-cmap)# match cos 1
Router(config-cmap)# match bridge-group 10

インターフェイスで設定された cisco1 というトラフィック クラスにパケットが到着すると、そのパ ケットが評価され、cos1 および bridge-group 10 と一致するかどうかが判別されます。この両方の一 致条件を満たしている場合、パケットはトラフィック クラス cisco1 に一致します。

cisco2 というトラフィック クラスでは、使用できる一致条件が見つかるまで、一致条件の評価が続けられます。パケットが評価され、まず cos 1 を一致条件として使用できるかどうかが判別されます。cos 1 が一致条件として使用できる場合、パケットはトラフィック クラス cisco2 と照合されます。cos 1 が一致条件として使用できない場合、次に bridge-group 10 が一致条件として評価されます。各一致条件が評価され、パケットがその条件と一致するかどうかが確認されます。一致に成功すると、パケットはトラフィック クラス cisco2 のメンバーとして分類されます。パケットが指定されたどの条件にも一致しない場合は、パケットはトラフィック クラスのメンバーとして分類されます。す。

class-map match-all コマンドでは、パケットが指定されたトラフィック クラスのメンバーとみなさ れるには、すべての一致条件を満たす必要あります(論理 AND 演算子)。この例では、cos 1 AND bridge-group 10 という条件に一致する必要があります。ただし、class-map match-any コマンドでパ ケットをトラフィック クラスのメンバーとして分類する場合は、1 つの一致条件だけが満たされる 必要があります(論理 OR 演算子)。この例では、cos 1 OR bridge-group 10 OR ip dscp 5 という条件 に一致する必要があります。

例 14-8 に、class-map match-any コマンドで設定されたトラフィック クラスを示します。

例 14-8 class-map match-any コマンドの例

```
Router(config)# class-map match-any cisco2
Router(config-cmap)# match cos 1
Router(config-cmap)# match bridge-group 10
Router(config-cmap)# match ip dscp 5
```

match spr1 インターフェイスの例

例 14-9 では、class-map を定義するとき、SPR インターフェイスは match input-interface CLI に対す るパラメータとして指定します。

例 14-9 class-map SPR インターフェイス コマンドの例

```
Router(config)# class-map spr1-cos1
Router(config-cmap)# match input-interface spr1
Router(config-cmap)# match cos 1
Router(config-cmap)# end
Router# sh class-map spr1-cos1
Class Map match-all spr1-cos1 (id 3)
Match input-interface SPR1
Match cos 1
```

ML シリーズ の VoIP の例

図 14-7 に、ML シリーズ QoS の例を示します。関連するコマンドは、例 14-10 に示しています。

例 14-10 ML シリーズの VoIP コマンド

図 14-7 ML シリーズの VolP の例

```
Router(config) # class-map match-all voip
Router(config-cmap) # match ip precedence 5
Router(config-cmap)# exit
Router(config) # class-map match-any default
Router(config-cmap) # match any
Router(config-cmap)# exit
Router(config) # policy-map pos0
Router(config-pmap)# class default
Router(config-pmap-c)# bandwidth 1000
Router(config-pmap-c)# class voip
Router(config-pmap-c)# priority 1000
Router(config-pmap-c)# interface FastEthernet0
Router(config-if) # ip address 1.1.1.1 255.255.255.0
Router(config-if) # interface POS0
Router(config-if) # ip address 2.1.1.1 255.255.255.0
Router(config-if) # service-policy output pos0
Router(config-if) # crc 32
Router(config-if) # no cdp enable
Router(config-if) # pos flag c2 1
```

ML シリーズのポリシングの例

図 14-8 に、ML シリーズのポリシングの例を示します。この例では、0~1,000,000 bps の IP precedence でトラフィックを制限するポリシング機能の設定方法を示しています。 関連するコードは、例 14-11 に示しています。

図 14-8 ML シリーズのポリシングの例

例 14-11 ML シリーズのポリシング コマンド

```
Router(config)# class-map match-all policer
Router(config-cmap)# match ip precedence 0
Router(config-cmap)# exit
Router(config)# policy-map police_f0
Router(config-pmap)# class policer
Router(config-pmap-c)# police 1000000 10000 conform-action transmit exceed-action drop
Router(config-pmap-c)# interface FastEthernet0
Router(config-if)# service-policy input police_f0
```

ML シリーズの CoS ベース QoS の例

図 14-9 に、ML シリーズの CoS ベース QoS の例を示します。関連するコードは、図の次の例に示しています。CoS の例は、ML シリーズ カードが RPR に設定され、ML シリーズ カードの POS ポートがポイントツーポイント SONET 回線によってリンクされていることを前提としています。ML シリーズ カード A および ML シリーズ カード C は、カスタマー アクセス ポイントです。ML シリーズ カード B は、カスタマー アクセス ポイントではありません。RPR の設定方法の詳細については、第 17 章「RPR の設定」を参照してください。

例 14-12 に、図 14-9 の ML シリーズ カード A の設定に使用したコマンドを示します。

例 14-12 ML シリーズ カード A の設定 (カスタマー アクセス ポイント)

ML_Series_A(config)# cos commit 2
ML_Series_A(config)# policy-map Fast5_in
ML_Series_A(config-pmap)# class class-default
ML_Series_A(config-pmap-c)# police 5000 8000 8000 pir 10000 conform-action
set-cos-transmit 2 exceed-action set-cos-transmit 1 violate-action drop

例 14-13 に、図 14-9 の ML シリーズ カード B の設定に使用したコマンドを示します。

例 14-13 ML シリーズ カード B の設定(非カスタマー アクセス ポイント)

ML_Series_B(config)# cos commit 2

例 14-14 に、図 14-9 の ML シリーズ カード C の設定に使用したコマンドを示します。

例 14-14 ML シリーズ カード C の設定 (カスタマー アクセス ポイント)

```
ML_Series_B(config)# cos commit 2
ML_Series_B(config)# policy-map Fast5_in
ML_Series_B(config-pmap)# class class-default
ML_Series_B(config-pmap-c)# police 5000 8000 8000 pir 10000 conform-action
set-cos-transmit 2 exceed-action set-cos-transmit 1 violate-action drop
```

マルチキャスト QoS およびプライオリティ マルチキャスト キューイン グの概要

ML シリーズ カードの QoS は、デフォルトのマルチキャスト トラフィック クラスの他に、マルチ キャスト トラフィックに対する 2 つのプライオリティ クラスの作成をサポートします。トラフィッ クのマルチキャスト プライオリティ キューイング クラスを作成することで、ML シリーズ カード がプライオリティ処理を行うために入力マルチキャスト トラフィック内の既存の CoS 値を認識す るように設定します。

マルチキャスト プライオリティ キューイングの CoS 照合は、各パケットの「内部」CoS 値に基づ いています。通常ではこの値は、出力 CoS 値(ポリシング機能でマーキングがイネーブルの場合は マーキング後)と同じですが、2 つの状況においては異なります。dot1q トンネリングが使用された 場合には、「内部」CoS 値は、出力値と異なります。dot1q トンネルでは、dot1q トンネルに入るとき およびトンネルから出るときに、内部 CoS 値は必ず外部タグ CoS の値となります。また、パケッ トが VLAN 上で転送され、VLAN タグが出口で削除されてパケットがタグなしで送信された場合に も、「内部」CoS 値は出力値と異なります。この場合、内部 CoS はタグが削除された CoS です(入 力ポリシングとマーキングがイネーブルな場合には入力ポリシングとマーキングを含む)。

cos priority-mcast コマンドは、マルチキャスト パケットの CoS は変更せず、マルチキャスト プラ イオリティ キューイング クラスの帯域幅の割り当てだけ変更します。このコマンドにより帯域幅 は最小となり、デフォルトのマルチキャストまたはプロードキャスト キューとは別にキューイング されます。

マルチキャスト プライオリティ キューイング クラスを作成することで、特定のタイプのマルチク ラス トラフィックで特別な処理を行うことができます。この処理は、マルチキャスト ビデオ配信 および SP のマルチキャスト トラフィックの場合に特に有益です。たとえば、SP は SP 自身のマル チキャスト管理トラフィックを確実に保護する必要がある場合があります。保護するには、マルチ キャスト管理トラフィックの CoS 値に対して、ML シリーズ カードでマルチキャスト プライオリ ティ キューイング クラスを作成して、最小帯域幅を保証できます。マルチキャスト ビデオ配信の 場合、マルチキャスト ビデオ トラフィックの CoS 値に対する、ML シリーズ カード上のマルチキャ スト プライオリティ キューイング クラスにより、VoIP や他のイーサネット サービスと共有する ネットワークでマルチキャスト ビデオに使用する帯域幅の需要を効率的に管理できます。

マルチキャスト プライオリティ キューイング トラフィックは、RPR およびイーサチャネル上で ポート ベースのロード バランシングを使用します。デフォルトのマルチキャスト トラフィックは、 イーサチャネル上ではなく、RPR 上でロード バランシングされます。マルチキャスト ロード バラ ンシングは、ギガビット イーサネット ポート 0 を POS ポート 0 にマップし、ギガビット イーサ ネット ポート 1 を POS ポート 1 にマップします。マルチキャスト ロード バランシングは、ファス ト イーサネット ポート 0 およびすべての偶数番号のファスト イーサネット ポートを POS 0 に、す べての奇数番号のファスト イーサネット ポートを POS 1 にマップします。

マルチキャスト プライオリティ キューイングの帯域幅は、複数の送信元からのトラフィックで長 期間にわたって使用超過にならないようにします。使用超過が続くと、マルチキャスト プライオ リティ キューイングのスループットが減少します。

デフォルトのマルチキャスト QoS

デフォルトのマルチキャスト トラフィックは、マルチキャスト プライオリティ キューイングとし て分類されないマルチキャスト トラフィック(フラッディングしたトラフィックを含む)です。ま た、デフォルトのマルチキャスト クラスには、ブロードキャスト データ トラフィック、制御トラ フィック、レイヤ2プロトコル トンネリング、および MAC(メディア アクセス制御)学習時の未 知の MAC のフラッディング トラフィックが含まれます。

ML シリーズ カードで QoS が設定されていない (マルチキャスト プライオリティ キューイングなし、出力ポリシー マップなし)場合、デフォルトのマルチキャスト帯域幅は最小で合計帯域幅の 10% です。

マルチキャスト プライオリティ キューイングに帯域幅が割り当てられ、出力ポリシー マップが適用されていない場合、デフォルトのマルチキャスト輻輳帯域幅は、最小で、マルチキャスト プライオリティ キューイングに割り当てられていない帯域幅の 10% です。

出力ポリシー マップがインターフェイスに適用されている場合、デフォルトのマルチキャストおよ びデフォルトのユニキャストではデフォルトのクラスに割り当てられた最小帯域幅を共有します。 また、このデフォルト クラスは match-any クラスとしても知られています。デフォルト マルチキャ ストの最小帯域幅は、デフォルト クラス帯域幅の合計の 10% です。

マルチキャスト プライオリティ キューイング QoS の制限

マルチキャスト プライオリティ キューイング QoS に適用される制限は次のとおりです。

- マルチキャスト プライオリティ キューイング トラフィックに設定された帯域割り当てと利用 率はグローバルで、MLシリーズ カード上のすべてのポート(POS とファスト イーサネットの 両方またはギガビット イーサネット)に適用されます。これらのポートでマルチキャスト プ ライオリティ キューイング トラフィックを伝送するかどうかは関係ありません。この機能を 設定した場合、MLシリーズ カード上のすべてのポートでトラフィックのレートを低減できま す。デフォルトのマルチキャスト トラフィックは、マルチキャスト プライオリティ キューイ ングのようにグローバルではなく、出力ポートでのみ帯域幅を使用します。
- マルチキャスト プライオリティ キューイング QoS は、レイヤ 2 ブリッジングに対してのみサポートされています。
- ML シリーズ カードは、最大で2つのマルチキャスト プライオリティ キューイング クラスを サポートします。
- ML シリーズ カードの他の QoS とは異なり、マルチキャスト プライオリティ キューイング QoS は Cisco IOS MQC の一部ではありません。
- priority-mcast 帯域幅の割り当てはポートごとに行われ、cos priority-mcast を使用して ML1000-2 で設定可能な最大帯域幅は 1000 Mbps です。ただし、マルチキャスト プライオリティ キュー イングのロード バランシングにより、有効な帯域幅が増えます。たとえば、GEC 回線と STS-24c RPR 回線を備えた ML1000-2 では、ポートごとに 1000 Mbps を割り当てることができますが、 ロード バランシングにより合計で 2000 Mbps の有効な帯域幅を得ることができます。

マルチキャスト プライオリティ キューイング QoS の設定

マルチキャスト トラフィックのプライオリティ クラスを設定するには、表 14-5 に示す cos priority-mcast グローバル コンフィギュレーション コマンドを使用します。

表 14-5 CoS マルチキャスト プライオリティ キューイング コマンド

	目的
Router (config)# [no] cos priority-mcast cos-value {bandwidth-kbps mbps bandwidth-mbps percent percent}	マルチキャスト CoS 値に基づいてマルチキャスト トラフィックのプラ イオリティ クラスを作成し、輻輳が発生したときのトラフィック クラス の最小帯域幅保証を指定します。
	cos-value では、帯域割り当てに使用されるマルチキャスト パケットの CoS 値を指定します。トラフィックの単一 CoS にのみ一致します(範囲 ではありません)。サポートされている CoS の範囲は0~7です。
	最小帯域幅保証は、Kbps、Mbps、または使用可能帯域幅全体のパーセン テージで指定できます。
	ML シリーズ カードの有効な選択肢は次のとおりです。
	• Kbps で指定したレート
	• Mbps で指定したレート
	 使用可能ポート帯域幅全体のパーセンテージ(1~100)
	コマンドを再入力するときに、 <i>cos-value</i> が同じでも帯域幅レートが異なる場合は、既存のクラスの帯域幅が変更されます。
	異なる <i>cos-value</i> を指定してコマンドを再入力すると、別のマルチキャス ト プライオリティ キューイングが作成されます。最大 2 つのマルチキャ スト プライオリティ キューイング クラスが作成可能です。
	このコマンドの no 形式を使用すると、マルチキャスト プライオリティ キューイング クラスが削除されます。
	 ◆ (注) 実際に設定できる帯域幅(Kbps または Mbps)はポートごとで、 ML シリーズ カードの設定によって異なります。show interface コマンドは、ポートの最大帯域幅を表示します(たとえば、BW 100000 キロビット)。インターフェイスに適用されたすべての帯 域幅とプライオリティ アクション、および cos priority-mcast 帯域 幅の合計は、ポートの合計帯域幅を超えることはできません。
	 ★ (注) ポートで、実際に設定できる帯域幅を超える priority-mcast 帯域幅を設定しようとすると、priority-mcast 設定変更が失敗し、マルチキャスト プライオリティ キューイングの帯域幅保証は変更されません。

CoS ベース パケットの統計情報の概要

CoS アカウンティングがイネーブルの場合、拡張パフォーマンス モニタリングでは、MLシリーズ カード インターフェイスの CoS 単位のパケット統計情報が表示されます。CoS 単位のパケット統 計情報は、ブリッジド サービスに対してのみサポートされており、IP ルーティングや Multiprotocol Label Switching (MPLS; マルチプロトコル ラベル スイッチング)に対してはサポートされていませ ん。CoS ベースのトラフィック利用率は、ファスト イーサネットまたはギガビット イーサネット インターフェイスあるいはサブインターフェイス (VLAN)レベル、POS インターフェイス レベル で表示されます。ただし、POS サブインターフェイス レベルでは表示されません。RPR 統計情報 は SPR インターフェイス レベルでは使用できませんが、SPR インターフェイスで構成された各 POS ポートには使用できます。EtherChannel(ポートチャネル)および BVI の統計情報は、メンバー ポー トレベルでのみ使用できます。表 14-6 に、特定のインターフェイスで使用できる統計情報のタイ プを示します。

表 14-6 ML シリーズ カード インターフェイスのパケット統計情報

収集される統計情報	ギガビット / ファスト イー サネット インターフェイス	ギガビット/ファスト イーサ ネット サプインターフェイ ス (VLAN)	POS インターフェイス	POS サブインターフェイス
入力 パケットおよびバイト	含まれている	含まれている	含まれていない	含まれていない
出力 パケットおよびバイト	含まれている	含まれている	含まれていない	含まれていない
廃棄カウント パケットおよ びバイト ¹	含まれている	含まれていない	含まれている	含まれていない

1. 廃棄カウントに含まれるのは出力輻輳が原因の廃棄だけであり、出力インターフェイスでカウントされます。

Cos ベース パケット統計情報は、CISCO-PORT-QOS MIB (管理情報ベース)の拡張機能を使用して、Cisco IOS の CLI および SNMP (簡易ネットワーク管理プロトコル)を通じて使用できます。 CTC を通じて利用できません。

CoS ベース パケット統計情報の設定

CoS ベース パケット統計情報を使用するには、拡張マイクロコード イメージを ML シリーズ カードにロードする必要があります。

(注)

IEEE 802.1Q(QinQ)対応インターフェイスの場合、CoS アカウンティングはサービス プロバイ ダーが付けた外側のメトロ タグの CoS 値にのみ基づきます。カスタマー ネットワークによって送 信されたパケット内部の CoS 値は、CoS アカウンティング用とはみなされません。

拡張マイクロコード イメージの詳細については、「複数のマイクロコード イメージ」(p.3-14)を参照してください。

インターフェイスで CoS ベース パケット統計情報をイネーブルにするには、インターフェイス コンフィギュレーション レベルで 表 14-7 に示すコマンドを使用します。

表 14-7 CoS ベース パケット統計情報のコマンド

コマンドの説明	目的
Router(config-if)# cos accounting	CoS ベース パケット統計情報をイネーブルにし、特 定のインターフェイスとそのインターフェイスのす べてのサブインターフェイスで記録されるようにし ます。このコマンドは、インターフェイス コンフィ ギュレーション モードでのみサポートされていま す。サブインターフェイス コンフィギュレーション モードではサポートされていません。
	統計情報をディセーブルにするには、このコマンドの no 形式を使用します。

ML シリーズ カードで CoS ベース パケット統計情報を設定したあと、さまざまな show コマンドを 使用して統計情報を表示できます。この情報を表示するには、EXEC モードで 表 14-8 のコマンド のいずれかを使用します。

表 14-8 CoS ベース パケット統計情報のコマンド

コマンドの説明	目的		
Router# show interface type number cos	インターフェイスで使用できる CoS ベース パケッ ト統計情報を表示します。		
Router # show interface type number.subinterface-number cos	ファスト イーサネットまたはギガビット イーサ ネット サブインターフェイスで使用できる CoS ベースパケット統計情報を表示します。POS サブイ ンターフェイスでは使用できません。		

例 14-15 に、これらのコマンドの例を示します。

例 14-15 CoS ベース パケットの統計情報のコマンド例

Router# show interface gigabitethernet 0.5 cos GigabitEthernet0.5 Stats by Internal-Cos Input: Packets Bytes 2000 Cos 0: 31 Cos 1: Cos 2: 5 400 Cos 3: Cos 4: Cos 5: Cos 6: Cos 7: Output: Packets Bytes Cos 0: 1234567890 1234567890 Cos 1: 31 2000 Cos 2: Cos 3: Cos 4: Cos 5: Cos 6: 10 640 Cos 7: Router# show interface gigabitethernet 0 cos GigabitEthernet0 Stats by Internal-Cos Input: Packets Bytes Cos 0: 123 3564 Cos 1: Cos 2: 3 211 Cos 3: Cos 4: Cos 5: Cos 6: Cos 7: Output: Packets Bytes Cos 0: 1234567890 1234567890 Cos 1: 3 200 Cos 2: Cos 3: Cos 4: Cos 5: Cos 6: 1 64 Cos 7: Output: Drop-pkts Drop-bytes Cos 0: 1234567890 1234567890 Cos 1: Cos 2: Cos 3: Cos 4: Cos 5: 1 64 Cos 6: 10 640 Cos 7: Router# show interface pos0 cos POS0 Stats by Internal-Cos Output: Drop-pkts Drop-bytes 1234 Cos 0: 12 Cos 1: 31 2000 Cos 2: Cos 3: Cos 4: Cos 5: Cos 6: 10 640 Cos 7:
IP SLA の概要

Cisco IP SLA は、今まで Cisco Service Assurance Agent と呼ばれていたもので、IP サービス レベルを 保証するための Cisco IOS の機能です。IP SLA を使用すると、SP のカスタマーは SLA の測定や提 供が可能になり、またエンタープライズ カスタマーは、サービス レベルの確認、アウトソーシン グした SLA の確認、および新規または既存の IP サービスとアプリケーションのネットワーク パ フォーマンスの把握が可能になります。IP SLA では、固有のサービス レベル保証メトリックと手 法が使用されていて、非常に正確で高精度のサービス レベル保証測定値を提供します。

特定の SLA 運用に応じて、遅延の統計値、パケット損失、ジッタ、パケット シーケンス、接続、 パス、サーバ応答時間、およびダウンロード時間がシスコの装置内でモニタリングされて CLI およ び SNMP MIB で保存されます。パケットには、送信元および宛先 IP アドレス、UDP および TCP ポート番号、ToS バイト (DSCP および IP プレフィクス ビットを含む)、Virtual Private Network (VPN; 仮想私設網)Routing/Forwarding instance(VRF; VPN ルーティング/転送インスタンス) URL Web アドレスなどの、設定可能な IP およびアプリケーション層オプションがあります。

IP SLA では、生成されたトラフィックを使用して2つのネットワーキング装置(ルータなど)間の ネットワーク パフォーマンスを測定します。IP SLA 装置が生成されたパケットを宛先装置に送信 する際に IP SLA が開始します。宛先装置がパケットを受信したあと、IP SLA 動作のタイプに応じ て、装置はパフォーマンス メトリックの計算を行うために送信元のタイム スタンプ情報で応答し ます。IP SLA 動作は、UDP などの特定のプロトコルを使用して動作する送信元装置からネットワー ク内の宛先装置へのネットワーク測定です。

IP SLA は SNMP を使用して操作可能なので、CiscoWorks2000 (CiscoWorks Blue) や Internetwork Performance Monitor (IPM) などの、Network Management System (NMS; ネットワーク管理システム)用パフォーマンス モニタリング アプリケーションでも使用できます。IP SLA 通知は、NetView などのアプリケーション用にある System Network Architecture(SNA)の Network Management Vector Transport (NMVT)を通じてイネーブルにすることもできます。

ー般的な IP SLA 情報については、http://www.cisco.com/warp/public/732/Tech/nmp/ipsla にある「Cisco IOS IP Service Level Agreements」の技術ページを参照してください。Cisco IP SLA 機能の設定に関 する詳細については、次の URL の『Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2』にある「Network Monitoring Using Cisco Service Assurance Agent」の章を参照してください。 http://www.cisco.com/en/US/products/sw/iosswrel/ps1835/products_configuration_guide_chapter09186a008 030c773.html

ML シリーズ カードの IP SLA

ML シリーズ カードには、完全な IP SLA Cisco IOS サブシステムがあり、Cisco IOS Release 12.2S で 使用可能なすべての通常機能を装備しています。ここでは、標準 IP SLA Cisco IOS CLI コマンドを 使用します。SNMP のサポートは、rttMon MIB である IP SLA サブシステム 12.2(S) で提供されるサ ポートと同等です。

ML シリーズ カードでの IP SLA の制限事項

ML シリーズ カードは、Cisco IOS 12.2S ブランチの機能のみをサポートしています。IP SLA 精度機 能や更新された IP SLA ラベルによる拡張 Cisco IOS CLI サポートなど、今後の Cisco IOS バージョ ンで利用可能な機能はサポートしていません。

このほかの制限は、以下の通りです。

 CoS ビットの設定はサポートしていますが、設定された CoS ビットは、送信側または応答側が ONS 15454、ONS 15454 SDH、または ONS 15310-CL プラットフォームの場合に、CPU に入出 力される際に優先されません。設定された CoS ビットは、中間 ONS ノードで優先されます。

- RPR では、IP SLA パケットのデータ フローの方向は、カスタマー トラフィックの方向とは異なります。
- MLシリーズカードのシステムクロックは、TCC2/TCC2Pカードのクロックと同期します。NTP サーバとの同期は、MLシリーズカードのクロックではなく、TCC2/TCC2Pカードのクロック との間で実行されます。

SDM の設定

この章では、MLシリーズ カードに組み込まれている Switching Database Manager (SDM; スイッチング データベース マネージャ)について説明します。内容は次のとおりです。

- SDM の概要 (p.15-2)
- SDM 領域の概要 (p.15-2)
- SDM の設定 (p.15-3)
- SDM のモニタリングと確認 (p.15-4)

SDM の概要

ML シリーズ カードでは、転送エンジンおよび Ternary CAM (TCAM)を使用して、高速転送を実現しています。高速転送情報は、TCAM に保持されます。SDM は、TCAM に保持されているスイッチング情報を管理するソフトウェア サブシステムです。

SDM は、TCAM 内のスイッチング情報をアプリケーション固有の領域に編成し、これらのアプリ ケーション領域のサイズを設定します。SDM によって完全一致および最長一致のアドレス検索が 可能となるため、高速転送が実現します。SDM は、アプリケーション固有のスイッチング情報を 複数の領域に分割することにより、TCAM のスペースを管理します。

TCAM は、転送される各パケットに関連付けられたロケーション インデックスを識別して転送エ ンジンに伝えます。転送エンジンでは、このロケーション インデックスを使用して、各転送パケッ トに関連付けられた情報を取得します。

SDM 領域の概要

SDM は、複数のアプリケーション固有の領域を分割し、個々のアプリケーション制御層と連動してスイッチング情報を保存します。この領域は、使用可能なスペース全体を共有します。SDM は、次の種類の領域で構成されています。

- 完全一致領域 完全一致領域は、IP 隣接など、複数のアプリケーション領域のエントリで構成されます。
- 最長一致領域 各最長一致領域は、マスク長に基づいて降順に編成されたレイヤ3アドレス エントリの複数のバケットまたはグループで構成されます。バケット内のすべてのエントリ は、同じマスク値とキーサイズを共有します。バケットは、近接バケットからアドレスエン トリを借用することにより、サイズを動的に変更できます。アプリケーション領域全体のサイ ズは決まっていますが、この設定は変更できます。
- 重み付け完全一致領域 重み付け完全一致領域は、重み付けまたはプライオリティが割り当 てられた完全一致エントリで構成されます。たとえば、Quality of Service (QoS; サービス品質) では、複数の完全一致エントリが存在する場合がありますが、他のエントリよりもプライオリ ティの高いエントリがあります。重み付けは、複数のエントリが一致するときに1つのエント リを選択するために使用します。

表 15-1 に、各アプリケーション領域のデフォルト パーティションを示します。

アプリケーション領域	検索タイプ	キー サイズ	デフォルト サイズ
IP Adjacency	完全一致	64 ビット	300(共有)
IP Prefix	最長一致	64 ビット	300(共有)
QoS Classifiers	重み付け完全一致	64 ビット	300(共有)
IP VRF Prefix	最長プレフィックス一致	64 ビット	300(共有)
IP Multicast	最長プレフィックス一致	64 ビット	300(共有)
MAC Addr	最長プレフィックス一致	64 ビット	8192
Access List	重み付け完全一致	64 ビット	300(共有)

表 15-1 アプリケーション領域のデフォルト パーティション

SDM の設定

ここでは、SDM 領域のサイズと Access Control List (ACL; アクセス制御リスト)のサイズの設定に ついて説明します。ここで説明するコマンドは、スイッチング ソフトウェア固有のコマンドです。 設定の変更は、ML-100T-8 カード上でただちに反映されます。

SDM 領域の設定

各アプリケーション領域の SDM の最大サイズを設定するには、グローバル コンフィギュレーショ ン モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	ML_Series(config)# sdm size region-name number-of-entries	SDM 領域のエントリの最大数を設定します。
ステップ 2	ML_Series(config)# end	イネーブル EXEC モードに戻ります。

例 15-1 に、この設定の一例を示します。

例 15-1 IP-Prefix 領域を2Kエントリに制限する場合

```
ML_Series # configure terminal
ML_Series(config)# sdm size ip-prefix 200
ML Series(config)# end
```

TCAM の ACL のサイズ設定

ACL のデフォルトの最大サイズは、300 の 64 ビット エントリです。表 15-2 に示すように、sdm access-list コマンドを使用して、ACL データベースの最大サイズを変更することができます。

表 15-2 ACL に使用する TCAM サイズの割り当て

機能	コマンドの説明
<pre>sdm access-list number-entries</pre>	サイズを設定するアプリケーション領域の名前を指定し
	ます。サイズは、エントリの絶対数で指定できます。

例 15-2 に、この設定の一例を示します。

例 15-2 TCAM の ACL 領域へのエントリの設定

ML_Series# configure terminal
ML_Series(config)# sdm access-list 100
ML_Series(config)# end

SDM のモニタリングと確認

使用できる TCAM エントリの数を表示するには、グローバル コンフィギュレーション モードから show sdm size コマンドを入力します。

ML_Series # show sdm size

Active	Switching	Database	Region	Maximum	Sizes	:
IP	Adjacency	:	300	64-bit	entries	s
IP	Prefix	:	300	64-bit	entries	s
Qos	S Classifie	ers :	300	64-bit	entries	s
IP	VRF Prefix	к :	300	64-bit	entries	s
IP	Multicast	:	300	64-bit	entries	s
MAG	C Addr	:	8192	64-bit	entries	s
Aco	cess List	:	300	64-bit	entries	s

ACL の設定

この章では、MLシリーズカードに組み込まれている Access Control List (ACL; アクセス制御リスト)について説明します。

この章の内容は次のとおりです。

- ACLの概要(p.16-2)
- ML シリーズにおける ACL サポート (p.16-2)
- ACL TCAM サイズの変更 (p.16-6)

ACL の概要

ACL は、ネットワークの制御とセキュリティを実現する機能で、ML シリーズのインターフェイス に出入りするパケットのフローをフィルタリングできます。フィルタとも呼ばれる ACL により、特 定のユーザや装置によるネットワークの使用を制限できます。ACL はプロトコルごとに作成し、着 信トラフィックまたは発信トラフィックのどちらか一方のインターフェイスに適用します。ACL は コントロール プレーンの発信トラフィックには適用されません。1 つの方向、1 つのサブインター フェイスごとに適用できる ACL フィルタは1 つだけです。

ACL を作成する場合は、ML シリーズ カードが処理する各パケットに適用する基準を定義します。 これによって ML シリーズ カードでは、パケットがリストの基準に一致するかどうかに基づいて、 パケットを転送するか、ブロックするかを決定します。リストのどの基準にも一致しないパケット は、各 ACL の末尾にある暗黙的な「deny all traffic」基準ステートメントによって、自動的にブロッ クされます。

ML シリーズにおける ACL サポート

制御プレーン ACL とデータ プレーン ACL は、どちらも ML シリーズ カードでサポートされます。

- 制御プレーン ACL: ML シリーズ カードの CPU によって処理される制御データをフィルタす るための ACL(たとえば、ルーティング情報、Internet Group Membership Protocol [IGMP] 加入 の配布など)。
- データ プレーン ACL: ML シリーズのハードウェアを使用してルーティングまたはブリッジされているユーザ データをフィルタするための ACL(たとえば、ホストへのアクセスの拒否など)、データ プレーン ACL は、ip access-group コマンドを使用して入力方向または出力方向のインターフェイスに適用されます。
- データ プレーン ACL を ML シリーズ カード上で使用する際には、次の制限があります。
- ACL は、ブリッジド インターフェイスを含む、あらゆる種類のインターフェイスでサポート されます。
- 再帰的 ACL とダイナミック ACL は、ML シリーズ カードではサポートされません。
- アクセス違反のアカウンティングは、ML シリーズ カードではサポートされません。
- ACL のロギングは、交換されたパケットではなく、CPU に送信するパケットに対してのみサポートされます。
- 出力ブリッジドインターフェイスに適用された IP 標準 ACL は、データ プレーンではサポート されません。ブリッジングの場合は、ACL は入力側でのみサポートされます。

IP ACL

IP に対しては、次のような ACL 形式がサポートされています。

- 標準 IP ACL:送信元アドレスを使用してマッチングを行います。
- 拡張 IP ACL (制御プレーン専用):送信元アドレスおよび宛先アドレスを使用してマッチングを行います。さらに細かく制御するためには、任意でプロトコルタイプとポート番号を使用します。
- 名前付き ACL:送信元アドレスを使用してマッチングを行います。

デフォルトでは、ACLの末尾には、末尾に到達する前に一致するステートメントが見つからなかった場合のための暗黙的な拒否ステートメントがあります。標準 ACL では、関連付けられた IP ホストアドレスの ACL 指定からマスクを省略すると、マスクが 0.0.0.0 であるとみなされます。

ACL を作成したら、その ACL をインターフェイスに適用する必要があります。「インターフェイス への ACL の適用」(p.16-5)を参照してください。

名前付き IP ACL

IP ACL は名前で特定できます。ただし、名前は英数字の文字列である必要があります。名前付き IP ACL を使用すると、番号付き ACL の場合よりも多くの IP ACL を1つのルータに設定できます。 数値の文字列ではなく英字の文字列で ACL を特定する場合は、モードとコマンドの構文が多少異 なります。

次の事項を検討してから名前付き ACL を設定してください。

- 標準 ACL と拡張 ACL に同じ名前を付けることはできません。
- 番号付き ACL も利用できます。「番号付き標準および拡張 IP ACL の作成」(p.16-3)を参照し てください。

ユーザの注意事項

IP ネットワークのアクセス制御を設定するときは、次のことに留意してください。

- Ternary CAM (TCAM)内に ACL エントリをプログラムできます。
- ACL の末尾には、すべてを拒否するステートメントが暗黙的に指定されているため、入力する 必要がありません。
- ACL エントリはどのような順序で入力しても、パフォーマンスに影響しません。
- 8 個の TCAM エントリごとに、ML シリーズ カードは TCAM の管理用のエントリを 1 個使用 します。
- パケット損失を引き起こす条件を設定しないでください。パケット損失は、特定のサービスの パケットを拒否する ACL が設定されたネットワークで、そのサービスをアドバタイズするよ うに装置またはインターフェイスが設定されている場合に発生します。
- IP ACL は、ダブルタグ(QinQ)パケットに対してサポートされていません。ただし、IP ACL は QinQ アクセス ポートに着信する IP パケットに対して適用されます。

IP ACL の作成

ここでは、番号付き標準 IP ACL、拡張 IP ACL、および名前付き標準 IP ACL の作成方法について 説明します。

- 番号付き標準および拡張 IP ACL の作成(p.16-3)
- 名前付き標準 IP ACL の作成(p.16-4)
- 名前付き拡張 IP ACL の作成(制御プレーン専用)(p.16-5)
- インターフェイスへの ACL の適用 (p.16-5)

番号付き標準および拡張 IP ACL の作成

表 16-1 に、番号付き標準 IP ACL と拡張 IP ACL の作成に使用するグローバル コンフィギュレーショ ン コマンドを示します。

コマンドの説明	目的
Router(config)#access-list access-list-number {deny permit} source [source-wildcard]	送信元アドレスとワイルドカードを使用して標 準 IP ACL を定義します。
<pre>Router(config)#access-list access-list-number {deny permit} any</pre>	0.0.0.0 255.255.255.255 という送信元と送信元マ スクの省略形を使用して標準 IP ACL を定義し ます。
Router(config)# access-list extended-access-list-number {deny permit} protocol source source-wildcard destination destination-wildcard [precedence precedence] [tos tos]	拡張 IP ACL 番号とアクセス条件を定義します。
Router(config)# access-list extended-access-list-number {deny permit} protocol any any	0.0.0.0 255.255.255.255 という送信元と送信元ワ イルドカードの省略形と、0.0.0.0 255.255.255 という宛先と宛先ワイルドカードの省略形を使 用して、拡張 IP ACL を定義します。
Router(config)# access-list extended-access-list-number {deny permit} protocol host source host destination	source 0.0.0.0 という送信元と送信元ワイルド カードの省略形と、destination 0.0.0.0 という宛先 と宛先ワイルドカードの省略形を使用して、拡 張 IP ACL を定義します。

表 16-1 番号付き標準および拡張 IP ACL のコマンド

名前付き標準 IP ACL の作成

名前付き標準 IP ACL を作成するには、 グローバル コンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# ip access-list standard name	英字の名前を使用して標準 IP ACL を定義します。
ステップ 2	Router(config-std-nac1)# deny {source [source-wildcard] any} または	アクセス リスト設定モードで、許可または拒否する条 件を 1 つ以上指定します。これによって、パケットを通 過させるか、廃棄するかが決定します。
	<pre>permit {source [source-wildcard] any}</pre>	
ステップ 3	Router(config)# exit	アクセス リスト コンフィギュレーション モードを終了 します。

名前付き拡張 IP ACL の作成(制御プレーン専用)

名前付き拡張 IP ACL を作成するには、グローバル コンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# ip access-list extended name	英字の名前を使用して拡張 IP ACL を定義します。
ステップ 2	Router(config-ext-nacl)# { deny permit } protocol source source-wildcard destination destination-wildcard [precedence precedence] [tos tos]	アクセス リスト コンフィギュレーション モードで、許 可または拒否する条件を指定します。
	または {deny permit} protocol any any またけ	または 0.0.0.0 255.255.255 という送信元と送信元ワイルド カードの省略形と、0.0.0.0 255.255.255 という宛先と 宛先ワイルドカードの省略形を使用して、拡張 IP ACL を定義します。
	{ deny permit } protocol host source host destination	または source 0.0.0.0 という送信元と送信元ワイルドカードの 省略形と、destination 0.0.0.0 という宛先と宛先ワイルド カードの省略形を使用して、拡張 IP ACL を定義します。

インターフェイスへの ACL の適用

ACL を作成したら、その ACL を 1 つまたは複数のインターフェイスに適用できます。ACL を適用 できるのは、インターフェイスの着信方向または発信方向のどちらか一方です。インターフェイス へのアクセスを制御するには、名前または番号を使用します。標準 ACL を適用した場合、ML シ リーズ カードは送信元 IP アドレスを ACL と比較します。ACL を 1 つまたは複数のインターフェ イスに適用するには、表 16-2 に示すコマンドを使用します。

Bridge Group Virtual Interface (BVI; ブリッジ グループ仮想インターフェイス)の入力側に適用された IP 標準 ACL は、BVI 入力トラフィックだけでなく、関連付けられたブリッジ グループ内のブリッジされたすべての IP トラフィックに適用されます。

表 16-2 インターフェイスへの ACL の適用

コマンドの説明	目的
<pre>ip access-group {access-list-number name} {in out}</pre>	インターフェイスへのアクセスを制御します。

ACL TCAM サイズの変更

TCAM サイズを変更するには、sdm access-list コマンドを入力します。ACL TCAM サイズの詳細に ついては、「TCAM の ACL のサイズ設定」(p.15-3)を参照してください。例 16-1 には、ACL の変 更と確認の例を示します。

(注)

ACL TCAM サイズを増やすには、IP、IP マルチキャスト、L2 スイッチングなどの別の領域の TCAM サイズを縮小する必要があります。

次のエラー メッセージが表示された場合は、TCAM サイズを増やす必要があります。

Warning:Programming TCAM entries failed Please remove last ACL command to re-activate ACL operation. !<ACL number or name> <IP or IPX> <INPUT_ACL or OUTPUT_ACL> from TCAM group for !<interface> Please see the documentation to see if TCAM space can be increased on this platform to alleviate the problem.

例 16-1 ACL のモニタリングと確認

Router# **show ip access-lists 1** Standard IP access list 1 permit 192.168.1.1 permit 192.168.1.2

RPR の設定

この章では、ML シリーズ カードの Resilient Packet Ring (RPR; 復元パケット リング)、RPR Link Fault Propagation (LFP; リンク障害伝播)、および Dual RPR Interconnect (DRPRI; 二重 RPR 相互接続)の設定方法について説明します。

この章の内容は次のとおりです。

- RPR の概要 (p.17-2)
- RPR の設定 (p.17-7)
- RPR のモニタリングおよび確認(p.17-19)
- ML シリーズ カードの RPR への追加 (p.17-20)
- RPR からの ML シリーズ カードの削除 (p.17-25)
- RPR LFP の概要 (p.17-30)
- LFP の設定 (p.17-32)
- デュアル RPR 相互接続の概要(p.17-34)
- DRPRIの設定 (p.17-36)

RPR の概要

RPR は、レイヤ2レベルで動作する新しい MAC(メディア アクセス制御)プロトコルです。RPR は、SONET/SDH リングトポロジー上でのイーサネットの転送に非常に適しており、複数の ML シ リーズ カードをイネーブルにして、1 つの機能ネットワーク セグメントまたは Shared Packet Ring (SPR; 共有パケット リング)にすることが可能です。RPR は、このような役割における IEEE 802.1D Spanning Tree Protocol (STP; スパニング ツリー プロトコル)、IEEE 802.1W Rapid Spanning Tree Protocol (RSTP; 高速スパニング ツリー プロトコル)、IEEE 802.1W Rapid Spanning Tree 克服します。IEEE 802.17 ドラフトは Cisco ML シリーズ RPR 実装の参照用として使用されていまし たが、現在の ML シリーズ カード RPR プロトコルは、IEEE 802.17 の条項とはまったく適合しませ ん。

SONET/SDH 回線の役割

SPR 内の ML シリーズ カードは、ポイントツーポイント STS/STM 回線を介して、直接または間接 的に接続する必要があります。ポイントツーポイント STS/STM 回線は ONS ノード上で設定され、 保護回線または非保護回線のいずれかで ONS ノードの SONET/SDH トポロジー上で転送されます。

SONET/SDH メカニズムによって保護されていない回線上の場合、RPR は SONET/SDH 保護回線が 必要とする冗長保護パスを使用せずに、復元機能を提供します。そのため、トラフィック量を増や すことができます。また、RPR はリングの帯域幅全体を使用するため、STP や RSTP のようにセグ メントをブロックしません。

パケット処理動作

ML シリーズ カードに RPR が設定されていて、SPR の一部にした場合、ML シリーズ カードはリ ング トポロジーとみなされます。パケットが、特定の ML シリーズ カードのイーサネット ポート 経由でブリッジングされたネットワーク装置宛てでない場合、ML シリーズ カードは、リング アー キテクチャの巡回パスを信頼して、SONET/SDH 回線に沿ってこの中継トラフィックの転送を続け、 パケットが最終的に宛先に到達することを保証します。これにより、宛先ではない ML シリーズ カード経由で通過するパケットをキューに入れて処理する必要がなくなります。レイヤ 2 または レ イヤ 3 から見ると、RPR 全体が 1 つの共有ネットワーク セグメントのように見えます。

RPR が設定された ML シリーズ カードは、ブリッジ、パススルー、ストリッピングという3つの 基本的なパケット処理動作を行います。図 17-1 に、これらの動作を示します。ブリッジングは、ML シリーズのイーサネット ポートと、リングを巡回する SONET/SDH 回線に使用される Packet-over-SONET/SDH (POS) ポート間を接続し、パケットを渡します。パススルーにより、パ ケットは ML シリーズ カード経由でリング内を巡回します。また、ストリッピングはリングからパ ケットを除去し廃棄します。

RPR プロトコルが送信パケットのヘッダー情報を使用することで、インターフェイスはパケットに 適用する必要のある動作を迅速に決定できます。また、RPR プロトコルはパケットの送信元および 宛先アドレスを使用して、リング方向を選択します。フロー ベースのロード シェアリングにより、 同じ送信元および宛先のアドレスペアが組み込まれたすべてのパケットを同じ方向に送信し、正し い順で宛先に着信できます。リング方向も、スペース再利用をイネーブルにして、全体的なリング 集約帯域幅を増やしています。ユニキャスト パケットは宛先がストリッピングされています。宛先 ストリッピングにより、RPR の異なる部分間で同時にトラフィック フローを転送する機能が提供 されます。隣接するノード間で双方向に同時にトラフィックを送信できます。また、複数のノード をスパンすることもでき、同じリング帯域幅を効率的に再利用できます。マルチキャスト パケット は送信元がストリッピングされています。

リング ラッピング

ファイバカット、ノードの障害、ノードの復元、新しいノードの挿入、またはその他のトラフィック上の問題が発生すると、RPR はリング ラップを開始します。この保護メカニズムによって、リンク状態の変更後、または SONET/SDH パス レベルのアラーム受信後に、トラフィックはリング内で反対方向に送信され、元の宛先にリダイレクトされます。ML シリーズ カードのリング ラッピングでは、ユニキャストおよびパススルー トラフィックの 50 ミリ秒未満のコンバージェンス時間が許容されます。RPR のコンバージェンス時間は、SONET/SDH とほぼ同じで、STP や RSTP よりもきわめて高速です。

ML シリーズ カードの RPR は、リング内で発生する単一方向送信と双方向送信の両方の障害に対応します。STP や RSTP とは異なり、RPR の復元はスケーラブルです。リング内で ML シリーズ カードの数が増えても、コンバージェンス時間は延びません。

リング ラップは、デフォルトでは spr wrap immediate で設定され、障害状態に陥ってから 50 ミリ 秒内に発生します。spr wrap delay が設定されている場合、POS インターフェイスがリンク ダウン するまでラップが遅れます。CLI pos trigger delay <msec> で指定された時間が経過すると、リンク がダウンします。回線が VCAT の場合、Cico IOS CLI コマンド pos vcat defect delayed も設定する 必要があります。この遅延により、RPR に SONET/SDH 帯域幅保護が設定されている場合、レイヤ 2 RPR 保護が有効になる前に、このレイヤ 1 保護を有効にできます。SONET エラーなしでインター フェイスがダウンする場合、キャリア遅延も発生します。図 17-2 に、リング ラッピングを示します。

リングに障害が発生した場合、RPRの障害が発生した部分に接続された ML シリーズ カードは SONET/SDH パス アラームを通じて障害を検出します。いずれかの ML シリーズ カードがこのパス AIS 信号を受信すると、カードは信号を受信した POS インターフェイスをラップします。

(注)

ML シリーズ カードの RPR コンバージェンス時間は、同じリングで複数の障害が発生したときに、 ML シリーズ カードのリロード中に DRPRI が設定された ML シリーズ カード(アクティブ モード) をトラフィックが通過する場合、または ML シリーズ カード間のマイクロコード イメージにミス マッチが発生した場合に、50 ミリ秒を超える可能性があります。

キャリア遅延時間をデフォルトから変更する場合、新しいキャリア遅延時間は、SPR、POS、およびギガビットイーサネットまたはファストイーサネットインターフェイスなど、MLシリーズカードのすべてのインターフェイスで設定する必要があります。

ML シリーズ カードの POS インターフェイスは通常、POS リンクがダウンまたは RPR がラップし たときに、ONS 15454 STS パス オーバーヘッド (PDI-P)の信号ラベル ミスマッチ障害に関するア ラームを遠端に送信します。PDI-P が検出されたとき、Remote Defection Indication - Path (RDI-P; リ モート障害表示 - パス)アラームが遠端に送信されているとき、または検出された障害が Generic Framing Procedure (GFP)-Loss of Frame Delineation (LFD)、GFP Client Signal Fail (CSF)、Virtual Concatenation (VCAT) -Loss of Multiframe (LOM)または VCAT-Loss of Sequence (SQM)の場合 のみ、ML シリーズカードの POS インターフェイスは PDI-P を遠端に送信しません。

RPR フレーミング プロセス

ML シリーズ カードは、固有の RPR フレームと、HDLC または GFP-F フレーミングを使用します。 カードは RPR フレーム ヘッダーを各イーサネット フレームに組み込み、RPR フレームを SONET/SDH ペイロードにカプセル化し、SONET/SDH トポロジー上で転送できるようにします。 RPR ヘッダーは出力側 ML シリーズ カードで削除されます。図 17-3 に、RPR フレームを示します。

図 17-3 ML シリーズ カードの RPR フレーム

RPR フレーミングとヘッダーには、送信元および宛先ステーション情報の4バイト、RPR 制御および Quality of Service(QoS; サービス品質)の4バイトなどのフィールド数が含まれます。図17-4に、RPR フレーム形式を示します。表17-1に最重要フィールドを示します。

図 17-4 RPR フレームのフィールド

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

プロトコル(RPR V1)								
宛先 ID					ス	宛先 テーシ	ョン	
送信元 ID				ス	送信元 テーシ	; ョン		
			D		TTL			
ラップ R ステーション V			R [/ V	D D V S	RSVD	タイプ		
ペイロード (イーサネット フレーム)						01000		

安生フニーション	
処元ステーショノ	8 ビッドのフィールド。 RPR 内の特定の ML シリーズ ガードの MAC
	アドレスを宛先として指定します。このフィールドには、Multicast
	DA-MACの0xffとUnknownDA-MACの0x00という既知のアドレスが
	2 つのあります。
送信元ステーション	8 ビットのフィールド。RPR 内の特定の ML シリーズ カードの MAC
	アドレスを送信元として指定します。
PRI	3 ビットの Class of Service (CoS; サービス クラス)フィールド。RPR
	プライオリティを確立します。
DE	Discard Eligible (DE; 廃棄適性) フラグ用の1ビットのフィールド
TTL	フレームの time-to-live 用 9 ビット フィールド
タイプ	データ パケットか制御パケットを示すフィールド

表 17-1 RPR フレーム フィールドの定義

MAC アドレスと VLAN サポート

RPR では、ML シリーズ カードを通過するパケットの MAC ID が ML シリーズ カードによって記 録されないので、サポートされる MAC アドレスの総数が増加します。ML シリーズ カードは、そ のカードによってブリッジングまたはストリッピングされたパケットの MAC ID だけを記録しま す。これにより、RPR の集合アドレス テーブルに、より多くの MAC アドレスを保持することが可 能になります。

また、STP および RSTP 上の VLAN がリングの全 POS インターフェイスで設定する必要があるの に比べ、RPR 上の VLAN (仮想 LAN)はより少ないインターフェイス設定ですみます。RPR の VLAN は、その VLAN でパケットをブリッジングまたはストリップする SPR インターフェイス上 の設定だけが必要です。

ML シリーズ カードには、カードごとに設定できる VLAN またはブリッジ グループの最大数が 255 というアーキテクチャ上の制限がまだ残されています。ただし、ML シリーズ カードが MAC アド レスを管理する必要があるのは、直接接続されている装置であるため、RPR ネットワークではより 多くの接続装置を使用できます。

RPR QoS

ML シリーズ カードの RPR は、Service Level Agreement (SLA; サービス レベル契約)をサポートす る効果的な帯域幅利用率を実現するために、ML シリーズ カードの QoS 機能を信頼しています。ML シリーズ カードの QoS メカニズムは、トラフィックがパススルー、ブリッジ、またはストリッピ ングされているかどうかに関係なく、ML シリーズ カードのすべての SONET/SDH トラフィックに 適用されます。RPR QoS の詳細については、第14章「QoS の設定」の「RPR の QoS」を参照して ください。

CTM および RPR

Cisco Transport Manager (CTM)は、Network Management System (NMS; ネットワーク管理システム)全体と、他の高レベルの管理ツールを持ったインターフェイスを統合するよう設計された Element Management System (EMS; 要素管理システム)です。CTM は、ML シリーズ カード上で RPR プロビジョニングをサポートします。詳細については、『Cisco Transport Manager User Guide』 を参照してください。次の URL からアクセスしてください。

http://www.cisco.com/en/US/products/sw/opticsw/ps2204/products_user_guide_list.html

RPR の設定

ML シリーズ カード用に RPR を設定するには、Cisco Transport Controller (CTC) と Cisco IOS の両 方を使用する必要があります。CTC は、Graphical User Interface (GUI; グラフィカル ユーザ イン ターフェイス)で、RPR に必要なポイントツーポイント SONET/SDH 回線のプロビジョニングな ど、特定の ONS ノード動作用の拡張クラフト ツールとして機能します。Cisco IOS は、ML シリー ズ カードとそのインターフェイス上で RPR を設定するために使用されます。

RPR を作成するには、次の手順を順番に実行します。

- 1. ML シリーズ カードとポイントツーポイント STS/STM 回線の接続 (p.17-7) (CTC または TL1)
- 2. RPR の CTC 回線の設定 (p.17-7)(CTC または TL1)
- 3. ML シリーズ カード上の RPR 特性と SPR インターフェイスの設定 (p.17-12) (Cisco IOS)
- 4. ML シリーズ カードの POS ポートの SPR インターフェイスへの割り当て(p.17-14) Cisco IOS)
- 5. ブリッジ グループの作成とイーサネットおよび SPR インターフェイスの割り当て (p.17-16) (Cisco IOS)
- 6. RPR イーサネット アクセス ポート間のイーサネット接続の確認 (p.17-19) (Cisco IOS)

Transaction Language One (TL1)を使用して、CTC の代わりに、必要な SONET/SDH ポイントツー ポイント回線をプロビジョニングできます。

ML シリーズ カードとポイントツーポイント STS/STM 回線の接続

RPR 内の ML シリーズ カードをポイントツーポイント STS/STM 回線を介して接続します。この回 線は、ONS 15454 SONET/SDH ネットワークを使用し、光回線をプロビジョニングする通常の方法 で、CTC を使用してプロビジョニングされます。

RPR の CTC 回線の設定

RPR が必要とする CTC 回線を設定する場合の注意事項は次のとおりです。

- Circuit Routing Preferences ダイアログボックスの Fully Protected Path 以外の CTC Circuit Creation Wizard のすべてのオプションをデフォルト設定のままにします。Fully Protected Path には SONET/SDH 保護が指定されているため、オフにする必要があります。RPR は通常、SPR 回線のレイヤ2保護を提供します。
- Circuit Routing Preferences ダイアログボックスで、Using Required Nodes and Spans をオンにし、 自動的にルーティングするようにします。送信元ノードと宛先ノードがリング上で隣接してい る場合、Circuit Routing Preferences ダイアログボックスで、送信元と宛先を除くすべてのノード を除外します。これにより、回線で送信元ノードと宛先ノード間が直接ルーティングされるようになり、STS/STM 回線を使用しなくてすみます。この STS/STM 回線は、リング内の他のノー ド経由で回線がルーティングされると消費されます。ML シリーズカードが設定された2つの ノード間に、ML シリーズカードが設定されていない1つまたは複数のノードが存在する場合 は、Circuit Routing Preference ダイアログボックスの含まれているノード領域に、送信元および 宛先ノードとともにこれらのノードを含めます。
- ML シリーズ カードの STS/STM 回線は、次の CTC のチェック ボックス タイトル、双方向トラフィック、クロス コネクトのみの作成(TL1と同様)、ドメイン間(Unified Control Plane [UCP])、保護ドロップ、Subnetwork connection protection (SNCP; サブネットワーク接続保護)、Unidirectional Path Switched Ring(UPSR;単方向パス スイッチ型リング)パス セレクタなど、関係のない回線作成オプションはサポートしていません。

最適な方法は、イーストからウェスト、またはウェストからイーストに SONET/SDH 回線を設定することです。つまり、SONET/SDH リングで、ポート0(イースト)からポート1(ウェスト)またはポート1(ウェスト)からポート0(イースト)のように設定します。ポート0からポート0またはポート1からポート1は設定しないでください。イーストからウェストまたはウェストからイーストのセットアップは、CTM ネットワーク管理ソフトウェアが ML シリーズの設定を SPR として認識するためにも必要です。

CTC 回線手順の詳細については『Cisco ONS 15454 Procedure Guide』の、「Create Circuits and VT Tunnels」の章および『Cisco ONS 15454 SDH Procedure Guide』の「Create Circuits and Tunnels」の章 を参照してください。

RPR の CTC 回線の設定例

図 17-5 に、3 つのノードの RPR の例を示します。

図 17-5 3 つのノードの例

図 17-5 の 3 つのノードの RPR は、RPR の連続した手順のすべての例に使用します。これらの例を 組み合わせると、RPR 作成のエンドツーエンドの例となります。SONET/SDH ノードとそのネット ワークはすでにアクティブであると想定します。

次の手順におけるステップは、例で示すトポロジー用の手順です。使用する手順は、ネットワーク によって異なります。専門のネットワーク設計者による詳細な計画または方法を得ずに、この手順 を実行しないでください。

<u>//</u> 注意

回線を設定するには、CTC に次の3つの回線を作成します。

- ノード1の POS ポート0からノード2の POS ポート1へ回線を作成します。
- ノード2の POS ポート0からノード3の POS ポート1へ回線を作成します。
- ノード 3 の POS ポート 0 からノード 1 の POS ポート 1 へ回線を作成します。
- **ステップ1** CTC では、ノード1にログインして、RPR 内に存在する ML シリーズ カードの CTC カード ビュー に移動します。

図 17-6 ML シリーズ カードの CTC カード ビュー

ステップ2 Circuits > Create タブをクリックします。

Circuit Creation ウィザードの最初のページが表示されます。

Circuit Creatio	n 🛛 🔀
Cisco Status	Circuit Type: STS VT VT Tunnel VT Aggregation Point STS-V VT-V OCHIC OCHIC
	Num. of circuits: 1 Auto-rangest Next> Cancel Help

図 17-7 CTC Circuit Creation ウィザード

- ステップ3 Circuit Type リストで、STS を選択します。
- ステップ4 Next をクリックします。

Circuit Attributes ページが表示されます。

- **ステップ5** Name フィールドに回線名を入力します。
- **ステップ6** Size ドロップダウンリストから該当する回線のサイズを選択し、State リストから適切なステートを 選択します。
- **ステップ7** SD スレッシュホールドが SD スレッシュホールド フィールドの 1E-6(デフォルト)または 1E-6 ~ 1E-9 の範囲に設定されていることを確認します。
 - a. SD スレッシュホールドがデフォルトの 1E-6 または適切な範囲内である場合は、ステップ 8 へ 進みます。
 - **b.** SD スレッシュホールドがデフォルトの 1E-6 でない場合、または適切な範囲内にない場合は、 メニューから 1E-6 または適切な範囲内のスレッシュホールドを選択します。

- SD スレッシュホールド値を小さくすると CTC コンバージェンスの速度が速くなりますが、特定の 状況ではインターフェイスのフラッピング(イネーブルとディセーブルの繰り返し)の可能性が高 くなります。
- **ステップ8** Next をクリックします。

Source ページが表示されます。

ステップ9 Node ドロップダウン リストからノード1を送信元ノードとして選択します。

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

- **ステップ 10** Slot ドロップダウン リストから ML シリーズ カードを選択し、Port ドロップダウン リストから 0 (POS)を選択します。
- ステップ11 Next をクリックします。

Destination ページが表示されます。

- ステップ12 Node ドロップダウン リストからノード2を宛先ノードとして選択します。
- **ステップ 13** Slot ドロップダウン リストから ML シリーズ カードを選択し、Port ドロップダウン リストから 1 (POS)を選択します。
- ステップ14 Next をクリックします。

Circuit Routing Preferences ページが表示されます。

- ステップ15 Fully Protected Path チェック ボックスをオフにします。
- ステップ16 Next をクリックします。

Circuit Constraints for Automatic Routing ページが表示されます。

ステップ17 ノード1アイコンをクリックして選択し、Nextをクリックします。

Route Review/Edit ページが表示されます。

ステップ18 Finish をクリックします。

これで、RPR 用の最初の回線の設定が完了しました。

- **ステップ 19** 2 番めの回線をノード 2 の POS 0 とノード 3 の POS 1 の間に作成します。ステップ 1 ~ 18 と同じ 手順を使用します。ただし、ノード 1 をノード 2 に、ノード 2 をノード 3 に置き換えます。
- **ステップ20**3番めの回線をノード3のPOS0とノード1のPOS1の間に作成します。ステップ1~18と同じ 手順を使用します。ただし、ノード1をノード3に、ノード2をノード1に置き換えます。

これにより、3 つのノードの POS ポートすべてが STS ポイントツーポイント回線によってイースト からウェストのパターンで接続されました(図 17-5 を参照)。

ステップ21 CTC 回線プロセスはこれで完了です。

<u>入</u> (注)

回線を作成すると、TPTFAIL アラームが CTC に表示される場合があります。POS ポートを「ML シリーズ カードの POS ポートの SPR インターフェイスへの割り当て (p.17-14)の手順でイネーブ ルにすると、このアラームは消えます。

ML シリーズ カード上の RPR 特性と SPR インターフェイスの設定

ML シリーズ カードで RPR を設定するには、Cisco IOS の CLI(コマンドライン インターフェイス) から SPR インターフェイスを作成します。SPR インターフェイスは SPR の仮想インターフェイス です。1 枚の ML シリーズ カードは単一の MAC アドレスを持つ 1 つの SPR インターフェイスをサ ポートします。SPR インターフェイスは、デフォルト ルートのサポートなど、Cisco IOS インター フェイスの通常のすべての属性を提供します。

SPR インターフェイスは、EtherChannel (ポートチャネル)インターフェイスと同様に設定されま す。channel-group コマンドを使用してメンバーを定義するのではなく、spr-intf-ID コマンドを使 用します。ポートチャネルと同様に、物理 POS インターフェイスの代わりに仮想 SPR インターフェ イスを設定します。SPR インターフェイスはトランク ポートとみなされるため、すべてのトランク ポートと同様に、SPR インターフェイスがブリッジ グループに加入するようにサブインターフェイ スを設定する必要があります。

ML シリーズ カードの物理 POS インターフェイスは、SPR インターフェイスに適した唯一のメン バーです。一方の POS ポートはノードから東方向にリングを回る SONET/SDH 回線と関連付けら れ、もう一方の POS ポートは西方向の回線に関連付けられています。SPR インターフェイスを使 用し、POS ポートが関連付けられている場合、RPR カプセル化を SONET/SDH ペイロードで使用し ます。

SPR の設定時に、1 枚の ML シリーズ カードで SPR インターフェイスを設定せずに、有効な STS/STM 回線でこの ML シリーズ カードを SPR 内の他の ML シリーズ カードに接続すると、SPR 内で適切に設定された ML シリーズ カード間でトラフィックが流れなくなり、この状況を示すア ラームも出ません。シスコでは、トラフィックを送信する前に、SPR 内のすべての ML シリーズ カードを設定することを推奨しています。

ネイティブ VLAN を使用して RPR でトラフィックを伝送しないでください。

ML シリーズ カードの RPR はデフォルトの LEX カプセル化でのみサポートされています。これは、 Cisco ONS イーサネット ライン カードで使用される特別な CISCO-EOS-LEX カプセル化方式です。

RPR は、RPR 内に存在する各 ML シリーズ カード上でプロビジョニングする必要があります。RPR を設定するには、グローバル コンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# bridge irb	Cisco IOS ソフトウェアで、1 枚の ML シリーズ カード 内の個々のインターフェイスで特定のプロトコルを ルーティングおよびブリッジングできるようにします。
ステップ 2	Router(config)# interface spr 1	ML シリーズ カードの SPR インターフェイスを作成す るか、SPR インターフェイス コンフィギュレーション モードを開始します。有効な SPR 番号は 1 だけです。

	コマンドの説明	目的
ステップ 3	Router(config-if)# spr station-id <i>station-ID-number</i>	ステーション ID を設定します。ユーザは、RPR に接続 する各 SPR インターフェイスごとに異なる番号を設定 する必要があります。有効なステーション ID 番号の範 囲は、1 ~ 254 です。
ステップ 4	<pre>Router(config-if)# spr wrap { immediate delayed }</pre>	(任意) RPR リング ラップ モードを、SONET/SDH パス アラーム検出したらただちにトラフィックをラップす るか、200 ミリ秒の遅延後にトラフィックをラップする ように設定します。これにより、不具合を記録してリン ク ダウンしていることを宣言する SONET/SDH 保護時 間を指定します。RPR が SONET/SDH 非保護回線上で 稼働している場合は、immediate を使用します。 Bidirectional Line Switched Ring (BLSR; 双方向ラインス イッチ型リング)、UPSR、Multiplex Section-Shared Protection Ring (MS-SPRing)、または SNCP 保護回線に は、delayed を使用します。 デフォルトの設定は immediate です。
ステップ 5	Router(config-if)# carrier-delay msec milliseconds	 (任意)キャリア遅延時間を設定します。デフォルトの設定は、200 ミリ秒です。これは、SONET/SDH 保護回線に最適な時間です。 (注) キャリア遅延時間をデフォルトから変更する場合、新しいキャリア遅延時間は、SPR、POS、およびギガビットイーサネットまたはファストイーサネット インターフェイスなど、ML シリーズカードのすべてのインターフェイスで設定する必要があります。
ステップ 6	<pre>Router(config-if)# [no] spr load-balance { auto port-based }</pre>	(任意)ユニキャスト パケットの RPR ロード バランシ ング方式を指定します。port-based ロード バランシング オプションは、偶数のポートを POS 0 インターフェイス に、奇数のポートを POS 1 インターフェイスにマップし ます。デフォルトの auto オプションは、IP パケットの MAC (メディア アクセス制御)アドレスまたは送信元 アドレスと宛先アドレスに基づいて負荷を分散します。
ステップ 7	Router(config-if)# end	イネーブル EXEC モードに戻ります。
ステップ 8	Router# copy running-config startup-config	(任意)設定の変更を NVRAM (不揮発性 RAM)に保存 します。

ML シリーズ カードの POS ポートの SPR インターフェイスへの割り当て

SPR インターフェイスは、ルーテッド インターフェイスです。レイヤ 3 アドレスをイネーブルに したり、SPR インターフェイスに割り当てられた POS インターフェイスにブリッジ グループを割 り当てたりしないでください。

注意

SPR インターフェイスの着信トラフィックでポリシングが必要な場合は、SPR インターフェイスの 一部である両方の POS ポートに同じ入力サービス ポリシーを適用する必要があります。

RPR で使用するために、POS ポートは LEX カプセル化を必要とします。RPR 設定の最初のステップは、POS 0 ポートと POS 1 ポートのカプセル化を LEX に設定することです。

また、ML シリーズ カードの 2 つの POS ポートをそれぞれ SPR インターフェイスに割り当てる必要があります。LEX カプセル化を設定し、ML シリーズ カードの POS インターフェイスを SPR に割り当てるには、グローバル コンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# interface pos 0	インターフェイス コンフィギュレーション モードを開 始し、SPR に割り当てる 1 つめの POS インターフェイ スを設定します。
ステップ 2	Router(config-if)# encapsulation lex	POS インターフェイスのカプセル化を LEX として設定 します(デフォルト)。ML シリーズ カードの RPR で は、LEX カプセル化が必要です。
ステップ 3	Router(config-if)# spr-intf-id shared-packet-ring-number	POS インターフェイスを SPR インターフェイスに割り 当てます。共有パケット リング番号は 1 である必要が あります。この番号は、SPR インターフェイスに割り当 てられる唯一の共有パケット リング番号です。
ステップ 4	Router(config-if)# carrier-delay msec milliseconds	 (任意)キャリア遅延時間を設定します。デフォルトの設定は、200 ミリ秒です。これは、SONET/SDH 保護回線に最適な時間です。 ▲ (注) キャリア遅延時間の設定に使用するデフォルト
		の時間単位は秒です。msec コマンドは、時間単 位をミリ秒にリセットします。

	コマンドの説明	目的
ステップ 5	Router(config-if)# pos trigger defect ber_sd-b3	 (任意)SONET/SDH ビット エラー レートが信号劣化ア ラームに設定されているスレッシュホールドを超えた ときに、POS インターフェイスがダウンするようにトリ ガーを設定します。POS インターフェイスがダウンする と、RPR ラップを開始します。 過度の SONET/SDH ビット エラーにより RPR トラ フィックでパケット損失が発生する可能性があるため、 すべての RPR POS インターフェイスに対してこのコマ ンドを使用することを推奨します。
		(注) Cisco ONS 15310 がリングの一部である場合、このコマンドを使用しないでください。RPR ラッピングが矛盾する可能性があります。
ステップ 6	Router(config-if)# no shutdown	POS ポートをイネーブルにします。
ステップ 7	Router(config-if)# interface pos 1	インターフェイス コンフィギュレーション モードを開 始し、SPR に割り当てる 2 つめの POS インターフェイ スを設定します。
ステップ 8	Router(config-if)# encapsulation lex	POS インターフェイスのカプセル化を LEX として設定 します(デフォルト)。ML シリーズ カードの RPR で は、LEX カプセル化が必要です。
ステップ 9	Router(config-if)# spr-intf-id shared-packet-ring-number	POS インターフェイスを SPR インターフェイスに割り 当てます。共有パケット リング番号は1 である必要が あります (ステップ 3 で割り当てた共有パケット リン グ番号と同じ番号)。この番号は、SPR インターフェイ スに割り当てられる唯一の共有パケット リング番号で す。
ステップ 1 0	Router(config-if)# carrier-delay msec milliseconds	(任意)キャリア遅延時間を設定します。デフォルトの 設定は、200 ミリ秒です。これは、SONET/SDH 保護回 線に最適な時間です。
ステップ 11	Router(config-if)# pos trigger defect ber_sd-b3	(任意)SONET/SDH ビット エラー レートが信号劣化ア ラームに設定されているスレッシュホールドを超えた ときに、POS インターフェイスがダウンするようにトリ ガーを設定します。POS インターフェイスがダウンする と、RPR ラップを開始します。
		過度の SONET/SDH ビット エラーにより RPR トラ フィックでパケット損失が発生する可能性があるため、 すべての RPR POS インターフェイスに対してこのコマ ンドを使用することを推奨します。
ステップ 12	Router(config-if)# no shutdown	POS ポートをイネーブルにします。
ステップ 13	Router(config-if)# end	イネーブル EXEC モードに戻ります。
ステップ 14	Router# copy running-config startup-config	(任意)設定の変更を NVRAM に保存します。

ブリッジ グループの作成とイーサネットおよび SPR インターフェイスの割り当て

ML シリーズ カードのデフォルト動作では、インターフェイスがイネーブルであってもトラフィッ クは RPR 上でブリッジされません。これは、Cisco Catalyst 6500 や Cisco Catalyst 7600 を含めた多く のレイヤ 2 スイッチとは対照的です。これらのスイッチはデフォルトでは VLAN 1 を転送します。 ML シリーズ カードは、タグなしパケットまたは VLAN 1 タグ付きパケットを含め、デフォルトで はトラフィックを転送しません。

ML シリーズ カードでブリッジされる RPR トラフィックの場合、そのトラフィック用にブリッジ グループを作成する必要があります。プリッジ グループは ML シリーズ カードのインターフェイ ス間でブリッジングおよび転送を維持するので、ローカルでは重要です。ブリッジ グループに参加 していないインターフェイスは、ブリッジッド トラフィックを転送できません。

RPR 用のブリッジ グループを作成するには、同じブリッジ グループ内に含める必要のあるイーサ ネット インターフェイスを決定し、ブリッジ グループを作成し、これらのインターフェイスとブ リッジ グループを関連付けます。次に、RPR インフラストラクチャ上での転送を行うため、SPR イ ンターフェイスおよび同じブリッジ グループを関連付けます。

図 17-8 に、RPR の SPR 仮想インターフェイスを含めた ML シリーズ カード インターフェイスをス パニングするブリッジ グループを示します。

図 17-8 RPR ブリッジ グループ

適切な RPR 運用のため、RPR トポロジー以外の、接続ネットワーク内のレイヤ 2 ネットワーク冗 長リンク(ループ)をすべて削除する必要があります。ループが存在する場合、STP/RSTP を設定 する必要があります。

必要なインターフェイスを設定するには、グローバル コンフィギュレーション モードで次の手順 を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# interface type number	イーサネット インターフェイスをブリッジ グループに
		参加させるため、インターフェイス コンフィギュレー
		ション モードを開始します。
ステップ 2	Router(config-if)# no shutdown	インターフェイスをイネーブルにします。

	コマンドの説明	目的
ステップ 3	Router(config-if)# bridge-group bridge-group-number	特定のブリッジ グループを作成し、そのブリッジ グ ループをインターフェイスに割り当てます。インター フェイス コンフィギュレーションからブリッジを作成 すると、STP または RSTP がディセーブルになります (spanning-disabled)。これは RPR に推奨されます。
ステップ 4	Router(config)# interface spr1	SPR のインターフェイス コンフィギュレーション モー ドを開始します。
ステップ 5	Router(config-subif)# bridge-group bridge-group-number	SPR インターフェイスを特定のブリッジ グループに関 連付けます。

RPR Cisco IOS の設定例

図 17-5 に、RPR Cisco IOS の完全な設定例を示します。関連する Cisco IOS コードは、17-1、17-2、 17-3 に示します。この設定は、ML シリーズ カードの POS ポートが、CTC から設定されたポイン トツーポイント SONET/SDH 回線によって、すでにリンクされていることを前提としています。

例 17-1 SPR ステーション ID 1 の設定

bridge irb

interface SPR1
no ip address
no keepalive
spr station-id 1
bridge-group 10
bridge-group 10 spanning-disabled
hold-queue 150 in

interface GigabitEthernet0
no ip address
bridge-group 10
bridge-group 10 spanning-disabled

interface GigabitEthernet1
no ip address
shutdown

interface POS0
no ip address
carrier-delay msec 0
spr-intf-id 1
crc 32

interface POS1
no ip address
carrier-delay msec 0
spr-intf-id 1
crc 32
!

例 17-2 SPR ステーション ID 2 の設定

bridge irb

interface SPR1
no ip address
no keepalive
spr station-id 2
bridge-group 10
bridge-group 10 spanning-disabled

interface GigabitEthernet0
no ip address
bridge-group 10
bridge-group 10 spanning-disabled

interface GigabitEthernet1
no ip address
shutdown

interface POSO no ip address shutdown spr-intf-id 1 crc 32

interface POS1
no ip address
spr-intf-id 1
crc 32

例 17-3 SPR ステーション ID 3 の設定

bridge irb

interface SPR1
no ip address
no keepalive
spr station-id 3
bridge-group 10
bridge-group 10 spanning-disabled
hold-queue 150 in

interface GigabitEthernet0
no ip address
bridge-group 10
bridge-group 10 spanning-disabled

interface GigabitEthernet1
no ip address
shutdown

interface POSO no ip address spr-intf-id 1 crc 32

interface POS1
no ip address
spr-intf-id 1
crc 32
!

RPR イーサネット アクセス ポート間のイーサネット接続の確認

RPR のプロビジョニング手順が終了したあと、標準イーサネット接続テストを使用して、個別の ML シリーズ カード上の イーサネット アクセス ポート間のイーサネット接続をテストします。

RPR のモニタリングおよび確認

RPR を設定したあと、show interface spr 1 コマンド (例 17-4) または show run interface spr 1 コ マンド (例 17-5) を使用して、RPR のステータスをモニタリングできます。

```
例 17-4
        show interface spr 1 の出力例
ML-Series# show interfaces spr 1
SPR1 is up, line protocol is up
 Hardware is POS-SPR, address is 0005.9a39.77f8 (bia 0000.0000.0000)
 MTU 1500 bytes, BW 290304 Kbit, DLY 100 usec,
    reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation: Cisco-EoS-LEX, loopback not set
 Keepalive not set
  DTR is pulsed for 27482 seconds on reset, Restart-Delay is 65 secs
 ARP type: ARPA, ARP Timeout 04:00:00
   No. of active members in this SPR interface: 2
        Member 0 : POS1
       Member 1 : POSO
  Last input 00:00:38, output never, output hang never
  Last clearing of "show interface" counters never
  Input queue: 0/150/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/80 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     37385 packets input, 20993313 bytes
     Received 0 broadcasts (0 IP multicast)
     0 runts, 0 giants, 0 throttles
             0 parity
     2 input errors, 2 CRC, 0 frame, 0 overrun, 0 ignored
     0 input packets with dribble condition detected
     37454 packets output, 13183808 bytes, 0 underruns
     0 output errors, 0 applique, 4 interface resets
     0 babbles, 0 late collision, 0 deferred
     0 lost carrier, 0 no carrier
     0 output buffer failures, 0 output buffers swapped out
     0 carrier transitions
```

例 17-5 show run interface spr 1 の出力例

ML-Series# show run interface spr 1

```
Building configuration...
Current configuration : 141 bytes
interface SPR1
no ip address
no keepalive
spr station-id 2
bridge-group 10
bridge-group 10 spanning-disabled
hold-queue 150 in
end
```

ML シリーズ カードの RPR への追加

既存の RPR は、ML シリーズ カードを追加する必要があります。RPR ラッピング機能とリング アー キテクチャにより、データ トラフィックをダウンさせることなく、追加できます。ML シリーズ カードは、カードを含んだノードを含んだリードとともに、基盤となる SONET/SDH アーキテク チャに追加できます。すでに SONET/SDH トポロジーの一部であるノードに、ML シリーズ カード を追加することもできます。

次の例では、ML シリーズ カードを接続する 2 つの STS 回線を持った 2 ノードの RPR の例を示し ます。回線の 1 つは削除されます。RPR は、ping 損失を最小限にして、残りの回線上でトラフィッ クをラップします。そのあと 3 番めのノードと ML シリーズ カードが追加され、このカード用にス パンと回線が作成されます。

図 17-9 に、削除される単一 STS 回線とスパンを持った既存の 2 ノードの RPR を示します。図 17-10 に、追加される新しい 2 つの STS 回線、およびスパンが 3 番めのノードに追加されたあとの RPR を示します。

図 17-9 追加前の 2 つのノードの RPR

— — — = CTC 上に作成された STS 回線 🧚

図 17-10 追加後の 3 ノードの RPR

ML シリーズ カードを RPR に追加するには、次の一般的な手順を実行する必要があります。

- 削除するスパンを使用する既存の非 ML シリーズ カード回線 (DS-1 など)を遠ざけます。
- RPR ラップを開始するため、削除する STS 回線の隣接する ML シリーズ カードの POS ポート をシャットダウンします。
- RPR ラップが正常に行われたことを確認するため、テスト セットを使用して、既存の隣接 ML シリーズ カードのアクセス ポート間のイーサネット接続をテストします。
- 新しい回線で置き換えられる STS 回線を削除します(図 17-9 では、POS 0 の隣接ノード 2 と POS 1 の隣接ノード 1 間の回線です)。
- ノードがトポロジーの一部ではない場合、新しいノードをリングトポロジーに接続します。
- ML シリーズ カードを接続し、初期コンフィギュレーション ファイルをロードするか、または ML シリーズ カードを初期設定します。
- POS ポートを手動でイネーブルにするか、またはコンフィギュレーション ファイルを介してイネーブルにする前に、新しいノードに RPR が設定されていることを確認してください。
- 既存の隣接 ML シリーズ カードの POS ポートの 1 つから、新しい ML シリーズ カードの POS ポートへの STS 回線を作成します(図 17-10 では、POS ポート 0 の隣接ノード 2 と POS ポート 1 の新しいノード間の回線です)。
- 別の既存の隣接 ML シリーズ カードの POS ポートの 1 つから、新しい ML シリーズ カードの 残りの POS ポートへの 2 番めの STS 回線を作成します(図 17-10 では、POS ポート 0 の新し いノードと POS ポート 1 の隣接ノード 1 間の回線です)。
- 初期コンフィギュレーション ファイルが RPR に参加し、POS ポートをイネーブルにしなかった場合、新しい ML シリーズ カードがこれを実行するよう設定します。
- 新しい ML シリーズ カードに接続された既存の隣接 ML シリーズ カード上で POS ポートをイネーブルにします(図 17-10 では、POS ポート1の隣接ノード1と POS ポート0の隣接ノード2 です)。
- 新しく作成された 3 ノードの RPR を検証するため、テスト セットを使用して、新しい ML シ リーズ カードのアクセス ポート間のイーサネット接続をテストします。

ノードの挿入後、最低1時間以上は、イーサネットトラフィックと既存のルーティングプロトコルをモニタリングします。

注意

次の手順におけるステップは、例で示すトポロジー用の手順です。使用する手順は、ネットワーク 設計によって異なります。専門のネットワーク設計者による詳細な計画または方法を得ずに、この 手順を実行しないでください。

ML シリーズ カードの RPR への追加

MLシリーズカードを例に示す RPR に追加するには、次の手順を実行します。

- **ステップ1** 最初の隣接ノードの ML シリーズ カードの Cisco IOS CLI セッションを開始します。これは、図 17-9 の隣接ノード1 です。
- **ステップ2** グローバル コンフィギュレーション モードを開始して、最初の隣接ノードの ML シリーズ カード 上で次の Cisco IOS コンフィギュレーションを完了します。

a.	Router(config)# interface pos <i>interface-number</i>	削除する回線の 1 つのエンドポイントで、POS ポートの インターフェイス コンフィギュレーション モードを開 始します。
b.	Router(config-if)# shutdown	インターフェイスを閉じて、RPR ラップを開始します。

- **ステップ3**図 17-9 で示す隣接ノード 2 の ML シリーズ カードの Cisco IOS CLI セッションを開始します。
- **ステップ4** グローバル コンフィギュレーション モードを開始して、隣接ノード2の ML シリーズ カード上で 次の Cisco IOS コンフィギュレーションを完了します。

a.	Router(config)# interface pos <i>interface-number</i>	削除する回線の 1 つのエンドポイントで、POS ポートの インターフェイス コンフィギュレーション モードを開 始します。
b.	Router(config-if)# shutdown	インターフェイスを閉じます。

- **ステップ5** CTC で、隣接ノード1にログインします。
- **ステップ6** 隣接ノード1の ML シリーズ カードをダブルクリックします。

カードビューが表示されます。

- ステップ7 Circuits タブをクリックします。
- ステップ8 Circuits サブタブをクリックします。
- **ステップ9** 削除する回線のエンドポイントで POS ポートと一致する回線エントリの送信元カラムと宛先カラムを参照して、適切な STS 回線を特定します。

回線エントリは、Node-1/s12(ML100T)/pPOS-0 などのように *node-name/card-slot/port-number* 形式に なっています。

ステップ10 ハイライトする回線エントリをクリックします。

ステップ11 Delete をクリックします。

confirmation ダイアログ ボックスが表示されます。

ステップ 12 Yes をクリックします。

ステップ13 テスト セットを使用して、隣接ノード1のイーサネット アクセス ポートと隣接ノード2のイーサ ネット アクセス ポート間にイーサネット接続がまだ存在するかどうかを確認します。

- 注) ML シリーズ カードの SPR インターフェイスおよびイーサネット インターフェイスは、 RPR トラフィックが RPR をブリッジングするため、ブリッジ グループに存在する必要があ ります。
- **ステップ14**新しいノードが SONET/SDH リング トポロジーでまだアクティブ ノードではない場合、ノードを リングに追加します。ONS ノードの設置手順については、『*Cisco ONS 15454 Procedure Guide*』の 「Add and Remove Nodes」の章、または『*Cisco ONS 15454 SDH Procedure Guide*』の「Add and Remove Nodes」の章を参照してください。
- **ステップ15** 新しいノードの ML シリーズ カードがまだ取り付けられていない場合、新しいカードをそのノード に取り付けます。カードの ONS ノードへの取り付け手順については、『*Cisco ONS 15454 Procedure Guide*』の「Install Cards and Fiber-Optic Cable」の章、または『*Cisco ONS 15454 SDH Procedure Guide*』 の「Install Cards and Fiber-Optic Cable」の章を参照してください。
- ステップ16 新しい ML シリーズ カードの初期スタートアップ コンフィギュレーション ファイルをアップロードします(「CTC での Cisco IOS スタートアップ コンフィギュレーション ファイルのロード」[p.3-11] を参照)。スタートアップ コンフィギュレーション ファイルの準備ができていない場合、「シリア ルコンソールポートを使用して手動でスタートアップ コンフィギュレーション ファイルを作成す る方法」(p.3-9)を参照してください。

注意

POS ポートを手動でイネーブルにするか、またはコンフィギュレーション ファイルを介してイ ネーブルにする前に、新しいノードに RPR が設定されていることを確認してください。

ステップ17 回線ステートが In-Service (IS) である STS 回線を、隣接ノード1の利用可能な POS ポートから新 しいノードに作成します(図 17-10 を参照)。新しいノードでは、隣接ノード1の利用可能な POS ポートのインターフェイス番号と一致しないインターフェイス番号の付いた POS ポートを使用し ます。たとえば、隣接ノード1の POS ポート0は新しいノードの POS ポート1に接続します。

回線接続手順の詳細については、「RPRのCTC回線の設定」(p.17-7)を参照してください。

(注) 最良の方法は、イーストからウェスト、またはウェストからイーストに SONET/SDH 回線 を設定することです。つまり、SONET/SDH リングで、ポート 0(イースト)からポート 1 (ウェスト)、またはポート 1(ウェスト)からポート 0(イースト)のように設定します。

- **ステップ18**回線ステートが IS である STS 回線を、隣接ノード 2の利用可能な POS ポートから新しいノーの残 りの POS ポートに作成します(図 17-10 を参照)。
- **ステップ 19** 図 17-9 で示す隣接ノード 1 の ML シリーズ カードの Cisco IOS CLI セッションを開始または再開します。
- **ステップ20** グローバル コンフィギュレーション モードを開始して、次の Cisco IOS コンフィギュレーションを 完了します。

a.	Router(config)# interface pos interface-number	新しく最初に作成した回線の 1 つのエンドポイント で、POS ポートのインターフェイス コンフィギュ
		レーション モードを開始します。
b.	Router(config-if)# no shutdown	ポートをイネーブルにします。

- **ステップ 21** 図 17-9 で示す隣接ノード 2 の ML シリーズ カードの Cisco IOS CLI セッションを開始します。
- **ステップ22** グローバル コンフィギュレーション モードを開始して、隣接ノード 2 の ML シリーズ カード上で 次の Cisco IOS コンフィギュレーションを完了します。

a.	Router(config)# interface pos <i>interface-number</i>	新しく 2 番めに作成した回線の 1 つのエンドポイン トで、POS ポートのインターフェイス コンフィギュ レーション モードを開始します
b.	Router(config-if)# no shutdown	ポートをイネーブルにします。

- ステップ23 イーサネット接続が RPR に存在するかどうか確認するため、テスト セットを使用します。
- **ステップ24** ノードの挿入後、最低1時間以上は、イーサネット トラフィックとルーティング テーブルをモニ タリングします。

終了。手順はこれで完了です。
RPR からの ML シリーズ カードの削除

既存の RPR は、ML シリーズ カードを削除する必要があります。RPR ラッピング機能とリング アー キテクチャにより、データ トラフィックをダウンさせることなく、削除できます。

次の例では、ML シリーズ カードを接続する 3 つの STS 回線を持った 3 ノードの RPR の例を示し ます。回線の 2 つは削除されます。RPR は、ping 損失を最小限にして、残りの回線でトラフィック をラップします。そのあと、3 番めのノードと ML シリーズ カードは削除され、新しい STS 回線が 残りのカード間に作成されます。

図 17-11 に、3 つの STS 回線とスパンを持った既存の 3 ノードの RPR を示します。図 17-12 に、3 番めのノード、回線、スパンが削除され、新しい STS 回線が追加されたあとの RPR を示します。

図 17-11 削除前の 3 つのノードの RPR

図 17-12 削除後の 2 つのノードの RPR

ML シリーズ カードを RPR から削除するには、次の一般的な手順を実行する必要があります。

- 削除するスパンを使用する既存の非 ML シリーズ カード回線 (DS-1 など)を遠ざけます。
- RPR ラップを開始するため、削除する STS 回線の隣接する ML シリーズ カードの POS ポート をシャットダウンします。
- RPR ラップが正常に行われたことを確認するため、テスト セットを使用して、既存の隣接 ML シリーズ カードのアクセス ポート間のイーサネット接続をテストします。
- 新しい回線で置き換えられる2つの STS 回線を削除します(図 17-11 では、削除ノードと隣接 ノード間の回線および削除ノードと別の隣接ノード間の回線です)。
- 必要に応じて、リングトポロジーから削除ノードを削除します。
- 必要に応じて、ノードから削除 ML シリーズ カードを物理的に取り外します。
- 残りの隣接 ML シリーズ カードのうちの 1 枚の利用可能な POS ポートから、別の残りの隣接 ML シリーズ カードの利用可能な POS ポートへ STS 回線を作成します(図 17-12 では、POS ポート 0 の隣接ノード 2 と POS ポート 1 の隣接ノード 1 間の回線です)。
- 既存の隣接 ML シリーズ カードの POS ポートをイネーブルにします(図 17-12 では、POS ポート 0 の隣接ノード 2 と POS ポート 1 の隣接ノード 1 です)。
- 2 ノードの RPR を検証するため、テスト セットを使用して、隣接 ML シリーズ カードのアク セス ポート間のイーサネット接続をテストします。
- ノードの削除後、最低1時間以上は、イーサネットトラフィックと既存のルーティングプロトコルをモニタリングします。

次の手順におけるステップは、例で示すトポロジー用の手順です。使用する手順は、ネットワーク 設計によって異なります。専門のネットワーク設計者による詳細な計画または方法を得ずに、この 手順を実行しないでください。

RPR からの ML シリーズ カードの削除

RPR から ML シリーズ カードを 削除するには、次の手順を実行します。

- **ステップ1** 最初の隣接ノードの ML シリーズ カードの Cisco IOS CLI セッションを開始します。これは、図 17-11 の隣接ノード1 です。
- **ステップ2** グローバル コンフィギュレーション モードを開始して、最初の隣接ノードの ML シリーズ カード 上で次の Cisco IOS コンフィギュレーションを完了します。

a.	Router(config)# interface pos <i>interface-number</i>	回線の最後で削除ノードに直接接続されている POS ポートのインターフェイス コンフィギュレーショ ン モードを開始します。
b.	Router(config-if)# shutdown	インターフェイスを閉じて、RPR ラップを開始しま す。

- **ステップ3** 図 17-11 で示す隣接ノード2の ML シリーズ カードの Cisco IOS CLI セッションを開始します。
- **ステップ4** グローバル コンフィギュレーション モードで、隣接ノード2の ML シリーズ カード上で次の Cisco IOS コンフィギュレーションを完了します。

a.	Router(config)# interface pos interface-number	回線の最後で削除ノードに直接接続されている POS
		バードのインターフェイス コンフィキュレーショ ン モードを開始します。
b.	Router(config-if)# shutdown	インターフェイスを閉じます。

- **ステップ5** CTC を使用して隣接ノード1にログインします。
- **ステップ6** 隣接ノード1の ML シリーズ カードをダブルクリックします。

カードビューが表示されます。

- ステップ7 Circuits タブをクリックします。
- ステップ8 Circuits サブタブをクリックします。
- **ステップ9** 最初に削除する回線のエンドポイントで POS ポートと一致する回線エントリの送信元カラムと宛 先カラムを参照して、適切な STS 回線を特定します。

回線エントリは、Node-1/s12(ML100T)/pPOS-0 などのように node-name/card-slot/port-number 形式に なっています。

- ステップ10 ハイライトする回線エントリをクリックします。
- **ステップ 11** Delete をクリックします。

confirmation ダイアログ ボックスが表示されます。

ステップ12 Yes をクリックします。

ステップ 13 テスト セットを使用して、隣接ノード 1 のイーサネット アクセス ポートと隣接ノード 2 のイーサ ネット アクセス ポートの間にイーサネット接続がまだ存在するかどうかを確認します。

(注)

E) ML シリーズ カードの SPR インターフェイスおよびイーサネット インターフェイスは、RPR トラ フィックが RPR をブリッジングするため、ブリッジ グループに存在する必要があります。

- ステップ14 CTC を使用して隣接ノード2にログインします。
- **ステップ 15** 隣接ノード2の ML シリーズ カードをダブルクリックします。

カード ビューが表示されます。

- ステップ16 Circuits タブをクリックします。
- ステップ17 Circuits サブタブをクリックします。
- **ステップ18**2番めに削除する回線のエンドポイントで POS ポートと一致する回線エントリの送信元カラムと 宛先カラムを参照して、適切な STS 回線を特定します。

回線エントリは、Node-1/s12(ML100T)/pPOS-0 などのように node-name/card-slot/port-number 形式に なっています。

- ステップ19 ハイライトする回線エントリをクリックします。
- ステップ20 Delete をクリックします。

confirmation ダイアログ ボックスが表示されます。

- ステップ21 Yes をクリックします。
- **ステップ22**新しいノードが SONET/SDH リング トポロジーでアクティブ ノードにならない場合、ノードをリ ングから削除します。ONS ノードの削除手順については、『*Cisco ONS 15454 Procedure Guide*』の 「Add and Remove Nodes」の章、または『*Cisco ONS 15454 SDH Procedure Guide*』の「Add and Remove Nodes」の章を参照してください。
- **ステップ23**新しいノードの ML シリーズ カードを CTC で削除し、物理的に取り外す必要がある場合は、その ようにしてください。カードの ONS ノードへの取り付け手順については、『*Cisco ONS 15454 Procedure Guide*』の「Install Cards and Fiber-Optic Cable」の章、または『*Cisco ONS 15454 SDH Procedure Guide*』の「Install Cards and Fiber-Optic Cable」の章を参照してください。
- **ステップ24** 回線ステートが IS である STS 回線を、隣接ノード1の利用可能な POS ポートから隣接ノード2の 利用可能な POS ポートに作成します(図 17-12 を参照)。回線接続手順の詳細については、「RPR の CTC 回線の設定」(p.17-7)を参照してください。

E) 最良の方法は、イーストからウェスト、またはウェストからイーストに SONET/SDH 回線 を設定することです。つまり、SONET/SDH リングで、ポート 0 (イースト)からポート 1 (ウェスト) またはポート 1 (ウェスト)からポート 0 (イースト)のように設定します。 ステップ25 隣接ノード1のMLシリーズカードのCisco IOS CLI セッションを開始または再開します。

ステップ26 グローバル コンフィギュレーション モードを開始して、隣接ノード1の ML シリーズ カードの次の Cisco IOS コンフィギュレーションを完了します。

a.	Router(config)# interface pos interface-number	新しく最初に作成した回線の 1 つのエンドポイント で、POS ポートのインターフェイス コンフィギュ レーション モードを開始します。
b.	Router(config-if)# no shutdown	ポートをイネーブルにします。

- **ステップ 27** 隣接ノード 2 の ML シリーズ カードの Cisco IOS CLI セッションを開始します。
- **ステップ28** グローバル コンフィギュレーション モードを開始して、隣接ノード2の ML シリーズ カード上で 次の Cisco IOS コンフィギュレーションを完了します。

a.	Router(config)# interface pos <i>interface-number</i>	新しく 2 番めに作成した回線の 1 つのエンドポイン トで、POS ポートのインターフェイス コンフィギュ レーション モードを開始します。
b.	Router(config-if)# no shutdown	ポートをイネーブルにします。

ステップ 29 イーサネット接続が RPR に存在するかどうか確認するため、テスト セットを使用します。

ステップ 30 ノードの削除後、最低 1 時間以上は、イーサネット トラフィックとルーティング テーブルをモニ タリングします。

終了。手順はこれで完了です。

RPR LFP の概要

Link Fault Propagation (LFP)は、リンクパススルーとしても知られ、ルータが ML シリーズ カードの RPR で相互接続されているネットワーク内でコンバージェンス時間を短縮します。LFP は、マスター ギガビット イーサネット リンクからギガビット イーサネットやファスト イーサネットのリモート スレーブ リンクへリンク障害をすばやく中継します。LFP により、スレーブ リンクに接続されたルータから代替パスへのフェールオーバーの時間が大幅に改善されます。通常の保護方式では、コンバージェンス時間は 40 秒くらいとなります。LFP を使用すると、スレーブ インターフェイスはマスター インターフェイスの状態を 1 秒未満で反映します。この機能は多くの場合、遠端ハブサイトのリンク障害をトリガーとして、近端アクセス サイトをリンク ダウン状態にするために使用します。図 17-13 に LFP を示します。

図 17-13 RPR リンク障害の伝播例

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

LFP シーケンス

LFP の更新は CDP パケット拡張で行われます。更新は定期的に送信されますが、マスター インター フェイスでリンクダウン状態になった場合は、ただちに送信されます。LFP の更新は通常の Cisco Discovery Protocol (CDP) パケットとは別に送信され、これらは互いに影響し合うことはありませ ん。インターフェイス上で CDP を設定したり、ディセーブルにしても LFP の更新には影響しませ ん。

管理上の理由でシャットダウンする場合も含め、マスター インターフェイスがダウンすると、ス レーブ インターフェイスが強制的にダウンします。マスター インターフェイスがアップ状態にな ると、スレーブ インターフェイスもアップ状態に戻ります。スレーブ インターフェイスを管理上 の理由でシャットダウンすると、スレーブ インターフェイスで LFP 機能が一時停止します。スレー ブインターフェイスを再度起動すると、LFP 機能が再開します。

マスターからスレーブへの接続で障害があると、スレーブリンクでもまたリンクのダウン障害が強制的に起こります。接断の原因を次に示します。

- マスター ML シリーズ カードの取り外しまたは再設置
- マスターとスレーブ間の両方の RPR パスでのシャットダウンまたは障害
- マスター インターフェイス上での LFP のディセーブル

リンク障害はマスターからスレーブへのみ伝播されます。通常のスレーブのリンク障害は伝播されません。RPRのラッピングとラッピングの解除はLFPには影響しません。

伝播遅延

伝播遅延には、スレーブインターフェイスでのキャリア遅延時間も含まれます。キャリア遅延時間 は設定可能で、そのデフォルト値は 200 ミリ秒です。キャリア遅延時間の設定の詳細については、 「RPR の設定」(p.17-7)を参照してください。

伝播遅延にはそれぞれ、異なる LFP のシナリオがあります。

- マスターのリンクダウンとスレーブのリンクダウンの間の伝播遅延は、50 ミリ秒にスレーブインターフェイスでのキャリア遅延時間を加えたものです。
- マスターのリンクアップとスレーブのリンクアップの間の伝播遅延には、インターフェイスの フラッピングを防止するために、マスターインターフェイスでの組み込み遅延がさらに加わり ます。リンクアップの伝播には、約50~200ミリ秒とスレーブインターフェイスでのキャリ ア遅延時間がかかります。
- マスターからスレーブへのリンク障害からスレーブリンクがダウンするまでの伝播遅延は、約600 ミリ秒にスレーブインターフェイスでのキャリア遅延時間を加えたものです。

LFP の設定

図 17-13 に LFP を設定した RPR の例を示します。LFP 設定のプロセスは、次のタスクで構成されます。

- ある ML シリーズ カードのギガビット イーサネット インターフェイスをマスター リンクとし て設定します。
- 別の ML シリーズ カードのギガビット イーサネットまたはファスト イーサネット インター フェイスをスレーブ リンクとして設定します。

LFP マスター リンクをイネーブルにして設定するには、グローバル コンフィギュレーション モー ドで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router# interface gigabit ethernet number	インターフェイス コンフィギュレーション モードを起 動してギガビット イーサネット インターフェイスを設 定します。
ステップ 2	Router(config-if)# link-fault rpr-master	インターフェイスのリンク障害マスター ステータスを イネーブルにします。
		このコマンドの no 形式はリンク障害マスター ステータ スをディセーブルにします。
ステップ 3	Router(config-if)# no shutdown	インターフェイスがシャット ダウンしないようにする ことにより、インターフェイスをイネーブルにします。
ステップ 4	Router(config)# end	イネーブル EXEC モードに戻ります。
ステップ 5	Router# copy running-config startup-config	(任意)設定の変更を TCC2/TCC2P フラッシュ データ ベースに保存します。

LFP スレーブ リンクをイネーブルに設定するには、マスター リンク用に設定された ML シリーズ カード以外の、RPR 内の ML シリーズ カードに対して次の手順を実行します。 グローバル コンフィ ギュレーション モードで、次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router# interface [gigabit ethernet fastethernet] number	インターフェイス コンフィギュレーション モードを起 動してギガビット イーサネットまたはファスト イーサ ネット インターフェイスを設定します。
ステップ 2	<pre>Router(config-if)# link-fault rpr-slave</pre>	インターフェイスのリンク障害スレーブ ステータスを イネーブルにします。
		このコマンドの no 形式はリンク障害スレーブ ステータ スをディセーブルにします。
ステップ 3	Router(config-if)# no shutdown	インターフェイスがシャット ダウンしないようにする ことにより、インターフェイスをイネーブルにします。
ステップ 4	Router(config)# end	イネーブル EXEC モードに戻ります。
ステップ 5	Router# copy running-config startup-config	(任意)設定の変更を TCC2/TCC2P フラッシュ データ ベースに保存します。

LFP の設定要件

LFP の設定要件には次のものがあります。

- リンク障害マスターとリンク障害スレーブを同じカード上で設定しない。
- ML シリーズ カードで拡張マイクロコード イメージを実行する必要がある。
- RPR 内のすべての ML シリーズ カードでリリース 5.0 以降のソフトウェアを実行する必要がある。
- DRPRI用に設定された ML シリーズ カードは LFP 用に設定しない。 DRPRI での LFP はサポートされていない。
- ML シリーズ カードのギガビット イーサネット インターフェイスだけがリンク障害マスター になれる。
- RPR ごとに許可されているリンク障害マスターは1つのみ。
- ギガビット イーサネット インターフェイスとファスト イーサネット インターフェイスの両方 がリンク障害スレーブになれる。
- RPR のリンク障害スレーブには設定に関する制限はありません。

LFP のモニタリングおよび確認

リンク ダウン状態のスレーブ インターフェイスがあると、CTC で CARLOSS アラームが発生しま す。CTC は、スレーブ リンクでのローカルの損失と LFP による損失とを区別しません。CARLOSS の詳細については、『Cisco ONS 15454 Troubleshooting Guide』の「Alarm Troubleshooting」の章また は『Cisco ONS 15454 SDH Troubleshooting Guide』の「Alarm Troubleshooting」の章を参照してください。

リンク ダウンしているインターフェイスの Cisco IOS ステータスは、プロトコル ダウンまたはリン ク ダウンとして表示されます。show controller コマンドでも show interface コマンドでも、リンク 上のローカル損失と LFP 損失との違いは表示されません。

LFP を設定したあと、show link-fault コマンドを使用して各マスター リンクまたはスレーブ リンク の LFP ステータスをモニタリングできます。このコマンドを使用して、LFP が原因でスレーブ イ ンターフェイスでリンク ダウンが発生したかを判別します。例 17-6 に、スレーブ インターフェイ スでこのコマンドを実行した場合の出力を示します。

例 17-6 LFP のモニタリングおよび確認

Router# show link-fault Link Fault Propagation Configuration: _________LFP Config Mode : LFP_SLAVE LFP Master State : LFP_STATUS_DOWN Interfaces configured for LFP: FastEthernet0 (down)

デュアル RPR 相互接続の概要

Cisco ML シリーズの RPR には、ブリッジ グループ プロトコル DRPRI が含まれます。これは、ノー ド障害から保護するためにリング間を相互接続するメカニズムです。DRPRI は、異なる RPR ネッ トワーク間のバックツーバック イーサネット接続の冗長ペアをサポートします。一方の接続はアク ティブ ノードであり、もう一方はスタンバイ ノードです。アクティブ ノード、リンク、またはカー ドで障害が発生すると、独自のアルゴリズムによって障害が検出され、スタンバイ ノードへのス イッチ オーバーが発生します。

ML シリーズ カードで拡張マイクロ コード イメージを使用している場合は、DRPRI でレイヤ 2 の プリッジド トラフィックに適用される回復時間は 200 ミリ秒未満です。ML シリーズ カードが基本 マイクロコード イメージ、または Multiprotocol Label Switching (MPLS; マルチプロトコル ラベル スイッチング)マイクロコード イメージを使用している場合、レイヤ 2 ブリッジド トラフィック の回復時間は最長 12 秒になります。どのマイクロコード イメージを使用している場合でも、レイ ヤ 3 のユニキャストおよびマルチキャスト トラフィックの回復時間は、実装しているルーティング プロトコルのコンバージェンス時間にも依存します。DRPRI ホップに関係なく、カスタマー ルー ティング プロトコルとスパニングツリー インスタンスは接続されません。

ML1000-2 カードのペアは同じステーション ID を共有し、RPR の他のメンバーには 1 枚のカードと して認識されます。図 17-14 では、ペア カード A と B が、同じ SPR ステーション ID を持ち、ペア カード C と D が、同じステーション ID を持ちます。相互接続する ノードは、RPR で隣接している 必要はありません。ブリッジング、IP ルーティング、ポリシング、および帯域幅割り当ては、DRPRI ML1000-2 カードにもプロビジョニングできます。次の例のブリッジ グループ 100 は DRPRI トラ フィックを伝送します。次の例のブリッジ グループ 10 はデータ トラフィックを伝送します。

図 17-14 デュアル RPR 相互接続ネットワークとペア カード

DRPRI には、次の特性があります。

- DRPRI ブリッジ グループをデータ トラフィックの伝送に使用することもできません。
- DRPRI ブリッジ グループは1つのプロトコルに制限されるため、DRPRI を実装しているブリッジ グループは、RSTP や STP を実装することはできません。
- 4 枚の ML1000-2 カードが必要です。
- 4 枚の ML1000-2 カードはすべて、同じブリッジ グループ(VLAN)に属している必要があります。
- ML1000-2 カードの各ペアは、同じ SPR ステーション ID が割り当てられている必要がありま す。
- ブリッジ グループを SPR サブインターフェイスで設定する必要があります。
- 4 枚の各 ML1000-2 カードで、両方のギガビット イーサネット ポートは、Gigabit EtherChannel (GEC)に加入し、GEC インターフェイスは DRPRI ブリッジ グループに含まれている必要があ ります。または、一方のギガビット イーサネット ポートをシャットダウンし、もう一方のポー トを DRPRI ブリッジ グループに含める必要があります。GEC 方式を推奨します。
- DRPRI ブリッジ グループに含まれるサブインターフェイスまたは GEC インターフェイス上で 手動シャットダウンを行う場合、リング間の GEC またはイーサネット接続の両端のインター フェイスで行う必要があります。
- DRPRI ノードを使用できるのは、2つの RPR を相互接続する場合だけです。カードのフロント ポートを他のトラフィックの伝送に使用しないでください。
- リング間でトラフィックを伝送する DRPRI 以外のブリッジ グループでは、STP または RSTP を 設定できません。
- リング間でトラフィックを伝送する DRPRI 以外のブリッジ グループは、4 枚の各 ML シリーズ カードで設定する必要があります。
- 802.1 Q トンネル(QinQ)およびプロトコル トンネルを DRPRI ノードで開始することはできま せんが、DRPRI ノードは接続されたリング間で QinQ とプロトコル トンネルをブリッジできま す。
- ユーザが DRPRI ブリッジ グループのメンバーのパス コストを変更してはなりません。パスコ ストは ML シリーズ カードによって割り当てられ、DRPRI が正常に動作することが保証されま す。ユーザが設定したパスコストは、割り当てられた DRPRI のデフォルトのパスコストで上書 きされます。

DRPRIの設定

DRPRI には、2 組の ML シリーズ カードが必要です。1 組は RPR として設定し、隣接する 2 つの RPR の 1 つめに属します。もう 1 組は RPR として設定し、2 つめの RPR に属します(図 17-14)。2 つの隣接する RPR を接続する 4 枚の各 ML1000-2 カードで DRPRI を設定します。DRPRI の設定プ ロセスのおおまかな手順は次のとおりです。この手順の詳細は、Cisco IOS 手順で説明されています。

- **ステップ1** DRPRI プロトコルでブリッジ グループを設定します。
- ステップ2 SPR インターフェイスを設定します。
 - a. ステーション ID 番号を割り当てます。
 - **b.** DRPRI ID として 0 または 1 を割り当てます。
- ステップ3 SPR サブインターフェイスを作成し、ブリッジ グループをサブインターフェイスに割り当てます。
- ステップ4 GEC インターフェイスを作成します。
- **ステップ5** GEC サブインターフェイスを作成し、ブリッジ グループをサブインターフェイスに割り当てます。

DRPRI をイネーブルにして設定するには、グローバル コンフィギュレーション モードで、次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# bridge crb	同時ルーティングとブリッジングをイネーブルにしま
		す。同時ルーティングとブリッジングがイネーブルに
		なっている場合、デフォルトの動作では、ブリッジ グ
		ループで明示的にルーティングされていないすべての
		プロトコルがブリッジされます。
ステップ 2	Router(config)# bridge bridge-group-number	4 枚の ML1000-2 カードで共有するブリッジ グループ番
	protocol drpri-rstp	号を作成し、DRPRI のプロトコルをブリッジ グループ
		に割り当てます。同じブリッジ グループ番号を使用し
		た同じコマンドを、4枚の各カードで指定する必要があ
		ります。
		₼
		注意 データ トラフィックを伝送するのに、DRPRI
		ブリッジ グループを使用しないでください。
		DRPRI フリッジ グルーフのデータ トラ
		ノイックは小女正さや、トラフィック ヒットの原因とかります
ステップ 3	Router(config)# interface spr 1	RPR の SPR インターフェイスを作成するか、すでに作
		成済みの SPR インターフェイスで SPR インターフェイ
		スコンフィギュレーション モードを開始します。有効
		な SPR 番号は 1 だけです。
ステップ 4	Router(config-if)# spr station-ID	ステーション識別番号を設定します。ユーザは、2 組の
	station-ID-number	カードで同じステーション ID を設定する必要がありま
		す。有効なステーション ID 番号の範囲は、1~254 です。

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

	コマンドの説明	目的
ステップ 5	<pre>Router(config-if)# spr drpri-ID {0 1}</pre>	DRPRI ID 番号 (0 または 1)を作成し、DRPRI の ML1000-2 カードのペアを区別します。DRPRI 識別番号 0 がデフォルトです。
ステップ 6	Router(config-if)# interface spr shared-packet-ring-subinterface-number	SPR サブインターフェイスを作成します。
ステップ 7	Router(config-subif)# encapsulation dot1q <i>vlan-ID</i>	SPR サブインターフェイスのカプセル化を IEEE 802.1Q に設定します。
ステップ 8	Router(config-subif)# bridge-group bridge-group-number	SPR サブインターフェイスを DRPRI ブリッジ グループ に割り当てます。
ステップ 9	Router(config)# interface port-channel channel-number	GEC インターフェイスまたはチャネルグループを作成 します。
ステップ 1 0	Router(config-if) # interface Gigabit Ethernet number	インターフェイス コンフィギュレーション モードを開 始し、GEC サブインターフェイスに割り当てる 1 つめ のギガビット イーサネット インターフェイスを指定し ます。
ステップ 11	Router(config-if)# channel-group channel-number	ギガビット イーサネット インターフェイスを GEC に 割り当てます。チャネル番号は、EtherChannel インター フェイスに割り当てたチャネル番号と同じ番号である ことが必要です。
ステップ 12	Router(config-if) # interface Gigabit Ethernet number	インターフェイス コンフィギュレーション モードを開 始し、GEC サブインターフェイスに割り当てる 2 つめ のギガビット イーサネット インターフェイスを指定し ます。
ステップ 13	Router(config-if)# channel-group channel-number	ギガビット イーサネット インターフェイスを GEC に 割り当てます。チャネル番号は、EtherChannel インター フェイスに割り当てたチャネル番号と同じ番号である ことが必要です。
ステップ 14	Router(config-subif)# interface port-channel channel-sub-interface-number	GEC サブインターフェイスを作成します。
ステップ 15	Router(config-subif)# encapsulation dot1q <i>vlan-ID</i>	サブインターフェイスのカプセル化を IEEE 802.1Q に 設定します。使用する VLAN ID は、7 で使用した VLAN ID と同じ ID であることが必要です。
ステップ 16	Router(config-subif) # bridge-group bridge-group-number	GEC サブインターフェイスを DRPRI ブリッジ グルー プに割り当てます。
ステップ 17	Router(config-if)# end	イネーブル EXEC モードに戻ります。
ステップ 18	Router# copy running-config startup-config	(任意)設定の変更を NVRAM に保存します。

DRPRI IOS の設定例

図 17-14 に、RPR の設定例を示します。show run コマンドの出力は、例 17-7、17-8、17-9、17-10 に示します。

データ トラフィックを伝送するのに、DRPRI ブリッジ グループを使用しないでください。DRPRI ブリッジ グループのデータ トラフィックは不安定さや、トラフィック ヒットの原因となります。 <u>へ</u> (注)

DRPRI の ML1000-2 カードのペアを区別するため、カードには DRPRI 識別番号 0 または 1 が付け られています。DRPRI ID 1 が付いたカード上の show run コマンドは、Cisco IOS CLI 出力で spr drpr-ID 1 を表示します。ただし、DRPRI ID 0 が付いたカード上の show run コマンドは、Cisco IOS CLI 出力で DRPRI ID を表示しません。

例 17-7 ML シリーズ カード A の設定

hostname ML-Series A bridge crb bridge 100 protocol drpri-rstp bridge 100 forward-time 4 1 1 interface SPR1 no ip address no keepalive spr station-id 1 spr drpri-id 0 hold-queue 150 in 1 interface SPR1.1 encapsulation dot1Q 100 bridge-group 100 ! interface SPR1.10 encapsulation dot1Q 10 bridge-group 10 bridge-group 10 spanning-disabled 1 interface Port-channel1 no ip address hold-queue 150 in 1 interface Port-channel1.1 encapsulation dot10 100 bridge-group 100 bridge-group 100 path-cost 32000 1 interface Port-channel1.10 encapsulation dot1Q 10 bridge-group 10 bridge-group 10 spanning-disabled 1 interface GigabitEthernet0 no ip address channel-group 1 1 interface GigabitEthernet1 no ip address channel-group 1 1 interface POS0 no ip address spr interface-id 1 crc 32 1 interface POS1 no ip address spr interface-id 1 crc 32 1 ip classless no ip http server

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

例 17-8 ML シリーズ カード B の設定

```
hostname ML-Series B
nodeB_ML1000#
bridge crb
bridge 100 protocol drpri-rstp
bridge 100 forward-time 4
1
1
interface SPR1
no ip address
no keepalive
spr station-id 1
spr drpri-id 1
hold-queue 150 in
1
interface SPR1.1
encapsulation dot1Q 100
bridge-group 100
!
interface SPR1.10
encapsulation dot1Q 10
bridge-group 10
bridge-group 10 spanning-disabled
1
interface Port-channel1
no ip address
hold-queue 150 in
!
interface Port-channel1.1
encapsulation dot10 100
bridge-group 100
bridge-group 100 path-cost 32000
!
interface Port-channel1.10
encapsulation dot1Q 10
bridge-group 10
bridge-group 10 spanning-disabled
1
interface GigabitEthernet0
no ip address
channel-group 1
!
interface GigabitEthernet1
no ip address
channel-group 1
!
interface POS0
no ip address
spr interface-id 1
crc 32
1
interface POS1
no ip address
spr interface-id 1
crc 32
1
ip classless
no ip http server
```

hostname ML-Series C bridge crb bridge 100 protocol drpri-rstp bridge 100 forward-time 4 bridge 100 priority 0 1 1 interface SPR1 no ip address no keepalive spr station-id 2 spr drpri-id 0 hold-queue 150 in 1 interface SPR1.1 encapsulation dot1Q 100 bridge-group 100 ! interface SPR1.10 encapsulation dot1Q 10 bridge-group 10 bridge-group 10 spanning-disabled 1 interface Port-channel1 no ip address hold-queue 150 in ! interface Port-channel1.1 encapsulation dot10 100 bridge-group 100 bridge-group 100 path-cost 32000 ! interface Port-channel1.10 encapsulation dot1Q 10 bridge-group 10 bridge-group 10 spanning-disabled 1 interface GigabitEthernet0 no ip address channel-group 1 ! interface GigabitEthernet1 no ip address channel-group 1 ! interface POS0 no ip address spr interface-id 1 crc 32 1 interface POS1 no ip address spr interface-id 1 crc 32 1 ip classless no ip http server

例 17-9 ML シリーズ カード C の設定

例 17-10 ML シリーズ カード D の設定

```
hostname ML-Series D
bridge crb
bridge 100 protocol drpri-rstp
bridge 100 forward-time 4
1
1
interface SPR1
no ip address
no keepalive
spr station-id 2
spr drpri-id 1
hold-queue 150 in
1
interface SPR1.1
encapsulation dot10 100
bridge-group 100
1
interface SPR1.10
encapsulation dot1Q 10
bridge-group 10
bridge-group 10 spanning-disabled
1
interface Port-channel1
no ip address
hold-queue 150 in
1
interface Port-channel1.1
encapsulation dot1Q 100
bridge-group 100
bridge-group 100 path-cost 65535
1
interface Port-channel1.10
encapsulation dot1Q 10
bridge-group 10
bridge-group 10 spanning-disabled
!
interface GigabitEthernet0
no ip address
channel-group 1
1
interface GigabitEthernet1
no ip address
channel-group 1
interface POS0
no ip address
spr interface-id 1
crc 32
1
interface POS1
no ip address
spr interface-id 1
crc 32
!
ip classless
no ip http server
```

DRPRI のモニタリングおよび確認

DRPRI を設定したあと、show bridge verbose コマンドを使用して DRPRI のステータスをモニタリ ングできます (例 17-11)。

例 17-11 show bridge verbose コマンド

Router# show bridge bridge-group-number verbose

EoMPLS の設定

この章では、MLシリーズ カードで Ethernet over Multiprotocol Label Switching (EoMPLS)を設定す る方法について説明します。

この章の主な内容は次のとおりです。

- EoMPLSの概要(p.18-2)
- EoMPLS の設定 (p.18-6)
- EoMPLSの設定例 (p.18-12)
- EoMPLS のモニタリングと確認 (p.18-15)

EoMPLS の概要

EoMPLS には、MPLS 対応のレイヤ 3 コアを経由するイーサネット トラフィックをトンネリングす るメカニズムがあります。このメカニズムでは、イーサネット Protocol Data Unit (PDU; プロトコル データ ユニット)を MPLS パケット内にカプセル化し、ラベル スタッキングを使用して MPLS ネッ トワーク上で転送します。EoMPLS は、Internet Engineering Task Force (IETF; インターネット技術 特別調査委員会)標準トラック プロトコルであり、Martini ドラフト、特に

draft-martini-l2circuit-encap-mpls-01 セクションと draft-martini-l2circuit-transport-mpls-05 セクション に基づいています。

EoMPLS を使用することによって、サービス プロバイダーは自社の既存の MPLS バックボーンを使用してカスタマーに仮想イーサネット回線サービスや VLAN(仮想 LAN)サービスを提供できます。サービス プロバイダーのプロビジョニングも簡便化します。これは、Provider Edge Customer-Leading Edge (PE-CLE)装置が、接続されている Customer Edge (CE;カスタマーエッジ)装置にレイヤ2接続するだけだからです。

図 18-1 に、サービス プロバイダーのネットワークに実装されている EoMPLS の例を示します。こ の例では、ML シリーズ カードは、RPR アクセス リングを介して Cisco GSR 12000 シリーズに接続 した PE-CLE 装置として動作します。ポイントツーポイント サービスは、ML シリーズ カードを介 して ML シリーズ カード RPR アクセス リングに接続されている様々なサイトの CE 装置に提供さ れます。

EoMPLS をサービス プロバイダーのネットワークに実装する場合、ML シリーズ カード インター フェイスで 3 つの重要な機能を実行する必要があります。これらの ML シリーズ カード インター フェイスの機能は、MPLS コアを通過する EoMPLS ポイントツーポイント サービスの両側で設定す る必要があります。

- ML シリーズ カード インターフェイスは、プロバイダーのネットワークと CE 装置を直接接続し、PE-CLE インターフェイスと呼ばれています。この ML シリーズ カードの PE-CLE インターフェイスはファスト イーサネットまたはギガビット イーサネットであり、EoMPLS ポイントツーポイント セッションのエンドポイントとなるように設定されます。
- ML シリーズ カード インターフェイスは、ML シリーズ カードの PE-CLE インターフェイスと RPR ネットワークをブリッジングします。この RPR/SPR インターフェイスは POS ポートを含み、MPLS IP 用に設定されています。

 ML シリーズ カード インターフェイスは、コア MPLS インターフェイスに接続します。コア MPLS インターフェイスはファスト イーサネットまたはギガビット イーサネットであり、 MPLS ネットワーク上で Cisco GSR 12000 シリーズのポートまたは同様の装置に接続します。こ の MPLS のクラウドに面しているインターフェイスは、SPR インターフェイスと MPLS クラウ ドをブリッジングします。

サービス プロバイダーのネットワークに EoMPLS を実装するには、入力側および出力側の PE-CLE ルータの間にディレクテッド Label Distribution Protocol (LDP; ラベル配布プロトコル) セッション (LSP)を設定して、Virtual Circuit (VC; 仮想回線)の情報を交換する必要があります。それぞれの VC は各方向に1つ、合計2つの LSP から構成されます。これは、LSP がレイヤ2フレームを一方 向にだけ転送するディレクテッド パスであるためです。

EoMPLS は 2 段階のラベル スタックを使用してレイヤ 2 フレームを転送します。下側または内側の ラベルが VC ラベル、上側または外側のラベルがトンネル ラベルです。VC ラベルが特定の LSP の 出力側 PE-CLE によって入力側 PE-CLE に提供され、出力側 PE-CLE の特定の出力インターフェイ スにトラフィックを転送します。VC ラベルは、VC のセットアップ中に出力側 PE-CLE によって割 り当てられ、出力側インターフェイスと一意の設定用 VC ID 間のバインディングを表現します。VC のセットアップ中に入力側および出力側 PE-CLE は、指定した VC ID の VC ラベル バインディング を交換します。

ML シリーズ カードの EoMPLS VC は、MPLS 上でイーサネット ポートまたは IEEE 802.1Q VLAN を転送できます。VC タイプ 5 はイーサネット ポートをトンネリングし、VC タイプ 4 は、MPLS 上 で VLAN を転送します。VC タイプ 5 セッションでは、mpls l2transport route コマンドを使用して、 ML シリーズ カードの PE-CLE ポートで受信したトラフィックはすべて、遠端の ML シリーズ カー ドの PE-CLE ポートでリモート出力インターフェイスにトンネリングされることが予想できます。 VC タイプ 4 では、トンネルはその VLAN への物理的な拡張として動作することが予想されます。 EoMPLS セッション コマンドは、PE-CLE の VLAN サブインターフェイスに入ります。そのポート 上で受信した VLAN タグ付きトラフィックのみがリモート PE-CLE にトンネリングされます。

EoMPLS のサポート

ML シリーズ カードの EoMPLS には次のような特性があります。

- EoMPLS は、ファスト イーサネットとギガビット イーサネットのインターフェイスまたはサ ブインターフェイス上でのみサポートされます。
- MPLS タグ スイッチングは、SPR インターフェイスでのみサポートされます。
- Class of Service (CoS; サービス クラス)値は MPLS ラベル内の experimental (EXP) ビットに、 静的にまたは IEEE 802.1p ビット (デフォルト)を使用してマップされます。
- 入力側 PE-CLE ML シリーズ カードによって、time-to-live フィールドが2に、トンネル ラベルが 255 の値に設定されます。
- 入力側 PE-CLE ML シリーズ カードによって、VC ラベルの S ビットが 1 に設定され、VC ラベルがスタックの下側にあることを示しています。
- EoMPLS トラフィックが RPR 上で伝送されるため、RPR に入ってくるトラフィックに適用で きるロード バランシングはすべて、EoMPLS トラフィックにも適用できます。
- EoMPLS は、GFP-F フレーミングおよび HDLC フレーミングにおいて RPR でサポートされます。
- Ethernet over MPLSの機能は、Cisco Any Transport over MPLS(AToM)製品の一部です。
- EoMPLSのエンドポイントポートをホスティングするMLシリーズカードは、MPLSマイクロコードイメージを実行してEoMPLSをサポートする必要があります。複数のマイクロコードイメージの詳細については、「複数のマイクロコードイメージ」(p.3-14)を参照してください。 RPR内の他のMLシリーズカードは、MPLSマイクロコードイメージの制限を受けません。

EoMPLS の制限

ML シリーズ カードの EoMPLS には次のような制限があります。

- パケットベースのロード バランシングはサポートされません。代わりに回線 ID ベースのロード バランシングが使用されます。
- ゼロ ホップやヘアピン VC はサポートされません。1つの ML シリーズ カードを VC の送信元 と宛先の両方にすることはできません。
- データ伝送を順序化するための MPLS 制御ワードはサポートされません。制御ワードを使用せずにパケットを送受信する必要があります。
- EoMPLS トラフィックのシーケンス チェックや再順序化はサポートされません。どちらも制御 ワードに依存して機能します。
- Maximum Transmission Uni(MTU; 最大伝送ユニット)のフラグメント化はサポートされません。
- バックツーバック LDP セッションの明示ヌル ラベルはサポートされません。

注意

MTU のフラグメント化は MPLS バックボーン全体にわたってサポートされないため、ネットワーク オペレータは、エンドポイント間のすべての中間リンクの MTU がレイヤ 2 の最大 PDU を伝送 するのに十分であることを確認する必要があります。

EoMPLS の QoS

EXP は 3 ビットのフィールドであり、MPLS ヘッダーの一部です。IETF が実験的に作成しました が、後に標準 MPLS ヘッダーの一部になりました。MPLS ヘッダー内の EXP ビットはパケット プ ライオリティを伝送します。パス上の各ラベル スイッチ ルータは、パケットを適切なキューに キューイングし、それに基づいてパケットを処理することによって、パケット プライオリティに従 います。

デフォルトでは、ML シリーズ カードは VLAN タグ ヘッダーの IEEE 802.1P ビットを MPLS EXP ビットにマップしません。MPLS EXP ビットはゼロ(0)の値に設定されます。

レイヤ 2 CoS と MPLS EXP の間は直接コピーできませんが、set mpls experimental アクションを使用すると、802.1p ビットとの照合に基づいて MPLS EXP ビット値を設定できます。このようなマッピングは、エントリ ポイントであるネットワークの入力側で行われます。

ML シリーズ カードでの EoMPLS トラフィックの Quality of Service (QoS; サービス品質)は、イン ポジション ルータとディスポジション ルータの出力側インターフェイスで完全プライオリティま たは重み付きラウンド ロビン スケジューリング、あるいはその両方を使用します。このためには、 スケジューリングのタイプを決定するサービス クラス キューを選択する必要があります。インポ ジション ルータでは、ポリシングに基づいてマーキングされたプライオリティ ビット EXP または RPR CoS がサービス クラス キューの選択に使用されます。ディスポジション ルータでは、dot1p CoS ビット (ラベルの EXP ビットからコピーされたもの)がサービス クラス キューの選択に使用 されます。出力側インターフェイスのスケジューリングの他に、ポリシー出力アクションにも EXP ビットと RPR CoS ビットのリマーキングを含めることができます。

ML シリーズ カードの EoMPLS では、Cisco Modular QoS CLI (MQC; モジュラ QoS コマンドライン インターフェイス)を使用します。これは ML シリーズ カードの標準 QoS と同じようなものです。 ただし、一部の MQC コマンドは利用できません。表 18-1 に、ML シリーズ カード インターフェイ スに適用できる MQC ステートメントとアクションを示します。

表 18-1 適用できる EoMPLS QoS の文とアクション

インターフェイス	適用できる MQC match ステートメント	適用できる MQC アクション
インポジション入力側	match cos	police cir cir-burst [pir-bust pir pir conform
	match ip precedence	[set-mpls-exp exceed [set-mpls-exp][violate set-mpls-exp]
	match ip dscp	
	match vlan	
インポジション出力側	match mpls exp	<pre>bandwidth {bandwidth-kbps percent percent}</pre>
		および
		priority kbps
		および
		[set-mpls-exp]
ディスポジション入力側	適用されない	適用されない
ディスポジション出力側	match mpls exp	<pre>bandwidth {bandwidth-kbps percent percent}</pre>
		および
		priority kbps
		および
		set-cos <i>cos-value</i>

EoMPLS の設定

EoMPLS ポイントツーポイント サービスの両エンドポイントの ML シリーズ ピア カードを設定す る必要があります。EoMPLS をイネーブルにするには、次の設定手順を実行します。

- PE-CLE ポート上での VC タイプ4 設定 (p.18-6) (VC タイプ4 または VC タイプ5 が必須)
- PE-CLE ポート上での VC タイプ 5 設定 (p.18-8) (VC タイプ 4 または VC タイプ 5 が必須)
- PE-CLE SPR インターフェイスでの EoMPLS 設定 (p.18-10) (必須)
- MPLS クラウドに面しているポートでのブリッジ グループ設定 (p.18-10) (必須)
- パケットのプライオリティと EXP の設定 (p.18-11)

EoMPLS 設定の注意事項

EoMPLS を設定する場合の注意事項は次のとおりです。

- ループバック アドレスを使用してピア ML シリーズ カードの IP アドレスを指定します。
- LDP 設定は必須です。デフォルトの Tag Distribution Protocol (TDP; タグ配布プロトコル)は機能しません。
- EoMPLS は、ML シリーズ カード間で LDP をターゲットとするセッションを使用して EoMPLS VC を作成します。
- MPLS バックボーンが、Intermediate System-to-Intermediate System (IS-IS) プロトコルや Open Shortest Path First (OSPF) などの Interior Gateway Protocol (IGP; 内部ゲートウェイ プロトコル) ルーティング プロトコルを使用する必要があります。
- IP パケットのタグ スイッチングが PE-CLE ML シリーズ カードの SPR インターフェイス上で イネーブルになっている必要があります。

PE-CLE ポート上での VC タイプ 4 設定

カスタマーに面しているファスト イーサネット ポートまたはギガビット イーサネット ポートは EoMPLS、および VC タイプ4またはタイプ5 にプロビジョニングされている必要があります。カー ドA とカード C 上のインターフェイス GigE 0.1 は、図 18-2 の VC タイプ4 の機能を実行します。 VC タイプ4の機能の詳細については、「EoMPLS の概要」(p.18-2)を参照してください。

VC タイプ4は、2枚の PE-CLE ML シリーズ カード間で IEEE 802.1Q VLAN パケットを転送しま す。VC タイプ4をプロビジョニングするには、カスタマーに面しているポート上で、グローバル コンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# mpls label protocol ldp	LDP を LDP として指定します。
		LDP を指定する必要があります。ML シリーズ カード は、LDP としてデフォルトの TDP を使用した場合、 EoMPLS は動作しません。
ステップ 2	<pre>Router(config)# interface loopback0</pre>	ループバック インターフェイス コンフィギュレーショ ン モードを開始します。
ステップ 3	Router(config-if)# ip address <i>ip-address</i> 255.255.255.255	IP アドレスを ループバック インターフェイスに割り当 てます。このループバック IP アドレスは、EoMPLS ポ イントツーポイント セッションでピアを特定するため に使用されます。
		サブネット マスクは必要ありません。

	コマンドの説明	目的
ステップ 4	<pre>Router(config)# interface {GigabitEthernet FastEthernet} interface-number.sub-interface- number</pre>	インポジション インターフェイスに対してイーサネッ ト サブインターフェイスを指定します。 隣接する CE 装 置のサブインターフェイスがこのサブインターフェイ スと同じ VLAN 上にあることを確認します。
ステップ 5	Router(config-subif)# no ip address	IP アドレスが割り当てられている場合は IP アドレスを ディセーブルにします。
ステップ 6	Router(config-subif)# encapsulation dot1Q <i>vlan-id</i>	サブインターフェイスによる 802.1q VLAN パケット受 信をイネーブルにします。VLAN ID が隣接する CE 装置 の VLAN ID と同じであることを確認します。
ステップ 7	Router(config-subif)# mpls 12transport route destination vc-id	VLAN ベース EoMPLS の dot1Q VLAN サブインター フェイスに mpls l2transport route または xconnect イン
	または	ターフェイス コンフィギュレーション コマンドを入力
	xconnect destination vc-id encapsulation mpls	することで、カスタマー VLAN に基づいてトラフィッ クを転送するように EoMPLS トンネルを設定できます。
		mpls l2transport route は、使用する VC が VLAN パケッ トを転送するように指定します。 ピアのポイントツーポ イント エンドポイント インターフェイスを使用してリ モート LDP セッションを開始します。
		 destination によって、VC(PE-CLE)のもう一方の 端にあるリモート ML シリーズのループバック IP アドレスを指定します。
		 vc-id はユーザ指定値です。この値は各 VC に対して 一意である必要があります。 VC ID は、VC のエン ドポイントの接続に使用されます。 VC の両端に同 じ VC ID を指定します。
		xconnect は、クロスコネクト サービス用に 802.1q VLAN 回線を擬似配線にバインドします。encapsulation mpls 擬似配線クラス パラメータは、トンネリング方式 用に MPLS を指定します。
		 (注) xconnect コマンドは、mpls l2transport route イン ターフェイス コンフィギュレーション コマン ドの新しいバージョンです。
		 (注) EoMPLS トンネルを削除するには、no mpls 12transport route destination vc-id または no xconnect destination vc-id encapsulation mpls インターフェイス コマンドを使用します。
ステップ 8	Router(config-subif)# end	イネーブル EXEC モードに戻ります。
ステップ 9	Router# show mpls 12transport vc	設定を確認します。
ステップ 10	Router# copy running-config startup-config	(任意)コンフィギュレーション ファイルにエントリ を保存します。

PE-CLE ポート上での VC タイプ 5 設定

カスタマーに面しているファスト イーサネット ポートまたはギガビット イーサネット ポートは EoMPLS、および VC タイプ 4 またはタイプ 5 を使用してプロビジョニングする必要があります。 カード A とカード C 上のインターフェイス GigE 1 は、図 18-2 の VC タイプ 5 の機能を実行します。 VC タイプ 5 の機能の詳細については、「EoMPLS の概要」(p.18-2)を参照してください。

VC タイプ 5 では、設定されたポートのパケットを 2 枚の PE-CLE ML シリーズ カード間で転送し ます。VC タイプ 5 をプロビジョニングするには、カスタマーに面しているポート上で、グローバ ルコンフィギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# mpls label protocol ldp	LDP を LDP として指定します。
		LDP を指定する必要があります。ML シリーズ カード は、LDP としてデフォルトの TDP を使用した場合、
		EoMPLS は動作しません。
ステップ 2	Router(config)# interface loopback0	ループバック インターフェイス コンフィギュレーショ ン モードを開始します。
ステップ 3	Router(config-if)# ip address <i>ip-address</i> 255.255.255	IP アドレスを ループバック インターフェイスに割り当 てます。このループバック IP アドレスは、EoMPLS ポ イントツーポイント セッションでピアを特定するため に使用されます。
		サブネット マスクは必要ありません。
ステップ 4	Router(config)# interface {GigabitEthernet FastEthernet} interface-number	インポジション インターフェイスに対してイーサネッ ト インターフェイスを指定します。
ステップ 5	Router(config-if)# no ip address	IP アドレスが割り当てられている場合は IP アドレスを ディセーブルにします。

		目的
ステップ 6	Router(config-subif)# mpls l2transport route destination vc-id または xconnect destination vc-id encapsulation mpls	VLAN ベース EoMPLS の VLAN に mpls l2transport route または xconnect インターフェイス コンフィギュ レーション コマンドを入力することで、カスタマー VLAN に基づいてトラフィックを転送するように EoMPLS トンネルを設定できます。
		mpls l2transport route は、使用する VC が VLAN パケッ トを転送するように指定します。 ピアのポイントツーポ イント エンドポイント インターフェイスを使用してリ モート LDP セッションを開始します。
		 destination によって、VC(PE-CLE)のもう一方の 端にあるリモート ML シリーズのループバック IP アドレスを指定します。
		 vc-id はユーザ指定値です。この値は各 VC に対して 一意である必要があります。 VC ID は、VC のエン ドポイントの接続に使用されます。 VC の両端に同 じ VC ID を指定します。
		xconnect は、クロスコネクト サービス用に 802.1q VLAN 回線を擬似配線にバインドします。encapsulation mpls 擬似配線クラス パラメータは、トンネリング方式 用に MPLS を指定します。
		★ xconnect コマンドは、mpls l2transport route インターフェイス コンフィギュレーション コマンドの新しいバージョンです。
		 (注) EoMPLS トンネルを削除するには、no mpls l2transport route destination vc-id または no xconnect destination vc-id encapsulation mpls インターフェイス コマンドを使用します。
ステップ 7	Router(config-subif)# end	
ステップ 8	Router# show mpls 12transport vc	設定を確認します。
ステップ 9	Router# copy running-config startup-config	(任意)コンフィギュレーション ファイルにエントリを 保存します。

PE-CLE SPR インターフェイスでの EoMPLS 設定

RPR を MPLS クラウドのアクセス リングとして機能させるには、EoMPLS PE-CLE ファスト イーサ ネットまたはギガビット イーサネットをホスティングする同一 ML シリーズ カード上で SPR イン ターフェイスをプロビジョニングする必要があります。カード A とカード C 上のインターフェイ ス SPR 1 が、図 18-2 に示すように、この機能を実行します。

MPLS に対して SPR インターフェイスをプロビジョニングするには、グローバル コンフィギュレー ション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config) # mpls label protocol ldp	LDP を LDP として指定します。
		LDP を指定する必要があります。ML シリーズ カード は、LDP としてデフォルトの TDP を使用した場合、 EoMPLS は動作しません。
ステップ 2	Router(config)# interface spr 1	RPR インターフェイス コンフィギュレーション モード を開始します。
ステップ 3	Router(config-if)# ip address <i>ip-address mask</i>	IP アドレスを MPLS の RPR インターフェイスに割り当 てます。
ステップ 4	Router(config-if)# mpls ip	SPR インターフェイスにタグ スイッチングを実装しま す。
ステップ 5	Router(config-if)# end	インターフェイス コンフィギュレーション モードを終 了します。
ステップ 6	Router# copy running-config startup-config	実行コンフィギュレーション ファイルをスタートアッ プ コンフィギュレーション ファイルに保存します。

MPLS クラウドに面しているポートでのブリッジ グループ設定

RPR の ML シリーズ カードのファスト イーサネット ポートまたはギガビット イーサネット ポートは、MPLS クラウドの一部であるルータのインターフェイスに接続する必要があります。この ファスト イーサネット ポートまたはギガビット イーサネット ポートと SPR サブインターフェイ スを含むブリッジ グループを作成する必要があります。カード B とカード D 上のインターフェイ ス GigE 0 が、図 18-2 に示すように、この機能を実行します。

MPLS クラウドに面しているポートで EoMPLS をプロビジョニングするには、グローバル コンフィ ギュレーション モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# bridge bridge-group-number protocol {rstp ieee}	(任意)ブリッジ グループ番号を割り当て、IEEE 802.1D スパニングツリー プロトコルまたは IEEE 802.1W 高速 スパニングツリーのいずれか適切なスパニングツリー のタイプを定義します。
ステップ 2	Router(config)# interface {GigabitEthernet FastEthernet} interface-number	インターフェイス コンフィギュレーション モードを開 始して ML シリーズ カードの MPLS クラウドに面する ファスト イーサネット インターフェイスまたはギガ ビット イーサネット インターフェイスを設定します。
ステップ 3	Router(config-if)# bridge-group bridge-group-number	ネットワーク インターフェイスをブリッジ グループに 割り当てます。
ステップ 4	Router(config-if)# no shutdown	シャットダウン ステートをアップにし、インターフェ イスをイネーブルにします。

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

	コマンドの説明	目的
ステップ 5	Router(config)# interface	ML シリーズ カードの SPR サブインターフェイス コン
	spr 1. subinterface-number	フィギュレーション モードを開始します。
ステップ 6	Router(config-if)# bridge-group	ネットワーク インターフェイスをブリッジ グループに
	bridge-group-number	割り当てます。
ステップ 7	Router(config-if)# end	イネーブル EXEC モードに戻ります。
ステップ 8	Router# copy running-config startup-config	(任意)コンフィギュレーション ファイルにエントリを
		保存します。

パケットのプライオリティと EXP の設定

EoMPLS では、ラベル内の 3 つの EXP ビットを使用して QoS を提供し、パケットのプライオリティ を決定します。ML シリーズ カードのポイントツーポイントのエンドポイント間で QoS をサポート するには、VC ラベルとトンネル ラベルの両方に EXP ビットを設定します。

EXP ビットを設定するには、次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router(config)# class-map class-name	トラフィック クラスのユーザ定義名を指定します。
ステップ 2	Router(config-cmap)# match any	すべてのパケットを照合することを指定します。
ステップ 3	Router(config-cmap)# end	グローバル コンフィギュレーション モードに戻りま す。
ステップ 4	Router(config)# policy-map policy-name	設定するトラフィック ポリシーの名前を指定します。
ステップ 5	Router(config-pmap)# class class-name	定義しておいたトラフィック クラス名を指定します。 この名前は class-map コマンドを使用して設定されたも ので、トラフィックをトラフィック ポリシーに分類す るために使用します。
ステップ 6	Router (config-pmap-c)# set mpls experimental imposition value	パケットが指定したポリシー マップと一致する場合に MPLS ビットに設定する値を指定します。
ステップ 7	Router(config)# interface GigabitEthernet interface-number	インターフェイス コンフィギュレーション モードを開 始します。
	または	
	<pre>interface FastEthernet interface-number</pre>	
ステップ 8	Router(config-if)# service-policy input policy-name	トラフィック ポリシーをインターフェイスに付加しま す。

EoMPLS の設定例

図 18-2 に、コンフィギュレーション コマンドで参照しているネットワーク例を示します。例 18-1、 18-2、18-3、および 18-4 に、コンフィギュレーション ファイルの中で、ネットワーク例の ML シ リーズ カード上で EoMPLS をイネーブルにしている部分を示します。

図 18-2 EoMPLS の設定例

例 18-1 ML シリーズ カード A の設定

```
microcode mpls
ip subnet-zero
no ip domain-lookup
1
mpls label protocol ldp
1
interface Loopback0
ip address 10.10.10.10 255.255.255.255
Т
interface SPR1
ip address 100.100.100.100 255.255.255.0
no keepalive
spr station-id 1
mpls ip
hold-queue 150 in
1
interface GigabitEthernet0
no ip address
1
interface GigabitEthernet0.1
encapsulation dot10 10
mpls 12transport route 3.3.3.3 1
1
interface GigabitEthernet1
no ip address
mpls 12transport route 4.4.4.4 2
1
interface POS0
no ip address
spr-intf-id 1
crc 32
1
interface POS1
no ip address
spr-intf-id 1
crc 32
router ospf 1
 log-adjacency-changes
network 1.1.1.0 0.0.0.255 area 0
network 10.10.10.0 0.0.0.255 area 0
1
ip classless
no ip http server
```

例 18-2 ML シリーズ カード B の設定

```
bridge 10 protocol ieee
!
!
interface SPR1
no ip address
no keepalive
bridge-group 10
hold-queue 150 in
!
interface GigabitEthernet0
no ip address
bridge-group 10
```

例 18-3 ML シリーズ カード C の設定

```
microcode mpls
ip subnet-zero
no ip domain-lookup
1
mpls label protocol ldp
1
interface Loopback0
ip address 20.20.20.20 255.255.255
Т
interface SPR1
ip address 100.100.100.100 255.255.255.0
no keepalive
spr station-id 4
mpls ip
hold-queue 150 in
1
interface GigabitEthernet0
no ip address
1
interface GigabitEthernet0.1
encapsulation dot10 10
mpls l2transport route 1.1.1.1 1
1
interface GigabitEthernet1
no ip address
mpls 12transport route 2.2.2.2 2
1
interface POS0
no ip address
spr-intf-id 1
crc 32
1
interface POS1
no ip address
spr-intf-id 1
crc 32
!
router ospf 1
log-adjacency-changes
network 1.1.1.0 0.0.0.255 area 0
network 10.10.10.0 0.0.0.255 area 0
!
ip classless
no ip http server
```

例 18-4 ML シリーズ カード D の設定

```
bridge 20 protocol ieee
!
!
interface SPR1
no ip address
no keepalive
bridge-group 20
hold-queue 150 in
!
interface GigabitEthernet0
no ip address
bridge-group 20
```

EoMPLS のモニタリングと確認

表 18-2 に、EoMPLS をモニタリングおよび確認するためのイネーブル EXEC コマンドを示します。

表 18-2	トンネリングのモニタリングおよび保守に使用するコマンド
--------	-----------------------------

コマンドの説明	目的
show mpls 12transport vc	すべての EoMPLS トンネルに関する情報を示します。
show mpls 12transport vc detail	EoMPLS トンネルに関する詳細情報を示します。
show mpls 12transport vc vc-id	特定の EoMPLS トンネルに関する情報を示します。

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

ML シリーズ カードのセキュリティ設定

この章では、MLシリーズカードのセキュリティ機能について説明します。

この章の主な内容は次のとおりです。

- セキュリティの概要(p.19-2)
- ML シリーズ カードの コンソール ポートのディセーブル化 (p.19-2)
- ML シリーズ カードへのセキュアなログイン (p.19-2)
- ML シリーズ カードの SSH (p.19-3)
- ML シリーズ カード上の RADIUS (p.19-7)
- RADIUS リレーモード (p.19-7)
- RADIUS スタンドアロン モード (p.19-9)

セキュリティの概要

ML シリーズ カードには、いくつかのセキュリティ機能が含まれています。これらの機能の中には、 ML シリーズ カードが取り付けられている ONS ノードから独立して動作するものがあります。そ れ以外の機能は、Cisco Transport Controller (CTC) または Transaction Language One (TL1)を使用 して設定されます。

Cisco IOS で設定されるセキュリティ機能は、以下の通りです。

- Cisco IOS ログイン強化
- Secure Shell (SSH; セキュア シェル) 接続
- Authentication, Authorization, Accounting (AAA; 認証、許可、アカウンティング)
 /Remote Authentication Dial-In User Service (RADIUS)(AAA/RADIUS) スタンドアロンモード
- Cisco IOS 基本パスワード (Cisco IOS 基本パスワード設定の詳細については、「パスワード」 (p.3-9)を参照してください)

CTC または TL1 で設定されるセキュリティ機能は、以下の通りです。

- ディセーブルのコンソール ポート
- AAA/RADIUS リレーモード

ML シリーズ カードの コンソール ポートのディセーブル化

コンソール ポート (カードの前面にある RJ-11 シリアル ポート) へ直接接続するなど、ML カード 上で動作している Cisco IOS にアクセスする方法には数種類あります。ユーザは、このようなデフォ ルトでイネーブルになっている直接接続をディセーブルにすることでセキュリティを強化できま す。これにより、Cisco IOS エラー メッセージなどのコンソール ポート出力を妨げずにコンソール ポート入力を防ぐことができます。

CTC または TL1 を使用してコンソール ポートへのアクセスをディセーブルにできます。CTC を使 用してこれをディセーブルにするには、ML シリーズ カードのカードレベル ビューで、IOS タブ の下をクリックして、Enable Console Port Access ボックスをオフにして、Apply をクリックします。 ユーザは、Superuser レベルでログインしてこのタスクを完了する必要があります。

TL1 を使用してこれをディセーブルにするには、『Cisco ONS SONET TL1 Command Guide』を参照してください。

ML シリーズ カードへのセキュアなログイン

ML シリーズ カードは、Cisco IOS Release 12.2(25)S に統合され、Cisco IOS Release 12.3(4)T に導入 された Cisco IOS ログイン強化をサポートしています。この強化により、ユーザは Telnet、SSH、 HTTP などの仮想接続を確立するときに ML シリーズ カードのセキュリティを強化できます。セ キュアなログイン機能では、ML シリーズ カードの vty セッション(監査証跡)に対するログイン 試行の成功および失敗を記録します。これらの機能は、Cisco IOS CLI(コマンドライン インター フェイス)を使用して設定されます。

詳細な設定例などの詳細な情報については、

http://www.cisco.com/en/US/products/sw/iosswrel/ps1838/products_feature_guides_list.html にある Cisco IOS Release 12.2(25)S 機能ガイドモジュール「Cisco IOS Login Enhancements」を参照してください。
ML シリーズ カードの SSH

このセクションでは、SSH 機能の設定方法について説明します。

以下のセクションがあります。

- SSHの概要(p.19-3)
- SSHの設定(p.19-3)
- SSH 設定およびステータスの表示 (p.19-6)

SSH の設定例については、『*Cisco IOS Security Configuration Guide, Cisco IOS Release 12.2*』の「Configuring Secure Shell」の章にある「SSH Configuration Examples」を参照してください。次の URL にあります。

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fsecur_c/fothersf.htm

(注)

このセクションで使用されている全構文と使用方法の情報については、次の URL にある Cisco IOS Release 12.2 のコマンド リファレンスを参照してください。 http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/index.htm.

SSH の概要

ML シリーズ カードは、SSH のバージョン 1 (SSH v1) およびバージョン 2 (SSHv2) の両方をサ ポートしています。SSHv2 は、SSHv1 のセキュリティ面を改善したもので、ML シリーズ カードで はデフォルトで選択されています。

SSH には、SSH サーバおよび SSH クライアントの2種類のアプリケーションがあります。ML シ リーズ カードは、SSH サーバのみをサポートし、SSH クライアントはサポートしていません。Cisco IOS ソフトウェアの SSH サーバは、公的および商用で利用可能な SSH クライアントと連動します。

SSH サーバにより、着信 Telnet 接続と同様ですがよりセキュリティが強化された ML シリーズ カードへの接続が可能になります。SSH が登場するまで、セキュリティは Telnet 固有のセキュリティに限定されていました。SSH により、Cisco IOS ソフトウェア認証が使用できるようになり、セキュリティ面が改善されました。

ONS ノードも SSH をサポートしています。SSH が ONS ノードでイネーブルの場合、Cisco IOS CLI セッションで、SSH を使用して ML シリーズ カードに接続します。

SSH がイネーブルの場合には、ML シリーズ カードへの Telnet アクセスが自動的にディセーブルに なりません。ユーザは、transport input ssh vty ライン コンフィギュレーション コマンドを使用し て Telnet アクセスをディセーブルにできます。

SSH の設定

ここでは、次の設定情報について説明します。

- 設定の注意事項(p.19-4)
- SSH を実行するための ML シリーズ カードの設定 (p.19-4)(必須)
- SSH サーバの設定 (p.19-5)(必須)

設定の注意事項

ML シリーズ カードを SSH サーバとして設定する場合には、以下の注意事項に従ってください。

- AAA の新規モデルおよび AAA ログイン方式をイネーブルにする必要があります。まだイネーブルでない場合は、「AAA ログイン認証の設定」(p.19-13)の手順を完了してください。
- SSHv1 サーバで生成された Rivest, Shamir, and Adelman (RSA) キーペアを SSH v2 サーバで使用することも、またその逆も可能です。
- crypto key generate rsa グローバル コンフィギュレーション コマンドを入力したあとに CLI エ ラー メッセージを取得した場合、RSA キー ペアが生成されていません。ホスト名とドメイン を再設定して、crypto key generate rsa コマンドを入力します。詳細については、「SSH を実行 するための ML シリーズ カードの設定」(p.19-4)を参照してください。
- RSA キーペアを生成する際に、No host name specified メッセージが表示される場合があり ます。表示される場合は、hostname グローバル コンフィギュレーション コマンドを使用して ホスト名を設定する必要があります。
- RSA キーペアを生成する際に、No domain specified メッセージが表示される場合があります。
 表示される場合は、ip domain-name グローバル コンフィギュレーション コマンドを使用して IP ドメイン名を設定する必要があります。

SSH を実行するための ML シリーズ カードの設定

SSH サーバとして動作するように ML シリーズ カードを設定するには、以下の手順を実行します。

- 1. ML シリーズ カードのホスト名と IP ドメイン名を設定します。
- 2. ML シリーズ カードの RSA キー ペアを生成します。これで、SSH が自動的にイネーブルにな ります。
- 3. ローカルまたはリモート アクセス用のユーザ認証を設定します。この手順は必須です。

ホスト名と IP ドメイン名を設定して RSA キーペアを生成するには、イネーブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router #configure terminal	グローバル コンフィギュレーション モードを開始しま
		す。
ステップ 2	Router (config)# hostname hostname	ML シリーズ カードのホスト名を設定します。
ステップ 3	Router (config)# ip domain-name domain_name	ML シリーズ カードのホスト ドメインを設定します。
ステップ 4	Router (config)# crypto key generate rsa	ML シリーズ カードでローカルおよびリモート認証用 の SSH サーバをイネーブルにして、RSA 鍵ペアを生成 します。
		RSA 鍵を生成する際に、モジュラス長を入力するよう に要求されます。デフォルトのモジュラス長は 512 ビッ トです。モジュラス長が長いほど安全ですが、生成や使 用の際により時間がかかります。

	コマンドの説明	目的
ステップ 5	Router (config)# ip ssh timeout seconds	タイムアウト時間を秒単位で指定します。デフォルトは 120 秒です。範囲は、0 ~ 120 秒です。このパラメータ は、SSH ネゴシエーション フェーズに適用されます。接 続の確立後、ML シリーズ カードはデフォルトの CLI ベース セッションのタイムアウト値を使用します。
		デフォルトで、ネットワーク上で複数の CLI ベース セッションに対して 5 つまでの同時暗号化 SSH 接続が 可能です(セッション 0 ~ 4)。実行シェルの開始後、 CLI ベース セッションのタイムアウト値がデフォルト の 10 分に戻ります。
ステップ 6	Router (config)# ip ssh authentication-retries number	クライアントがサーバの再認証を受けられる回数を指 定します。デフォルトは3です。範囲は0~5です。
ステップ 7	Router (config)# end	イネーブル EXEC モードに戻ります。
ステップ 8	Router # show ip ssh または	使用している SSH サーバのバージョンおよび設定情報 を表示します。
	Router # show ssh	ML シリーズ カードの SSH サーバのステータスを表示 します。
ステップ 9	Router # show crypto key mypubkey rsa	この ML シリーズ カードに関連付けられた生成済み RSA 鍵ペアを表示します。
ステップ 10	Router # copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを 保存します。

RSA 鍵ペアを削除するには、crypto key zeroize rsa グローバル コンフィギュレーション コマンドを 使用します。RSA 鍵ペアが削除されると、SSH サーバも自動的に削除されます。

SSH サーバの設定

SSH サーバを設定するには、イネーブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router # configure terminal	グローバル コンフィギュレーション モードを開始しま す
-		9 °
ステップ 2	Router (config)# ip ssh version [1 2]	(任意)SSH バージョン 1 または SSH バージョン 2 を実 行するように ML シリーズ カードを設定します。
		 1 SSH バージョン 1 を実行するように ML シリーズ カードを設定します。
		 2 SSH バージョン 2 を実行するように ML シリーズ カードを設定します。
		このコマンドを入力しなかったりキーワードを指定し なかったりした場合、SSH サーバは SSH クライアント でサポートされている最新の SSH バージョンを選択し ます。例えば、SSH クライアントが SSHv1 および SSHv2 をサポートしている場合、SSH サーバは SSHv2 を選択 します。

	コマンドの説明	目的
ステップ 3	Router (config)# ip ssh timeout seconds	タイムアウト時間を秒単位で指定します。デフォルトは 120 秒です。範囲は、0 ~ 120 秒です。このパラメータ は、SSH ネゴシエーション フェーズに適用されます。接 続の確立後、ML シリーズ カードはデフォルトの CLI ベース セッションのタイムアウト値を使用します。
		デフォルトで、ネットワーク上で複数の CLI ベース セッションに対して 5 つまでの同時暗号化 SSH 接続が 可能です(セッション 0 ~ 4)。実行シェルの開始後、 CLI ベース セッションのタイムアウト値がデフォルト の 10 分に戻ります。
ステップ 4	Router (config)# ip ssh authentication-retries number	クライアントがサーバの再認証を受けられる回数を指 定します。デフォルトは3です。範囲は0~5です。
ステップ 5	Router (config)# end	イネーブル EXEC モードに戻ります。
ステップ 6	Router # show ip ssh または	使用している SSH サーバのバージョンおよび設定情報 を表示します。
	Router # show ssh	ML シリーズ カードの SSH サーバの接続ステータスを 表示します。
ステップ 7	Router # copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを 保存します。

デフォルトの SSH 制御パラメータに戻すには、no ip ssh {timeout | authentication-retries} グローバ ル コンフィギュレーション コマンドを使用します。

SSH 設定およびステータスの表示

SSH サーバの設定とステータスを表示するには、表 19-1 に示す 1 つまたは複数のイネーブル EXEC コマンドを使用します。

表 19-1 SSH 設定およびステータスを表示するコマンド

コマンドの説明	目的
show ip ssh	SSH サーバのバージョンおよび設定情報を表示します。
show ssh	SSH サーバのステータスを表示します。

これらのコマンドの詳細については、『*Cisco IOS Security Command Reference, Cisco IOS Release 12.2*』の「Other Security Features」の章にある「Secure Shell Commands」を参照してください。次の URL にあります。

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fsecur_r/fothercr.htm

ML シリーズ カード上の RADIUS

RADIUS は、無許可アクセスに対してネットワークをセキュリティ保護する分散型クライアント / サーバシステムです。クライアントは、中央 RADIUS サーバに認証要求を送信します。これには、すべてのユーザ認証およびネットワーク サービス アクセス情報が含まれています。RADIUS ホストは、通常 Cisco や他のソフトウェア プロバイダーから RADIUS サーバ ソフトウェアを実行する マルチユーザ システム です。

ONS 15454、ONS 15454 SDH、ONS 15327、ONS 15310-CL、ONS 15600 など、多くの Cisco 製品で RADIUS がサポートされています。ML シリーズ カードでも、RADIUS をサポートしています。

ML シリーズ カードは、RADIUS リレー モードまたは RADIUS スタンド アロン モード(デフォルト)のいずれかで動作できます。いずれのモードでも、ML シリーズ カードからの RADIUS メッセージは、ONS ノードの管理に使用される Data Communication Network (DCN; データ通信ネットワーク)上にある RADIUS サーバに渡されます。

RADIUS リレー モード

RADIUS リレーモードでは、MLシリーズカードの RADIUS は CTC または TL1 によって設定され、 ML シリーズ カードを含む ONS 15454 または ONS 15454 SDH ノードの AAA/RADIUS 機能を使用 します。RADIUS リレーモードと RADIUS スタンドアロン モードとの間の相互作用はありません。 ONS ノード セキュリティの詳細については、ONS ノードのリファレンス マニュアルにある 「Security」の章を参照してください。

RADIUS リレー モードで動作している ML シリーズ カードは、クライアントとして RADIUS エントリに指定する必要がありません。RADIUS サーバは、ML シリーズ カードのプロキシとして ONS ノードのクライアント エントリを使用します。

リレー モードをイネーブルにすると、AAA/RADIUS を設定するのに使用される Cisco IOS CLI コマンドがディセーブルになります。ユーザは、AAA/RADIUS に関連しない Cisco IOS CLI コマンドは そのまま使用できます。

リレー モードでは、ML シリーズ カードは、実際にはアクティブな Timing, Communications, and Control カード(TCC2/TCC2P)の内部 IP アドレスである IP アドレスに RADIUS サーバ ホストが表 示されます。ML シリーズ カードが実際に RADIUS パケットをこの内部アドレスに送信すると、 TCC2/TCC2P が RADIUS パケット 宛先を RADIUS サーバの実際の IP アドレスに変換します。スタ ンドアロン モードでは、ML シリーズ カードが RADIUS サーバの実際の IP アドレスを表示します。

複数の RADIUS サーバ ホストを使用した ML シリーズ カードがリレー モードの場合、ML シリー ズ カード IOS CLI の show run 出力もアクティブな TCC2/TCCP カードの内部 IP アドレスを表示し ます。単一の IP アドレスで複数のホストを表しているので、個々のホストを識別するために異な るポート番号と IP アドレスがペアになっています。1860 ~ 1869 のポートには各認証サーバ ホス トが設定されていて、1870 ~ 1879 のポートには各アカウンティング サーバ ホストが設定されてい ます。

IP アドレスの 1 つは、CTC で示されるホスト IP アドレスとは一致しません。CTC では RADIUS サーバ ホストの実際のアドレスを使用しているためです。これらの実際の同一 IP アドレスは、ML シリーズ カードがスタンドアロン モードのときに、ML シリーズ カード IOS CLI show run 出力で 表示されます。

ユーザは、認証またはアカウンティング アプリケーションのいずれかに対して最大で 10 のサーバ を設定でき、1 つのサーバ ホストで認証アプリケーションとアカウンティング アプリケーション の両方を実行できます。

RADIUS リレー モードの設定

この機能は、CTC または TL1 でオンにします。CTC を使用して RADIUS リレー モードをイネーブ ルにするには、ML シリーズ カードのカードレベル ビューで、Enable RADIUS Relay チェック ボッ クスをオンにして、Apply をクリックします。ユーザは、Superuser レベルでログインしてこのタス クを完了する必要があります。

TL1 を使用してこれをイネーブルにするには、『Cisco ONS SONET TL1 Command Guide』を参照して ください。

ML シリーズ カードを RADIUS リレー モードに切り替えると、Cisco IOS コンフィギュレーション ファイルの AAA/RADIUS に関連した設定が消去されます。クリアされた AAA/RADIUS 設定は、 ML シリーズ カードがスタンドアロン モードに戻った場合でも Cisco IOS コンフィギュレーション ファイルに復元されません。

ML シリーズ カードがリレー モードのときに Cisco IOS コマンド copy running-config startup-config を使用しないでください。このコマンドは、RADIUS リレーがイネーブルの Cisco IOS コンフィ ギュレーション ファイルを保存します。リブート時に、CTC の Enable RADIUS Relay チェック ボッ クスがオンになっていなくても、ML シリーズ カードが RADIUS リレー モードで起動します。こ のような状態が発生した場合、ユーザは Enable RADIUS Relay チェック ボックスをオンにして Apply をクリックしてから、Enable RADIUS Relay チェック ボックスをオフにして Apply をクリックしてから、Enable RADIUS Relay チェック ボックスをオフにして Apply をクリッ クします。これを行うと、ML シリーズ カードがスタンドアロン モードに設定されて、ML シリー ズ カードの設定から RADIUS リレーがクリアされます。

RADIUS スタンドアロン モード

スタンドアロン モードでは、ML シリーズ カードの RADIUS は、Cisco Catalyst スイッチの RADIUS と同じ一般的な方法で Cisco IOS CLI を使用して設定されます。

ここでは、ML シリーズ カードで RADIUS スタンドアロン モードのイネーブルおよび設定方法に ついて説明します。スタンドアロン モードの RADIUS は、AAA 経由で機能し、AAA コマンドでイ ネーブルになります。

(注)

この章ではこれ以降、RADIUS とは、ML シリーズ カードがスタンドアロン モードのときに利用 可能な Cisco IOS RADIUS のことを指します。RADIUS リレー モードのことは指しません。

) ここで使用されている全構文と使用方法の情報については、『Cisco IOS Security Command Reference, Release 12.2』を参照してください。

ここでは、次の設定情報について説明します。

- RADIUSの概要(p.19-9)
- RADIUS スタンドアロン モード (p.19-9)
- RADIUS の設定 (p.19-10)
- RADIUS 設定の表示 (p.19-23)

RADIUS の概要

RADIUS サーバによってアクセス制御されるユーザが ML シリーズ カードにログインして認証を 受けようとする場合に、次のイベントが発生します。

- 1. ユーザはユーザ名やパスワードを入力するように求められます。
- 2. ユーザ名と暗号化されたパスワードがネットワークを通じて RADIUS サーバへ送信されます。
- 3. ユーザは RADIUS サーバから以下のいずれかの応答を受信します。
 - a. ACCEPT ユーザが認証されました。
 - **b.** REJECT ユーザが認証されずにユーザ名とパスワードの再入力を求められるか、アクセ スが拒否されました。

ACCEPT および REJECT 応答には、イネーブル EXEC またはネットワーク許可で使用される追加 データが付いています。RADIUS がイネーブルの場合に、ユーザは RADIUS 許可の前にまず RADIUS 認証を正常に完了させる必要があります。ACCEPT および REJECT パケットに含まれる追 加データには、以下の項目があります。

- Telnet、SSH、rlogin、およびイネーブル EXEC サービス
- ホストまたはクライアント IP アドレスなどの接続パラメータ、アクセス リスト、およびユー ザタイムアウト

RADIUS の設定

ここでは、RADIUS をサポートするように ML シリーズ カードを設定する方法について説明しま す。少なくとも、RADIUS サーバ ソフトウェアが稼働するホスト(複数可)を特定し、RADIUS 認 証の方式リストを定義する必要があります。また認証を行うインターフェイスに方式リストを定義 する必要があります。ML シリーズ カードの場合、これは vty ポートです。任意で RADIUS 許可お よびアカウンティングの方式リストを定義することもできます。

ML シリーズ カードに RADIUS 機能を設定する前に、RADIUS サーバにアクセスして設定を行う必要があります。

ここでは、以下の設定情報について説明します。

- RADIUS のデフォルト設定 (p.19-10)
- RADIUS サーバホストの特定 (p.19-10)(必須)
- AAA ログイン認証の設定 (p.19-13) (必須)
- AAA サーバ グループの定義 (p.19-15)(任意)
- ユーザ イネーブル アクセスおよびネットワーク サービス用の RADIUS 許可の設定 (p.19-17) (任意)
- RADIUS アカウンティングの開始 (p.19-18) (任意)
- RADIUS パケット内の nas-ip-address の設定 (p.19-19)(任意)
- すべての RADIUS サーバに対する設定 (p.19-20)(任意)
- ベンダー固有の RADIUS 属性用の ML シリーズ カードの設定 (p.19-20)(任意)
- ベンダー固有の RADIUS サーバ通信用の ML シリーズ カードの設定 (p.19-22)(任意)

RADIUS のデフォルト設定

RADIUS と AAA は、デフォルトでディセーブルに設定されています。セキュリティの失効を防止 するため、ネットワーク管理アプリケーション使用して RADIUS を設定することはできません。 RADIUS は、イネーブルに設定されている場合 Cisco IOS CLI を使用して、ML シリーズ カードに アクセスするユーザを認証できます。

RADIUS サーバ ホストの特定

MLシリーズカードとRADIUSサーバ間の通信には、次の要素が含まれています。

- ホスト名または IP アドレス
- 認証宛先ポート
- アカウンティング宛先ポート
- キー文字列
- タイムアウト時間
- 再送信値

RADIUS セキュリティ サーバは、ホスト名または IP アドレス、ホスト名と特定の UDP ポート番号、 または IP アドレスと特定の UDP ポート番号で識別されます。 IP アドレスと UDP ポート番号の組 み合わせによって一意の識別子が作成され、特定の AAA サービスを提供する RADIUS ホストとし てさまざまなポートを個別に定義できます。この一意の識別子によって、サーバ上の複数の UDP ポートに同じ IP アドレスで RADIUS 要求を送信できるようになります。 同一の RADIUS サーバ上の2つの異なるホスト エントリが同じサービス(たとえば、アカウンティング)を設定している場合、設定された2番めのホスト エントリは、最初のエントリの代行バック アップとして機能します。この例では、最初のホスト エントリがアカウンティング サービスを提 供できない場合は、MLシリーズカードは、同じ装置上に設定された2番めのホスト エントリでア カウンティング サービスを試行します。

AAA セキュリティ コマンドを使用するように RADIUS を設定するには、RADIUS サーバ デーモン が稼働するホストと、その ML シリーズ カードと共有するシークレット(鍵)文字列を指定する必 要があります。RADIUS サーバ、ONS ノード、および ML シリーズ カードは、共有するシークレッ ト文字列を使用してパスワードを暗号化し、応答を交換します。システムでは、ML シリーズ カー ドの共有シークレット鍵が NE の共有シークレット鍵と一致することを保証しています。

<u>》</u> (注)

スイッチにグローバルおよびサーバ単位の両方の機能(タイムアウト、再送信回数、およびキーコマンド)を設定すると、サーバ単位のタイマー、再送信回数、およびキー値コマンドは、グローバルのタイマー、再送信回数、およびキー値コマンドを上書きします。すべての RADIUS サーバに対してこれらの値を設定するには、「すべての RADIUS サーバに対する設定」(p.19-20)を参照してください。

(注)

再送信回数およびタイムアウト時間値は、スタンドアロン モードの ML シリーズ カードに設定されます。これらの値は、リレー モードの ML シリーズ カードには設定できません。

認証用に既存のサーバ ホストをグループ化するために、AAA サーバ グループを使用するように ML シリーズ カードを設定できます。詳細については、「AAA サーバ グループの定義」(p.19-15) を参照してください。

サーバ単位での RADIUS サーバ通信を設定するには、イネーブル EXEC モードで次の手順を実行します。この手順は必須です。

	コマンドの説明	目的
ステップ 1	Router # configure terminal	グローバル コンフィギュレーション モードを開始します。
ステップ 2	Router (config)# aaa new-model	AAA をイネーブルにします。

	コマンドの説明	目的
ステップ 3	Router (config)# radius-server host {hostname ip-address} [auth-port port-number] [acct-port port-number] [timeout seconds] [retransmit retries] [key string]	リモート RADIUS サーバ ホストの IP アドレスまたはホス
		ト名を指定します。
		• (任意)auth-port <i>port-number</i> には、認証要求の UDP 宛 先ポートを指定します。
		 (任意) acct-port port-number には、アカウンティング 要求の UDP 宛先ポートを指定します。
		 (任意) timeout seconds には、RADIUS サーバが応答す るのを待ってスイッチが再送信するまでの時間を指定 します。この範囲は 1 ~ 1000 です。この設定は、 radius-server timeout グローバル コンフィギュレー ション コマンド設定を上書きします。radius-server host コマンドでタイムアウトが設定されていない場合 は、radius-server timeout コマンドの設定が使用されま す。
		 (任意)retransmit retries には、サーバが応答しないか、 応答が遅い場合に、RADIUS要求をそのサーバに再送 信する回数を指定します。この範囲は1~1000です。 radius-server host コマンドで再送信値が設定されてい ない場合は、radius-server retransmit グローバル コン フィギュレーション コマンドの設定が使用されます。
		 (任意) key string には、スイッチと RADIUS サーバ上 で稼働する RADIUS デーモンとの間で使用する認証お よび暗号化鍵を指定します。
		(注) 鍵は、RADIUS サーバ上で使用する暗号化鍵と一致 する必要のある文字列です。鍵は、必ず radius-server host コマンドの最後の項目として設 定します。先行スペースは無視されますが、鍵の途 中および末尾のスペースは使用されます。鍵にス ペースを使用する場合は、鍵の一部として引用符を 使用する場合を除いて、鍵を引用符で囲まないでく ださい。
		1 つの IP アドレスに関連付けられた複数のホスト エント リをスイッチが認識するように設定するには、必要な回数 だけこのコマンドを入力し、それぞれの UDP ポート番号が 必ず異なるようにしてください。スイッチ ソフトウェア は、指定された順序でホストを検索します。特定の RADIUS ホストで使用するタイムアウト、再送信回数、および暗号 化鍵の値を設定します。
ステップ 4	Router (config)# end	イネーブル EXEC モードに戻ります。
ステップ 5	Router# show running-config	エントリを確認します。
ステップ 6	Router# copy running-config startup-config	(任意)コンフィギュレーション ファイルにエントリを保存します。

特定の RADIUS サーバを削除するには、no radius-server host hostname | ip-address グローバル コン フィギュレーション コマンドを使用します。 次の例では、ある RADIUS サーバを認証用に、別の RADIUS サーバをアカウンティング用に設定 する方法を示します。

Switch(config)# radius-server host 172.29.36.49 auth-port 1612 key rad1 Switch(config)# radius-server host 172.20.36.50 acct-port 1618 key rad2

次の例では、RADIUS サーバとして *host1* を設定し、認証およびアカウンティングの両方にデフォルト ポートを使用する方法を示します。

Switch(config)# radius-server host host1

(注)

さらに、RADIUS サーバでいくつかの設定を行う必要があります。この設定とは、スイッチの IP アドレス、およびサーバとスイッチで共有するキー文字列です。詳細については、RADIUS サーバ のマニュアルを参照してください。

AAA ログイン認証の設定

AAA 認証を設定するには、認証方式の名前付きリストを定義してから、さまざまなポートにその リストを適用します。方式リストは実行される認証のタイプと実行順序を定義します。このリスト を特定のポートに適用してから、定義済み認証方式を実行する必要があります。唯一の例外は、 *default* という名前のデフォルトの方式リストです。デフォルトの方式リストは、名前付き方式リス トが明示的に定義されたポートを除いて、自動的にすべてのポートに適用されます。

方式リストは、ユーザ認証のためクエリ送信を行う順序と認証方式を記述したものです。認証に使 用する1つまたは複数のセキュリティプロトコルを指定できるので、最初の方式が失敗した場合の バックアップシステムが確保されます。ソフトウェアは、リスト内の最初の方式を使用してユーザ を認証します。その方式で応答が得られなかった場合、ソフトウェアはその方式リストから次の認 証方式を選択します。このプロセスは、リスト内の認証方式による通信が成功するか、定義された 方式をすべて試すまで続きます。この処理のある時点で認証が失敗した場合(つまり、セキュリ ティサーバまたはローカルのユーザ名データベースがユーザアクセスを拒否すると応答した場 合)、認証プロセスは停止し、それ以上認証方式が試行されることはありません。

AAA ログインの詳細については、『*Cisco IOS Security Configuration Guide, Release 12.2*』の「Authentication, Authorization, and Accounting (AAA)」の章を参照してください。次の URL にあります。

 $http://www.cisco.com/en/US/products/sw/iosswrel/ps1835/products_installation_and_configuration_guides_list.html$

ログイン認証を設定にするには、イネーブル EXEC モードで次の手順を実行します。この手順は必須です。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始します。
ステップ 2	Router (config)# aaa new-model	AAA をイネーブルにします。

	コマンドの説明	目的
ステップ 3	<pre>Router (config)# aaa authentication login {default list-name} method1 [method2]</pre>	ログイン認証方式リストを作成します。
		 login authentication コマンドに名前付きリストが指定 されて<i>いない</i>場合に使用されるデフォルトのリストを 作成するには、default キーワードの後ろにデフォルト 状況で使用する方式を指定します。デフォルトの方式 リストは、自動的にすべてのポートに適用されます。
		 <i>list-name</i>には、作成するリストの名前として使用する 文字列を指定します。
		 method1には、認証アルゴリズムが試行する実際の方 式を指定します。追加の認証方式は、その前の方式で エラーが返された場合に限り使用されます。前の方式 が失敗した場合は使用されません。
		次のいずれかの方式を選択します。
		 enable イネーブル パスワードを認証に使用します。この認証方式を使用するには、enable password グローバル コンフィギュレーション コ マンドを使用して、イネーブル パスワードをあら かじめ定義しておく必要があります。
		 group radius RADIUS 認証を使用します。この 認証方式を使用するには、RADIUS サーバをあら かじめ設定しておく必要があります。詳細につい ては、「RADIUS サーバ ホストの特定」(p.19-10) を参照してください。
		 line 回線パスワードを認証に使用します。この 認証方式を使用するには、回線パスワードをあら かじめ設定しておく必要があります。password password ライン コンフィギュレーション コマン ドを使用します。
		 local ローカル ユーザ名データベースを認証に 使用します。データベースにユーザ名情報を入力 しておく必要があります。username name password グローバル コンフィギュレーション コマンドを 使用します。
		 local-case 大文字と小文字が区別されるローカルユーザ名データベースを認証に使用します。 username password グローバルコンフィギュレーションコマンドを使用して、データベースにユーザ名情報を入力する必要があります。
		- none ログインに認証を使用しません。
ステップ 4	Router (config)# line [console tty vty] line-number [ending-line-number]	ライン コンフィギュレーション モードを開始し、認証リス トの適用対象とする回線を設定します。
ステップ 5	Router (config-line)# login	回線または回線セットに対して、認証リストを適用します。
	authentication { default <i>list-name</i> }	 default を指定する場合は、aaa authentication login コ マンドで作成したデフォルトのリストを使用します。
		 <i>list-name</i>には、aaa authentication login コマンドで作成したリストを使用します。
ステップ 6	Router (config)# end	イネーブル EXEC モードに戻ります。

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

	コマンドの説明	目的
ステップ 7	Router# show running-config	エントリを確認します。
ステップ 8	Router# copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを保 存します。

AAA をディセーブルにするには、no aaa new-model グローバル コンフィギュレーション コマンド を使用します。AAA 認証をディセーブルにするには、no aaa authentication login {default | *list-name*} *method1* [*method2...*] グローバル コンフィギュレーション コマンドを使用します。ログイン用の RADIUS 認証をディセーブルにするかデフォルト値に戻す場合は、no login authentication {default | *list-name*} ライン コンフィギュレーション コマンドを使用します。

AAA サーバ グループの定義

認証用に既存のサーバ ホストをグループ化するために、AAA サーバ グループを使用するように ML シリーズ カードを設定できます。設定済みサーバ ホストのサブセットを選択し、特定のサービ スに使用できます。サーバ グループには、グローバル サーバ ホスト リストを使用します。このリ ストは、選択したサーバ ホストの IP アドレスのリストです。

サーバ グループには、各エントリが一意の識別子(IP アドレスと UDP ポート番号の組み合わせ) を持っていれば、同じサーバに対して複数のホスト エントリを組み込むことができます。また、ア カウンティングなどの特定の AAA サービスを提供する RADIUS ホストとして、さまざまなポート を個別に定義できます。同じサービスに対して、同一 RADIUS サーバ上に 2 つの異なるホスト エ ントリを設定すると、設定された 2 番めのホスト エントリは、最初のエントリのフェールオーバー バックアップとして機能します。

定義済みのグループ サーバに特定のサーバを対応付けるには、server グループ サーバ コンフィ ギュレーション コマンドを使用します。IP アドレスでサーバを特定したり、任意の auth-port およ び acct-port キーワードを使用して複数のホスト インスタンスまたはエントリを識別することもで きます。

AAA サーバ グループを定義してそれを特定の RADIUS サーバに対応付けるには、イネーブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始します。
ステップ 2	Router (config)# aaa new-model	AAA をイネーブルにします。
ステップ 3	Router (config)# radius-server host {hostname ip-address} [auth-port port-number] [acct-port port-number]	リモート RADIUS サーバ ホストの IP アドレスまたはホス ト名を指定します。
	<pre>[timeout seconds] [retransmit retries] [key string]</pre>	 (任意) auth-port port-number には、認証要求の UDP 宛 先ポートを指定します。
		 (任意) acct-port port-number には、アカウンティング 要求の UDP 宛先ポートを指定します。
		 (任意)timeout seconds には、RADIUS サーバが応答す るのを待ってスイッチが再送信するまでの時間を指定 します。この範囲は1~1000です。この設定は、 radius-server timeout グローバル コンフィギュレー ション コマンド設定を上書きします。radius-server host コマンドでタイムアウトが設定されていない場合 は、radius-server timeout コマンドの設定が使用されま す。
		 (任意)retransmit retries には、サーバが応答しないか、 応答が遅い場合に、RADIUS要求をそのサーバに再送 信する回数を指定します。この範囲は1~1000です。 radius-server host コマンドで再送信値が設定されてい ない場合は、radius-server retransmit グローバル コン フィギュレーションコマンドの設定が使用されます。
		 (任意) key string には、スイッチと RADIUS サーバ上 で稼働する RADIUS デーモンとの間で使用する認証お よび暗号化鍵を指定します。
		▲ 鍵は、RADIUS サーバ上で使用する暗号化鍵と一致する必要のある文字列です。鍵は、必ずradius-server host コマンドの最後の項目として設定します。先行スペースは無視されますが、鍵の途中および未尾のスペースは使用されます。鍵にスペースを使用する場合は、鍵の一部として引用符を使用する場合な除いて、鍵を引用でで囲まないでく
		使用する場合を味いて、難を引用付て囲まないでく ださい。
		1 つの IP アドレスに関連付けられた複数のホスト エント リをスイッチが認識するように設定するには、必要な回数 だけこのコマンドを入力し、それぞれの UDP ポート番号が 必ず異なるようにしてください。スイッチ ソフトウェア は、指定された順序でホストを検索します。特定の RADIUS ホストで使用するタイムアウト、再送信回数、および暗号 化鍵の値を設定します。
ステップ 4	Router (config)# aaa group server	グループ名で AAA サーバ グループを定義します。
	rauras group-name	このコマンドによって、ML シリーズ カードはサーバ グ ループ コンフィギュレーション モードになります。

■ Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

	コマンドの説明	目的
ステップ 5	Router (config-sg-radius)# server ip-address	特定の RADIUS サーバを定義済みサーバ グループに対応 付けます。AAA サーバ グループの RADIUS サーバごとに、 このステップを繰り返します。
		グループの各サーバは、ステップ 2 で定義済みのものでな ければなりません。
ステップ 6	Router (config-sg-radius)# end	イネーブル EXEC モードに戻ります。
ステップ 7	Router # show running-config	エントリを確認します。
ステップ 8	Router # copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを保 存します。
ステップ 9		RADIUS ログイン認証をイネーブルにします。「AAA ログ イン認証の設定」(p.19-13)を参照してください。

特定の RADIUS サーバを削除するには、no radius-server host hostname | ip-address グローバル コン フィギュレーション コマンドを使用します。コンフィギュレーション リストからサーバ グループ を削除するには、no aaa group server radius group-name グローバル コンフィギュレーション コマ ンドを使用します。RADIUS サーバ の IP アドレスを削除するには、no server ip-address サーバ グ ループ コンフィギュレーション コマンドを使用します。

この例では、ML シリーズ カードが、2つの異なる RADIUS グループ サーバ(group1 と group2)を 認識するように設定されます。group1 では、同一の RADIUS サーバ上の 2 つの異なるホスト エン トリに同じサービスを設定しています。2 番めのホスト エントリは、最初のエントリのフェール オーバー バックアップとして機能します。

Switch(config)# radius-server host 172.20.0.1 auth-port 1000 acct-port 1001
Switch(config)# radius-server host 172.10.0.1 auth-port 1645 acct-port 1646
Switch(config)# aaa new-model
Switch(config)# aaa group server radius group1
Switch(config-sg-radius)# server 172.20.0.1 auth-port 1000 acct-port 1001
Switch(config)# aaa group server radius group2
Switch(config-sg-radius)# server 172.20.0.1 auth-port 2000 acct-port 2001
Switch(config-sg-radius)# server 172.20.0.1 auth-port 2000 acct-port 2001
Switch(config-sg-radius)# server 172.20.0.1 auth-port 2000 acct-port 2001

ユーザ イネーブル アクセスおよびネットワーク サービス用の RADIUS 許可の設定

AAA 許可は、ユーザが利用できるサービスを制限します。AAA 許可がイネーブルに設定されていると、ML シリーズ カードはユーザのプロファイルから取得した情報を使用します。このプロファイルは、ローカルのユーザ データベースまたはセキュリティ サーバ上にあり、ユーザのセッションを設定します。ユーザは、プロファイル内の情報で認められている場合に限り、要求したサービスのアクセスが許可されます。

ML シリーズ カードでのイネーブル レベルの設定または priv-lvl コマンドの使用は、サポートされ ていません。RADIUS サーバで認証されたユーザは、デフォルトのログイン権限レベルであるイ ネーブル モード 1 でのみ ML シリーズ カードにアクセスできます。このため、RADIUS サーバに 設定されている priv-lvl は、priv-lvl 0 または 1 になります。ユーザが認証されて ML シリーズ カー ドへのアクセスが許可されると、イネーブル パスワードを使用してイネーブル EXEC 認証を得る ことができ、権限レベル 15 のスーパーユーザになることができます。これは、イネーブル モード のデフォルトの権限レベルです。 この ML シリーズ カード ユーザ レコードの例は、RADIUS サーバからの出力で、権限レベルを示しています。

```
CISCO15 Auth-Type := Local, User-Password == "otbu+1"
Service-Type = Login,
Session-Timeout = 100000,
Cisco-AVPair = "shell:priv-lvl=1"
```

aaa authorization グローバル コンフィギュレーション コマンドに radius キーワードを付けて使用 すると、イネーブル EXEC モードへのユーザのネットワーク アクセスを制限するパラメータを設 定できます。

aaa authorization exec radius local コマンドは、以下の許可パラメータを設定します。

- RADIUS を使用して認証を行った場合は、イネーブル EXEC アクセス許可に RADIUS を使用します。
- 認証に RADIUS を使用しなかった場合は、ローカル データベースを使用します。

(注)

許可が設定されていても、CLI経由でログインして認証されたユーザに対して、許可が省略されます。

イネーブル EXEC アクセスおよびネットワーク サービスに関する RADIUS 許可を指定するには、イ ネーブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的			
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始します。			
ステップ 2	Router (config)# aaa authorization network radius	ネットワーク関連のすべてのサービス要求に対するユーザ RADIUS 許可を ML シリーズ カードに設定します。			
ステップ 3	Router (config)# aaa authorization exec radius	イネーブル EXEC アクセスの有無を、ユーザ RADIUS 許可 によって判別するように ML シリーズ カードを設定しま す。			
		exec キーワードを指定すると、ユーザ プロファイル情報 (autocommand 情報など)を返すことができます。			
ステップ 4	Router (config)# end	イネーブル EXEC モードに戻ります。			
ステップ 5	Router# show running-config	エントリを確認します。			
ステップ 6	Router# copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを保 存します。			

許可をディセーブルにするには、no aaa authorization {network | exec } *method1* グローバル コンフィ ギュレーション コマンドを使用します。

RADIUS アカウンティングの開始

AAA アカウンティング機能は、ユーザがアクセスしているサービスと、ユーザが消費しているネットワークリソースを追跡します。AAA アカウンティングがイネーブルに設定されていると、ML シリーズ カードは、アカウンティング レコードの形式でユーザの活動状況を RADIUS セキュリティサーバにレポートします。各アカウンティング レコードには、アカウンティングの Attribute-Value (AV)のペアが含まれ、セキュリティ サーバ上に保存されます。このデータを分析し、ネットワーク管理、クライアントへの課金、または監査に利用できます。

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

各 Cisco IOS 権限レベルおよびネットワーク サービスに関する RADIUS アカウンティングをイネー ブルにするには、イネーブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的					
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始します。					
ステップ 2	Router (config)# aaa accounting network start-stop radius	ネットワーク関連のすべてのサービス要求に関する RADIUS アカウンティングをイネーブルにします。					
ステップ 3	Router (config)# aaa accounting exec start-stop radius	RADIUS アカウンティングをイネーブルにして、イネーブ ル EXEC プロセスの開始時に記録開始アカウンティング通 知を送信し、終了時に記録停止通知を送信します。					
ステップ 4	Router (config)# end	イネーブル EXEC モードに戻ります。					
ステップ 5	Router# show running-config	エントリを確認します。					
ステップ 6	Router# copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを保 存します。					

アカウンティングをディセーブルにするには、no aaa accounting {network | exec} start-stop *method1...* グローバル コンフィギュレーション コマンドを使用します。

RADIUS パケット内の nas-ip-address の設定

RADIUS リレー モードの ML シリーズ カードを使用すると、ユーザは各 ML シリーズ カードに対 して個別の nas-ip-address を設定できます。RADIUS スタンドアロン モードでは、このコマンドは Cisco IOS CLI に隠されています。これにより、RADIUS サーバが同一 ONS ノード内の ML シリー ズ カードを個別に識別できます。サーバに要求を送信した特定の ML シリーズ カードを識別でき ると、サーバのデバッグ時に便利です。nas-ip-address は、主に RADIUS 認証およびアカウンティン グ要求の検証に使用されます。

この値が設定されていない場合、nas-ip-address は、ip radius-source コマンドで設定された値を使用 して通常の Cisco IOS メカニズムによって設定されます。値が設定されていない場合は、サーバへ ルーティング可能な最良の IP アドレスが使用されます。ルーティング可能なアドレスを使用でき ない場合は、サーバの IP アドレスが使用されます。

nas-ip-address を設定するには、イネーブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的		
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始します。		
ステップ 2	Router (config)# [no] ip radius nas-ip-address {hostname ip-address}	RADIUS パケット内にある属性 4 (nas-ip-address)の IP ア ドレスまたはホスト名を指定します。		
		ONS ノードに ML シリーズ カードが 1 つしかない場合は、 このコマンドを使用するメリットはありません。ONS ノー ドのパブリック IP アドレスは、サーバに送信される RADIUS パケット内の nas-ip-address として機能します。		
ステップ 3	Router (config)# end	イネーブル EXEC モードに戻ります。		
ステップ 4	Router# show running-config	エントリを確認します。		
ステップ 5	Router# copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを保 存します。		

すべての RADIUS サーバに対する設定

ML シリーズ カードとすべての RADIUS サーバ間のグローバル通信設定を設定するには、イネーブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始します。
ステップ 2	Router (config)# radius-server key string	ML シリーズ カードとすべての RADIUS サーバとの間で使 用する、共有シークレット文字列を指定します。
		 ◆ ◆ (注) 鍵は、RADIUS サーバ上で使用する暗号化鍵と一致 する必要のある文字列です。先行スペースは無視さ れますが、鍵の途中および末尾のスペースは使用さ れます。鍵にスペースを使用する場合は、鍵の一部 として引用符を使用する場合を除いて、鍵を引用符 で囲まないでください。
ステップ 3	Router (config)# radius-server retransmit retries	ML シリーズ カードが、サーバに各 RADIUS 要求を送信す る回数を指定します。デフォルトは 3 で、指定できる範囲 は 1 ~ 1000 です。
ステップ 4	Router (config)# radius-server timeout seconds	ML シリーズ カードが、RADIUS 要求に対する応答を待っ て要求を再送信するまでの秒数を指定します。デフォルト は 5 秒で、指定できる範囲は 1 ~ 1000 です。
ステップ 5	Router (config)# radius-server deadtime minutes	認証要求への応答に失敗した RADIUS サーバに [dead] と マーキングするまでの分数を指定します。[dead] として マーキングされている RADIUS サーバは、指定した分数の 間追加の認証要求をスキップされます。これにより、要求 がタイムアウトするまで待たずに、次の設定サーバを試行 できます。すべての RADIUS サーバが [dead] としてマーキ ングされている場合、スキップは行われません。
ステップ 6	Router (config)# end	イネーブル EXEC モードに戻ります。
ステップ 7	Router# show running-config	エントリを確認します。
ステップ 8	Router# copy running-config startup-config	(任意)コンフィギュレーション ファイルにエントリを保 存します。

再送信、タイムアウト、デッドタイムの設定をデフォルトに戻すには、これらのコマンドの no 形 式を使用します。

ベンダー固有の RADIUS 属性用の ML シリーズ カードの設定

Internet Engineering Task Force (IETF; インターネット技術特別調査委員会)ドラフト規格では、 Vendor-Specific Attribute (VSA)(属性 26)を使用して、MLシリーズカードとRADIUS サーバとの 間のベンダー固有情報の通信方式を定めています。VSA を使用すると、ベンダーは、汎用に適さな い独自の拡張属性をサポートできます。シスコのRADIUS 実装では、仕様で推奨された形式を使用 して1つのベンダー固有オプションをサポートします。シスコのベンダー ID は9で、サポート対 象のオプションにはベンダータイプ1 が設定されており、*cisco-avpair* と名前が付けられています。 この値は次の形式の文字列です。

protocol : attribute sep value *

protocol は、特定のタイプの許可に対応する シスコ プロトコル属性です。*attribute と value* は、シ スコ Terminal Access Controller Access Control System Plus (TACACS+) 仕様で定義されている適切 な AV のペアです。*sep* は、必須属性の場合は =、任意属性の場合は * です。TACACS+許可で利用 できるすべての機能は、RADIUS にも使用できます。

たとえば、次の AV ペアは、IP 許可時(PPP[ポイントツーポイント プロトコル]の Internet Protocol Control Protocol [IPCP] アドレス割り当て時)に、シスコの*複数の名前付き IP アドレス プール*機能をアクティブにします。

cisco-avpair= "ip:addr-pool=first"

次の例では、RADIUS サーバデータベース内の許可 VLAN を指定する方法を示します。

```
cisco-avpair= "tunnel-type(#64)=VLAN(13)"
cisco-avpair= "tunnel-medium-type(#65)=802 media(6)"
cisco-avpair= "tunnel-private-group-ID(#81)=vlanid"
```

次の例では、この接続中に ASCII 形式の入力 Access Control List (ACL; アクセス制御リスト)をイ ンターフェイスに適用する方法を示します。

cisco-avpair= "ip:inacl#1=deny ip 10.10.10.10 0.0.255.255 20.20.20.20 255.255.0.0" cisco-avpair= "ip:inacl#2=deny ip 10.10.10.10 0.0.255.255 any" cisco-avpair= "mac:inacl#3=deny any decnet-iv"

次の例では、この接続中に ASCII 形式の出力 ACL をインターフェイスに適用する方法を示します。

cisco-avpair= "ip:outacl#2=deny ip 10.10.10.10 0.0.255.255 any"

その他のベンダーにも、独自に一意のベンダー ID、オプション、および対応する VSA が割り当て られます。ベンダー ID と VSA の詳細については、RFC 2138 『*Remote Authentication Dial-In User Service (RADIUS)*』を参照してください。

VSA を認識して使用するように ML シリーズ カードを設定するには、イネーブル EXEC モードで 次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始します。
ステップ 2	Router (config)# radius-server vsa send [accounting authentication]	ML シリーズ カードが、RADIUS IETF 属性 26 に定義され ている VSA を認識して使用できるようにします。
		 (任意) accounting キーワードを使用して、認識される VSA の集合をアカウンティング属性のみに限定しま す。
		 (任意) authentication キーワードを使用して、認識されるベンダー固有の属性の集合を認証属性に限定します。
		キーワードなしでこのコマンドを入力すると、アカウン ティングおよび認証の両方の VSA が使用されます。
		AAA サーバは、ML シリーズ カードの VSA 応答メッセー ジに認証レベルを含めます。
ステップ 3	Router (config)# end	イネーブル EXEC モードに戻ります。
ステップ 4	Router# show running-config	エントリを確認します。
ステップ 5	Router# copy running-config startup-config	(任意)コンフィギュレーション ファイルにエントリを保存します。

RADIUS 属性の完全リスト、またはベンダー固有の属性 26 の詳細については、『*Cisco IOS Security Configuration Guide, Release 12.2*』の付録「RADIUS Attributes」を参照してください。

ベンダー固有の RADIUS サーバ通信用の ML シリーズ カードの設定

RADIUS に関する IETF ドラフト規格では、ML シリーズカードと RADIUS サーバとの間のベンダー 固有情報の通信方式を規定していますが、一部のベンダーは、固有の方法で RADIUS 属性の集合を 機能拡張しています。Cisco IOS ソフトウェアは、ベンダー固有仕様の RADIUS 属性のサブセット をサポートします。

前述したように、RADIUS(ベンダー固有またはIETFのドラフト準拠)を設定するには、RADIUS サーバ デーモンが稼働しているホスト、および ML シリーズ カードと共有するシークレット文字 列を指定する必要があります。RADIUS ホストおよびシークレット文字列を指定するには、 radius-server グローバルコンフィギュレーション コマンドを使用します。

ベンダー固有の RADIUS サーバ ホスト、および共有シークレット文字列を指定するには、イネー ブル EXEC モードで次の手順を実行します。

	コマンドの説明	目的
ステップ 1	Router# configure terminal	グローバル コンフィギュレーション モードを開始します。
ステップ 2	Router (config)# radius-server host {hostname ip-address} non-standard	リモート RADIUS サーバ ホストの IP アドレスまたはホス ト名を指定し、ベンダー固有の RADIUS 実装を使用してい ることを明確にします。
ステップ 3	Router (config)# radius-server key string	ML シリーズ カードとベンダー固有の RADIUS サーバとの 間で使用する、共有シークレット文字列を指定します。ML シリーズ カードおよび RADIUS サーバは、この文字列を使 用してパスワードを暗号化し、応答を交換します。 (注) 鍵は、RADIUS サーバ上で使用する暗号化鍵と一致 する必要のある文字列です。先行スペースは無視さ れますが、鍵の途中および末尾のスペースは使用さ れます。鍵にスペースを使用する場合は、鍵の一部 として引用符を使用する場合を除いて、鍵を引用符 で囲まないでください。
ステップ 4	Router (config)# end	イネーブル EXEC モードに戻ります。
ステップ 5	Router# show running-config	エントリを確認します。
ステップ 6	Router# copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを保 存します。

ベンダー固有の RADIUS ホストを削除するには、no radius-server host {*hostname* | *ip-address*} non-standard グローバル コンフィギュレーション コマンドを使用します。鍵をディセーブルにするには、no radius-server key グローバル コンフィギュレーション コマンドを使用します。

次の例では、ベンダー固有の RADIUS ホストを指定して、ML シリーズ カードとサーバの間で *rad124* という秘密鍵を使用する方法を示します。

```
Switch(config)# radius-server host 172.20.30.15 nonstandard
Switch(config)# radius-server key rad124
```

RADIUS 設定の表示

RADIUS 設定を表示するには、show running-config イネーブル EXEC コマンドを使用します。

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

■ RADIUS スタンドアロン モード

ONS イーサネット カード上の POS

この章では、Packet-over-SONET/SDH (POS) および ONS イーサネット カードでの POS の実装に ついて説明します。

この章の内容は次のとおりです。

- POSの概要(p.20-2)
- POS 相互運用性 (p.20-3)
- POS カプセル化タイプ (p.20-5)
- POS フレーミング モード (p.20-7)
- 特定の ONS イーサネット カードの POS 特性 (p.20-8)
- イーサネットのクロッキングと SONET/SDH のクロッキング (p.20-12)

POS の概要

Asynchronous Transfer Mode(ATM; 非同期転送モード)およびフレームリレーと異なり、イーサネットは本来、SONET/SDH とインターフェイスするように設計されていませんでした。イーサネットのデータパケットは、SONET/SDH ネットワーク上で転送するために、SONET/SDH フレームにフレーム化およびカプセル化する必要があります。このフレーム化およびカプセル化処理は POS として知られています。

図 20-1 ONS ノードでのイーサネットから POS へのプロセス

ONS ノード

すべての ONS イーサネット カードは POS を使用します。イーサネット フレームは、標準ファスト イーサネットまたはギガビット イーサネット ポートのカードに到着し、ONS イーサネット カード のフレーム化メカニズムによって処理されて、POS フレームにカプセル化されます。POS フレーム が ONS イーサネット カードから POS 回線に出ると、この回線は ONS ノードの他の SONET 回線 (STS)または SDH 回線 (VC)と同じように処理されます。この回線は相互接続され、光カードの ポートから SONET/SDH ネットワークへ SONET/SDH 信号を送出します。

POS 回線の宛先は、ONS イーサネット カードまたは POS インターフェイスをサポートする他の装置です。宛先カードで受信した POS フレームは、データ パケットが取り外されてイーサネット フレームに処理されます。次に、イーサネット フレームは、ONS イーサネット カードの標準イーサネット ポートに送信されて、イーサネット ネットワークに送信されます。

G シリーズ、CE シリーズ、および E シリーズ (port-mapper モードに設定) ONS イーサネット カードは、SONET/SDH または POS 回線をカードのいずれかのイーサネット ポートに直接マップします。ML シリーズおよび E シリーズ (EtherSwitch モードに設定) ONS イーサネット カードには、 カードの標準イーサネット ポートを備えたスイッチング ファブリックのスイッチポートとして POS ポートが含まれます。ONS 15454 および ONS 15454 SDH ML シリーズ カードも レイヤ 3 機能 をサポートします。

POS 相互運用性

同じファミリーのイーサネット カード間の POS 回線に加えて、異なるファミリーの一部のイーサ ネット カード間の POS 回線の作成も可能です。Cisco Transport Controller (CTC)の回線作成ウィ ザードでは、特定のイーサネット カード タイプを回線作成の送信元カードとして選択したときに、 宛先カード オプションの下に使用可能な相互運用できるイーサネット カードが表示されます。 SDH ノードからの回線と SONET ノードからの回線を混在するこはできません。

POS 回線は、マッパータイプのカードとスイッチタイプの ONS イーサネット カード間で作成でき ます。ただし、回線からポートへの転送だけが可能であり、スイッチング機能はサポートされませ ん。たとえば、POS 回線の送信元カードとして ONS 15454 ML シリーズ カードを使用する場合、G シリーズまたは CE シリーズが宛先カードとして使用できます。ただし、ML シリーズ スイッチ機 能をすべて設定できるわけではありません。たとえば、ML シリーズと ML シリーズとの間の回線 では、接続された POS ポートを VLAN のメンバーとして設定できますが、接続された G シリーズ の POS ポートは、G シリーズ カードが VLAN をサポートしないために、VLAN メンバーとして設 定できません。

イーサネット カード POS で相互運用を行うためには、次の主要な 3 つの POS ポートの特性が一致 する必要があります。

- POS カプセル化
- CRC サイズ
- フレーミングモード

Frame-mapped Generic Framing Procedure (GFP-F) フレーミング モードを使用する場合には、CRC サイズ オプションが両方のエンド ポイントで一致する必要がありません。

すべてのイーサネット カードが相互運用できるわけではなく、また、すべての POS ポート特性オ プションをサポートするわけではありません。次に示す2つの表に、相互運用可能なイーサネット カードとその特性を示します。表 20-1 に、High-Level Data Link Control (HDLC; ハイレベル データ リンク制御)フレーミング モードがサポートされて設定されているカードに対する情報を示しま す。

表 20-2 に、GFP-F フレーミング モードがサポートされ設定されているカードに対する情報を示し ます。表 20-2 と GFP-F フレーミングでは、LEX という用語は ITU-T G.7041 に基づいた GFP-F 上の 標準マップ イーサネットを表します。GFP-F フレーミングでは、Cisco IOS CLI も lex キーワードを 使用して ITU-T G.7041 に基づいた GFP-F 上の標準マップ イーサネットを表します。

表 20-1 HDLC フレーミングでの ONS SONET/SDH イーサネット カードの相互運用性(カプセル化タイプと CRC も含む)

	ポートマップ E シリーズ(ONS 15327)	ポートマップE シリーズ (ONS 15454 SONET/SDH) ¹	G シリーズ (すべてのプラッ トフォーム)	ML シリーズ (ONS 15454 SONET/SDH)	ML シリーズ (ONS 15310-CL/ ONS 15310-MA)	CE シリーズ (すべてのプラッ トフォーム)
ポートマップE シリーズ (ONS15327)	独自仕様 LEX(CRC 16)	独自仕様	互換性なし	LEX (CRC 16)	互換性なし	互換性なし
ポートマップE シリーズ (ONS 15454 SONET/SDH)	独自仕様	独自仕様	互換性なし	互換性なし	互換性なし	互換性なし
G シリーズ (すべてのプラッ トフォーム)	互換性なし	互換性なし	LEX (CRC 16) LEX (CRC 32)	LEX (CRC 16) LEX (CRC 32)	LEX (CRC 32)	LEX (CRC 32)

表20-1 HDLC フレーミングでの ONS SONET/SDH イーサネット カードの相互運用性 (カプセル化タイプと CRC も含む)(続き)

	ポートマップ E シリーズ(ONS 15327 ゾ	ポートマップE シリーズ (ONS 15454 SONET/SDH) ¹	G シリーズ (すべてのプラッ トフォーム)	ML シリーズ (ONS 15454 SONET/SDH)	ML シリーズ (ONS 15310-CL/ ONS 15310-MA)	CE シリーズ (すべてのプラッ トフォーム)
ML シリーズ (ONS 15454 SONET/SDH)	LEX (CRC 16)	互換性なし	LEX (CRC 16) LEX (CRC 32)	LEX (CRC 16) LEX (CRC 32) Cisco HDLC PPP/BCP	LEX (CRC 32)	LEX (CRC 32)
ML シリーズ (ONS 15310-CL/ ONS 15310-MA)	互換性なし	互換性なし	LEX (CRC 32)	LEX (CRC 32)	LEX (CRC 32)	LEX (CRC 32)
CE シリーズ (すべてのプラッ トフォーム)	互換性なし	互換性なし	LEX (CRC 32)	LEX (CRC 32)	LEX (CRC 32)	LEX (CRC 32)

1. EtherSwitch モードの E シリーズ カードは、他の ONS イーサネット カード タイプとは相互運用できません。

表 20-2	GFP-F フレーミングでの ONS SONET/SDH 1	´ーサネット カ ー	- ドの相互運用性 (カフ	「セル化タイプを含む)
--------	--------------------------------	-------------------	----------------	-------------

	ML シリーズ (ONS 15454)	ML シリーズ (ONS 15310)	CE シリーズ (すべてのプラットフォーム)
ML シリーズ (ONS 15454 SONET/SDH)	LEX (CRC 32)	LEX (CRC 32)	LEX (CRC 32)
	Cisco HDLC (CRC 32)	Cisco HDLC (CRC 32)	
	PPP/BCP (CRC 32)	PPP/BCP (CRC 32)	
ML シリーズ (ONS 15310-CL/	LEX (CRC 32)	LEX (CRC 32 またはなし)	LEX (CRC 32 またはなし)
ONS 5310-MA)	Cisco HDLC (CRC 32)	Cisco HDLC (CRC 32 または	
	PPP/BCP (CRC 32)	なし)	
		PPP/BCP (CRC 32 またはな	
		し)	
てE シリーズ (すべてのプラットフォーム)	LEX (CRC 32)	LEX (CRC 32 またはなし)	LEX (CRC 32 またはなし)

RPR では、すべての ML シリーズ カードで LEX カプセル化が必要です。

GFP-F 上では、LEX は ITU-T G.7041 に基づいた GFP-F 上の標準マップ イーサネットです。

GFP-F フレーミングは、Release 5.0 以降のソフトウェアを実行しているノードのみでサポートされています。また、ML100T-12 カードおよび ML1000-2 カードでは、GFP-F フレーミングを行うために Field Programmable Gate Array (FPGA) バージョン 4.0 以降が必要です。

POS カプセル化タイプ

ONS イーサネット カードは、Cisco Ethernet-over-SONET LEX (LEX) Cisco HDLC、Point-to-Point Protocol (PPP)/Bridging Control Protocol (ポイントツーポイント プロトコル /BCP)、および E シリーズ 専用の 4 つの POS カプセル化方式をサポートします。ONS イーサネット送信元カードおよび宛先カードは、相互運用を行うために同じ POS カプセル化方式で設定する必要があります。すべての ONS イーサネット カードが相互運用できるわけではなく、すべてのカプセル化タイプをサポートするわけではありません。

LEX

Cisco EoS LEX は ONS イーサネット カードの主要なカプセル化方式です。このカプセル化は HDLC フレーミングで行われ、そのプロトコル フィールドは、Internet Engineering Task Force (IETF; イン ターネット技術特別調査委員会)の Request For Comments (RFC; コメント要求)1841 で指定された 値に設定されます。GFP-F フレーミングでの Cisco IOS CLI も lex キーワードを使用します。GFP-F フレーミングでは、lex キーワードを使用して ITU-T G.7041 に基づいた GFP-F 上の標準マップ イー サネットを表します。

図 20-2 に、HDLC フレーミングでの EoS LEX を示します。

LEX は、ONS 15454 および ONS 15454 SDH E シリーズ カードを除く、すべての ONS イーサネット カードでサポートされます。

図 20-2 HDLC フレーミングでの LEX

PPP/BCP

PPP カプセル化方式は、RFC 2615 (PPP-over-SONET/SDH)の標準実装で、SONET 上で 802.1Q タ グ付きおよびタグなしイーサネット フレームを送信するために RFC 3518 (BCP)が標準実装され ています。図 20-3 に、BCP を示します。

図 20-3 HDLC フレーミングでの BCP

1バイト	1バイト	1バイト	2 バイト							2-4 バイト	1バイト
フラグ	アドレス	制御	プロトコル		タイプ			ペイロー	۴	CRC	フラグ
0x7E	0xFF	0x03	0x0031	00Z0	0x01					^	0x7E
			7バ・	イト	1バイト	6 バイト	6 バイト	2 バイト	46~1500 バイト*	4 バイト	8
			プリア	ンブル	SFD	DA	SA	Ln/Etype	データ/パッド	FCS	1154

■ POS カプセル化タイプ

ONS 15454/ONS 15454 SDH の ML シリーズでは、ルーティング機能をサポートします。このカード の POS ポートが PPP カプセル化によってルーティングをサポートするように設定された場合、IP パケットは、標準 0x0021 プロトコル コード ポイントを使用する HDLC フレームにマップされま す。図 20-4 に PPP を示します。

図 20-4 HDLC フレーミングでの PPP フレーム

Cisco HDLC

Cisco HDLC は、シリアル インターフェイスヘパケットをマッピングするシスコ標準方式です。このカプセル化は、ML シリーズ カードを、Cisco HDLC 準拠のルータおよびスイッチの POS インターフェイスへインターフェイスする場合に使用できます。

IP パケットの搬送に使用する場合、同じ HDLC フレーム構造が使用されますが、プロトコル フィー ルドは 0x0800 に設定され、ペイロードに IP パケットが含まれます。図 20-5 に、Cisco HDLC を示 します。

図 20-5 HDLC フレーミングでの Cisco HDLC

Eシリーズ専用

E シリーズでは、HDLC に似た専用のカプセル化方式を使用します。この方式は、LEX、Cisco HDLC、 または PPP/BCP との互換性がありません。この専用のカプセル化方式は、E シリーズが他の ONS イーサネット カードと相互運用するのを防ぎます。

リリース 5.0 以降では、ONS 15327 E シリーズ カード、E10/100-4 は、本来の専用 E シリーズ カプ セル化だけでなく、16 ビット CRC の LEX カプセル化もサポートします。

E シリーズ カード (ONS 15327 または ONS 15454) のどちらも G シリーズ カードと相互運用でき ません。

POS フレーミング モード

この POS フレーミング モードは、データ パケットをフレーム化して POS 信号にカプセル化するた めの、ONS イーサネット カードで使用するフレーミング メカニズムのタイプです。これらのデー タ パケットは当初、ONS イーサネット カードの標準ファスト イーサネットまたはギガビット イー サネット インターフェイスに入力されるイーサネット フレームにカプセル化されていました。す べての ONS イーサネット カードは HDLC フレーミングをサポートします。また、ML シリーズお よび CE シリーズ カードは、GFP-F フレーミング モードもサポートします。

HDLC フレーミング

HDLC は、最も使用されているレイヤ2プロトコルのうちの1つです。HDLC プロトコルで使用さ れるフレーミングメカニズムである、HDLC フレーミングは、ONS イーサネット カード上の POS を含め、さまざまな他のプロトコルで使用されています。HDLC フレーミングメカニズムの詳細に ついては、IETF の RFC 1662「PPP in HDLC-like Framing」を参照してください。

HDLC フレームでは、ゼロ挿入/削除処理(ビットスタッフイングとして一般に知られている)を 使用して、区切りフラグのビットパターンがフラグ間のフィールドで発生しないようにします。 HDLC フレームは同期を取ります。このため、クロッキング方式の提供と、フレームの送受信の同 期を取るために物理層に依存します。

GFP-F フレーミング

GFP は、さまざまなサービス タイプを SONET/SDH の標準ベースのマッピング方式を定義していま す。ML シリーズおよび CE シリーズは、GFP 向けの PDU 型クライアント シグナル アダプテーショ ン モードである、GFP-F をサポートします。GFP-F では、1 つの可変長データ パケットを1 つの GFP パケットにマッピングします。

GFP は、共通機能とペイロード固有の機能で構成されます。共有機能はすべてのペイロードで共有 されます。ペイロード固有の機能は、ペイロードの種類によって異なります。GFP は ITU 勧告 G.7041 で詳しく定義されています。

特定の ONS イーサネット カードの POS 特性

ここでは、特定の ONS イーサネット カードでサポートされるさまざまなフレーム化オプションと カプセル化オプションを説明します。

ONS 15327 E-10/100-4 フレーム化オプションとカプセル化オプション

Release 5.0 以降のソフトウェアでは、ONS 15327 の、ポートマップモードに設定された E-10/100-4 カードで、LEX カプセル化の設定または本来の専用 E シリーズ カプセル化の設定を選択できます。 LEX カプセル化を設定した場合、ONS 15327 E シリーズ カードは ML シリーズ カードと相互運用 できます。E-10/100-4 を EtherSwitch モードに設定した場合、本来の専用 E シリーズ カプセル化に 限定されます。ONS 15327 の E シリーズ カードは、16 ビット CRC に限定されます。図 20-6 に、 ONS 15327 E シリーズのフレーム化とカプセル化を示します。

E シリーズ カード (ONS 15327 または ONS 15454) のどちらも G シリーズ カードと相互運用でき ません。

ポートのプロジジョニング手順については、『ONS 15327 Procedure Guide』を参照してください。

図 20-6 ONS 15327 E シリーズのカプセル化オプションおよびフレーム化オプション

SONET/SDH フレーム

ONS 15454 および ONS 15454 SDH E シリーズのフレーム化オプションとカプセル化オ プション

ONS 15454 や ONS 15454 SDH の E シリーズ カードでは LEX を利用できません。これらのカード は、E シリーズ カード以外のカードとの POS の相互運用を許可しない、本来の専用 E シリーズ カ プセル化に限定されます。図 20-7 に、ONS 15454 および ONS 15454 SDH の E シリーズのフレーム 化とカプセル化を示します。

図 20-7 ONS 15454 および ONS 15454 SDH E シリーズのカプセル化オプションおよびフレーム化オ プション

SONET/SDH フレーム

G シリーズのカプセル化およびフレーム化

G シリーズ カードは、ONS 15454、ONS 15454 SDH、および ONS 15327 プラットフォームでサポートされています。G シリーズ カードは、LEX カプセル化と HDLC フレーム化をサポートします。 このカードでは、他の POS フレーミング モードやカプセル化オプションはありません。図 20-8 に、 G シリーズのカプセル化とフレーム化を示します。

図 20-8 ONS G シリーズのカプセル化オプションおよびフレーム化オプション

SONET/SDH フレーム

ONS 15454、ONS 15454 SDH、ONS 15310-CL、および ONS 15310-MA CE シリーズ カードのカプセル化とフレーム化

CE-100T-8 カードは、ONS 15454、ONS 15454 SDH、ONS 15310-CL、および ONS 15310-MA プラットフォームで使用できます。CE-1000-4 カードは、ONS 15454 および ONS 15454 SDH プラットフォームで使用できます。このカードは、HDLC フレーミングおよび GFP-F フレーミングをサポートします。GFP-F または HDLC フレーミング モードでは、LEX カプセル化のみがサポートされます。図 20-9 に、CE シリーズのフレーム化とカプセル化を示します。

SONET/SDH フレーム

ONS 15310 ML-100T-8 のカプセル化およびフレーム化

ONS 15310 の ML-100T-8 カードは、HDLC フレーミングおよび GFP-F フレーミングをサポートし ます。HDLC フレーミング モードでは、LEX がサポートされます。GFP-F フレーミング モードで は、LEX、Cisco HDLC、および PPP/BCP カプセル化がサポートされます。また、LEX カプセル化 は、ML シリーズ カードの RPR 用のカプセル化です。RPR では、どちらのフレーミング モードで も LEX カプセル化が必要です。

ONS 15454 および ONS 15454 SDH ML シリーズ プロトコルのカプセル化およびフレー ム化

ONS 15454 および ONS 15454 SDH の ML シリーズ カードは、HDLC フレーミングおよび GFP-F フレーミングをサポートします。HDLC フレーミング モードおよび GFP-F フレーミング モードの両 方で、LEX、Cisco HDLC、および PPP/BCP カプセル化がサポートされます。また、LEX カプセル 化は、ML シリーズ カードの RPR 用のカプセル化です。RPR では、どちらのフレーミング モード でも LEX カプセル化が必要です。図 20-10 に、ONS 15454 および ONS 15454 SDH のフレーム化オ プションおよびカプセル化オプションを示します。

図 20-10 ML シリーズのフレーム化オプションおよびカプセル化オプション

SONET/SDH フレーム

イーサネットのクロッキングと SONET/SDH のクロッキング

イーサネットのクロッキングは非同期です。IEEE 802.3 のクロック許容値により、ネットワークの 一部のリンクでは他のリンクより 200 ppm (パーツまたはビット /100 万)まで遅くなっても構いま せん(0.02%)。あるリンクの回線レートで発生したトラフィック ストリームは、0.02% 遅い他のリ ンクを経由できます。速いソース クロックまたは遅い中間のクロックにより、エンドツーエンドの スループットがソース リンク レートの 99.98% にしかならない場合があります。

従来、イーサネットは共有メディアで、複数の装置からの結合により集約ポイントで回線レートを 上回るような短いバーストを除き、十分に利用されていません。この使用モデルのため、イーサ ネットの非同期クロッキングが容認されてきました。損失のない TDM 転送に慣れている一部の サービス プロバイダーは、イーサネットが 99.98% のスループットしか保証しないことに驚くかも しれません。

E シリーズ カードを除く、ONS イーサネット カードのクロッキング拡張により、最速対応ソース クロックより最悪でも 50 ppm しか遅くないイーサネット送信レートが保証されます。つまり、最 悪の場合でも 50 ppm のクロッキング損失であり、99.995% のスループットが保証されます。多くの 場合、カードのクロックは送信元トラフィックのクロックより速いので、回線レート トラフィック 転送の損失はゼロになります。実際の結果は、トラフィック ソース トランスミッタのクロック変 動によって異なります。

RMON の設定

この章では、ONS 15454 SONET/SDH の ML シリーズ カード上で Remote Network Monitoring (RMON) を設定する方法について説明します。

RMON は、RMON 準拠のコンソール システムとネットワーク プローブ間で交換可能な一連の統計 情報と機能を定義した標準モニタリング仕様です。RMON は総合的なネットワーク障害診断、プラ ンニング、パフォーマンス調整に関する情報を提供します。ML シリーズ カードは RMON を特徴 としており、Network Management System (NMS; ネットワーク管理システム)と連動するよう設計 されています。

この章で使用されるコマンドの構文および使用方法の詳細については、『*Cisco IOS Configuration Fundamentals Command Reference*』Release 12.2 の「System Management Commands」を参照してください。

Cisco IOS を使用して RMON を管理する場合の詳細については、『*Cisco IOS Configuration Fundamentals Configuration Guide*』の「Configuring RMON Support」の章を参照してください。

この章の内容は次のとおりです。

- RMON の概要 (p.21-2)
- RMON の設定 (p.21-3)
- CRC エラーの ML シリーズ カードの RMON の設定 (p.21-16)
- RMON ステータスの表示 (p.21-21)

RMON の概要

RMON は、Internet Engineering Task Force (IETF; インターネット技術特別調査委員会)標準モニタ 仕様で、各種ネットワーク エージェントおよびコンソール システムがネットワーク モニタリング データを交換できるようにします。RMON 機能を SNMP(簡易ネットワーク管理プロトコル)エー ジェントとともに使用すると、接続されたすべての LAN セグメント上の ML シリーズ カードと他 のスイッチ間を流れるトラフィックをモニタリングできます。

ML シリーズ カードによってサポートされる MIB (管理情報ベース)の詳細については、「サポート対象の MIB」(p.22-6)を参照してください。

図 21-1 RMON の例
RMON の設定

ここでは、MLシリーズカードでRMONを設定する方法について説明します。

- RMON のデフォルト設定 (p.21-3)
- RMON アラームおよびイベントの設定 (p.21-3)(必須)
- インターフェイスでのグループ履歴統計情報の収集 (p.21-5)(任意)
- インターフェイスでのグループイーサネット統計情報の収集 (p.21-6)(任意)

RMON のデフォルト設定

RMON はデフォルトでディセーブルに設定されています。アラームやイベントは設定されていません。

RMON アラームおよびイベントの設定

CLI (コマンドライン インターフェイス) または SNMP 互換 Network Management Station (NMS; ネットワーク管理ステーション)を使用することにより、ML シリーズ カードを RMON 用に設定 できます。NMS 上で汎用 RMON コンソール アプリケーションを使用し、RMON のネットワーク 管理機能を利用することを推奨します。また、RMON MIB オブジェクトにアクセスするため、ML シリーズの SNMP を設定する必要があります。SNMP の設定方法の詳細については、第 22 章「SNMP の設定」を参照してください。

RMON アラームおよびイベントをイネーブルにするには、イネーブル EXEC モードを開始して、次の手順を実行します。この手順は必須です。

	コマンドの説明	目的
ステップ 1	configure terminal	グローバル コンフィギュレーション モードを開始します。
ステップ 2 rmon event number [description string] [log] [owner string] [trap community]		RMON イベント テーブルに RMON イベント番号に対応付 けられたイベントを追加します。
		 <i>number</i>には、イベント番号を指定します。指定できる 範囲は1~65,535です。
		 (任意) description string には、イベントの説明を指定 します。
		 (任意)イベントがトリガされたときに RMON ログエントリを生成するには、log キーワードを使用します。
		 (任意) owner string には、このイベントの所有者を指 定します。
		 (任意) trap community には、このトラップに使用される SNMP コミュニティ ストリングを入力します。

	コマンドの説明	目的
・ップ 3	rmon alarm <i>number variable interval</i> { absolute	MIB オブジェクトに対してアラームを設定します。
	delta} rising-threshold value [event-number] falling-threshold value [event-number] [owner string]	 numberには、アラーム番号を指定します。指定できる 範囲は1~65,535です。
		 variable には、モニタリングする MIB オブジェクトを 指定します。
		 <i>interval</i>には、アラームが MIB 変数をモニタする時間 を秒単位で指定します。範囲は、1 ~ 2,147,483,647 秒 です。
		 各 MIB 変数を直接テストするには、absolute キーワー ドを指定します。MIB 変数のサンプル間の変動をテス トする場合は、delta キーワードを指定します。
		 valueには、アラームをトリガする数値とアラームをリセットする数値を指定します。上限スレッシュホールドおよび下限スレッシュホールド値の範囲は、 -2,147,483,648 ~ 2,147,483,647です。
		 (任意) event-number には、上限または下限スレッシュ ホールドの限度を超過したときにトリガされるイベン ト数を指定します。
		 (任意)owner string には、このアラームの所有者を指 定します。
ップ 4	end	イネーブル EXEC モードに戻ります。
プ5	show running-config	エントリを確認します。
プ6	copy running-config startup-config	(任意)コンフィギュレーション ファイルにエントリを保存します。

アラームをディセーブルにするには、設定したアラームごとに no rmon alarm number グローバル コンフィギュレーション コマンドを実行します。特定の番号を指定しないで、設定したアラームを すべてディセーブルにすることはできません。アラームは個別にディセーブルにする必要がありま す。イベントをディセーブルにするには、no rmon event number グローバル コンフィギュレーショ ン コマンドを使用します。アラームおよびイベントとその相互作用の詳細については、Request For Comments (RFC; コメント要求) 1757 を参照してください。

アラームはいずれの MIB オブジェクトに対しても設定できます。次の例では、rmon alarm コマン ドを使用して RMON アラーム番号 10 を設定します。このアラームは、MIB 変数 *ifEntry.20.1* を 20 秒ごとに 1 回モニタし、アラームがディセーブルになるまで、変数の上昇または下降の変化を チェックします。*ifEntry.20.1* 値が 15 以上の MIB カウンタの増加を示した場合(たとえば 100000 か ら 100015)、アラームがトリガされます。次にアラームは、イベント番号 1 をトリガします。これ は、rmon event コマンドで設定されます。設定可能なイベントにはログ エントリまたは SNMP ト ラップを含めることができます。*ifEntry.20.1* 値が 0 に変化した場合、アラームはリセットされ、再 度トリガできます。

ML_Series(config)# rmon alarm 10 ifInErrors.65539 20 delta rising 15 1 fall 0

この例では、下限スレッシュホールドが0の場合、任意のイベントをトリガしません。

65539 がインターフェイス POS 0 の SNMP ifIndex である場合、SNMP get の付いた特定のポート用 に SNMP ifIndex を取得できます。この出力例では、POS0 の SNMP ifIndex は 65539 です。

```
tuvoks-view:128> getmany -v2c 10.92.56.97 tcc@1 ifDescr
ifDescr.65536 = GigabitEthernet0
ifDescr.65537 = GigabitEthernet1
ifDescr.65538 = Null0
ifDescr.65539 = POS0
ifDescr.65540 = POS1
ifDescr.65541 = SPR1
tuvoks-view:129>
```

次の例では、rmon event コマンドを使用して RMON イベント番号 1 を作成します。イベントは High *ifOutErrors* として定義され、アラームによってイベントがトリガされるときにログ エントリが生成 されます。 ユーザ *jjones* は、このコマンドによってイベント テーブルに作成された行を所有しま す。この例では、イベントがトリガされたときに SNMP トラップも生成されます。

 $\mathtt{ML}_\mathtt{Series}\,(\mathtt{config})\,\#\,\,\mathtt{rmon}\,\,\mathtt{event}\,\,1\,\,\mathtt{log}\,\,\mathtt{trap}\,\,\mathtt{eventtrap}\,\,\mathtt{description}\,\,\mathtt{"High}\,\,\mathtt{ifOutErrors"}$ owner jjones

インターフェイスでのグループ履歴統計情報の収集

収集情報を表示するには、最初に RMON アラームおよびイベントを設定する必要があります。

インターフェイス上でグループ履歴統計情報を収集するには、イネーブル EXEC モードを開始して、次の手順を実行します。この手順は任意です。

	コマンドの説明	目的
ステップ 1	configure terminal	グローバル コンフィギュレーション モードを開始します。
ステップ 2	interface interface-id	 履歴を収集するインターフェイスを指定し、インターフェ イス コンフィギュレーション モードを開始します。 (注) グループ履歴統計情報は、Packet-over-SONET/SDH (POS)(POS_interface)では動作せず、イーサネッ ト インターフェイスでのみ動作します。
ステップ 3	rmon collection history index [buckets bucket-number] [interval seconds] [owner ownername]	 指定されたバケット数および時間に関する履歴収集をイネーブルにします。 <i>index</i>には、統計情報の RMON グループを指定します。 指定できる範囲は1~65,535 です。 (任意) buckets <i>bucket-number</i>には、統計情報の RMON 収集履歴グループに対する、最大バケット数を指定します。指定できる範囲は1~65,535 です。デフォルト は 50 バケットです。 (任意) interval <i>seconds</i>には、各ポーリング サイクル の秒数を指定します。指定できる範囲は1~3600 です。デフォルトは 1800 秒です。 (任意) owner <i>ownername</i>には、統計情報の RMON グ ループの所有者名を入力します。
ステップ 4	end	イネーブル EXEC モードに戻ります。
ステップ 5	show running-config	エントリを確認します。

	コマンドの説明	目的
ステップ 6	show rmon history	ML シリーズ カード履歴テーブルの内容を表示します。
ステップ 7	copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを保
		存します。

履歴収集をディセーブルにするには、no rmon collection history *index* インターフェイス コンフィ ギュレーション コマンドを使用します。

次に、所有者 root の RMON 履歴を収集および表示する例を示します。

```
ML_Series(config)# interface gigabitethernet1
ML_Series(config-if)# rmon collection history 2 owner root
ML_Series(config-if)# end
ML_Series# show rmon history
Entry 2 is active, and owned by root
Monitors ifIndex.393217 every 1800 second(s)
Requested # of time intervals, ie buckets, is 50,
```

インターフェイスでのグループ イーサネット統計情報の収集

インターフェイス上でグループ イーサネット統計情報を収集するには、イネーブル EXEC モード を開始して、次の手順を実行します。この手順は任意です。

	コマンドの説明	目的
ステップ 1	configure terminal	グローバル コンフィギュレーション モードを開始します。
ステップ 2	interface interface-id	統計情報を収集するインターフェイスを指定し、インター フェイス コンフィギュレーション モードを開始します。
ステップ 3	rmon collection stats <i>index</i> [owner <i>ownername</i>]	インターフェイスでの RMON 統計情報収集をイネーブル にします。
		 <i>index</i>には、統計情報の RMON グループを指定します。 指定できる範囲は1~65,535 です。
		 (任意) owner ownername には、統計情報の RMON グ ループの所有者名を入力します。
ステップ 4	end	イネーブル EXEC モードに戻ります。
ステップ 5	show running-config	エントリを確認します。
ステップ 6	show rmon statistics	ML シリーズ カード統計情報テーブルの内容を表示します。
ステップ 7	copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを保 存します。

グループイーサネット統計情報の収集をディセーブルにするには、normon collection stats index インターフェイス コンフィギュレーション コマンドを使用します。

次に、所有者 root の RMON 統計情報を収集する例を示します。

ML_Series(config)# interface gigabitethernet1
ML_Series(config-if)# rmon collection stats 2 owner root

ML シリーズ カードの CRC エラー スレッシュホールドの概要

ML シリーズ カードの POS ポートは、signal fail (SF; 信号障害) アラームおよび signal degrade (SD; 信号劣化) アラームを含めた、SONET/SDH 障害および GFP 障害のアラームを報告します。多くの 場合、これらのアラームはユーザに対し、POS ポート上で超過 Cyclic Redundancy Check (CRC; 巡 回冗長チェック) エラーを発生させる原因ともなる問題を警告します。ただし、超過 CRC エラー が POS ポートで発生しても、リンクには報告されるべき SONET 障害または GFP 障害が存在しな いことがあります。このような状況には、リンクの他端の ML シリーズ カードから送信されるパ ケットの CRC エラーまたはビット エラー レートが SF または SD 障害をトリガするには低すぎる が、重大な CRC パケット エラー レートを引き起こすには十分に高いといった例が含まれます。

デフォルトの ML シリーズ カードの RPR が実装され、SONET/SDH 障害または GFP 障害が報告さ れていない状況では、POS インターフェイスは Shared Packet Ring (SPR; 共有パケット リング) イ ンターフェイスのメンバーとしてアップ ステートのままになります。トラフィックはゆっくり失わ れ、アラームまたはアクションをトリガしません。

FCS スレッシュホールド設定および検出機能はこの問題を解決します。CRC エラーによるパケット 損失のパーセンテージが、設定可能なスレッシュホールドを超過する場合、アラームを発生するよ う ML シリーズ カードを設定できます。発生したアラームは、CRC Threshold Crossing Alarm (CRC-ALARM; CRC スレッシュホールド超過アラーム)で、アラーム重大度が Major (MA)で、 サービスに影響する (SA) SONET/SDH アラームです。報告された SONET/SDH アラームは、CTC の Alarms タブの下に表示されます。

また、ポートのリンク ダウン状態をトリガし、RPR をラップするよう CRC-ALARM を設定するこ ともできます。デフォルトでは、CRC-ALARM はディセーブルです。アラームが設定されていると き、デフォルトではリンク ダウン アクションおよびラップ アクションはディセーブルのままです。 この機能も ML シリーズ カードのイーサネット ポートでサポートされます。

以前のアクションおよびトリガされたアクション

設定可能なスレッシュホールドは、可変フレーム長およびさまざまな帯域幅のパーセンテージに よってその有用性が損なわれるので、BER は設定されていません。代わりに、CRC エラー レート をトラフィックのパーセンテージとして使用して、より適切な測度を設定します。トリガするス レッシュホールドは次のとおりです。

- 10e-2 または 1% トラフィック(100 パケットで 1 個の CRC エラー)
- 10e-3 または 0.1% トラフィック (1000 パケットで 1 個の CRC エラー)(デフォルト)
- 10e-4 または 0.01% トラフィック(10000 パケットで1 個の CRC エラー)

デフォルトのスレッシュホールドは、トラフィックの CRC エラー レート 0.1% です。音声およびビ デオ トラフィックの場合、エラー レート 1% は通常、Critical な問題で、0.1% は Major な問題です。 エラー レートが 0.1% (1000 パケットごとに 1 エラー)を超えると、音声およびビデオはラップを トリガする必要があります。通常のデータ トラフィックの場合、エラー レート 10% のトラフィッ クは Critical な問題で、ただちに解決する必要があります。1% のトラフィックは Minor な問題です。

超過 CRC エラーが検出されたあと、次のアクションが発生します。

- 1. このオプションが設定されている場合、RPR がラップします。
- 2. このオプションが設定されている場合、リンクがシャットダウンします。
- 3. リンクがシャットダウンすると、Path Defect Indication (PDI; パス障害表示)が遠端の ML シ リーズ カード ポートに送信されます。これにより、リモート エンドがラップします。
- 4. ローカル エンドの ML シリーズ カードに対して、CRC-ALARM が発生します(リモート エンドも超過 CRC エラーを受信している場合、CRC-ALARM が遠端の ML シリーズ カード ポートに対して発生します)。

CRC-ALARM の SONET/GFP 抑制

この超過 CRC エラー検出は、SONET/GFP 障害とは別のものです。1 つの問題により、SONET/GFP 障害と CRC-ALARM の両方が引き起こされる可能性があります。この事例では、CRC エラー ス レッシュホールド検出は遅いプロセスなので、CRC-WRAP アラームの前に SONET/GFP 障害が発生 します。SONET/GFP 障害によりリンクがダウンする場合、このリンクダウンは CRC-ALARM が検 出される前に発生して CRC-ALARM を抑制します。CRC-ALARM を発生させる SONET/GFP 障害 がリンクダウン トリガではなく、CRC-ALARM によってリンクダウンするよう設定されている場 合、CRC-ALARM はリンクダウンを報告してトリガします。

CRC-ALARM のクリア

トリガ アクションがディセーブルの場合 (デフォルト), 一定の時間、エラー レートがスレッシュ ホールドを下回ると CRC-ALARM は自動的にクリアされます。

トリガ アクションがイネーブルの場合、ユーザが手動で CRC-ALARM をクリアする必要がありま す。アラームによるラップまたはリンクダウンは、トラフィックとポートからのトラフィック内の CRC エラー両方をブロックするので、これが必要になります。CRC エラーがない場合、ファイバ の汚れや障害の発生した ML シリーズ カードなどの根本的な問題が存続しても、自動的にクリアさ れます。この状況では、インターフェイスのフラッピングが発生します。

手動でクリアする前に、CRC-ALARMの根本原因を判別し、解決する必要があります。解決したら、アラームを手動でクリアする方法がいくつかあります。

- Cisco IOS CLI を通じて、EXEC レベルで clear crc alarm interface interface-type interface-number コマンドを入力します。
- Cisco IOS CLI を通じて、リンクされたポートで管理上の shutdown を行ってから、no shutdown を行ってポートをイネーブルにします。
- CTC または TL-1 を通じて、回線をディセーブルにしてから再度イネーブルにします。
- CTC または TL-1 を通じて、SONET/SDH 回線を削除し、同じ送信元と宛先を持った回線を作 成します。

同期化のラップ解除

ML シリーズ カードのソフトウェアは、エラー フレームを監視する POS インターフェイスで CRC-ALARM アラームを発生させます。単一方向の FCS エラーの場合、ユーザは、CRC-ALARM アラームが発生したスパンの一方の端の POS ポートで unwrap コマンドを実行するだけです。双方 向の障害の場合、スパンの両端で CRC-ALARM アラームが発生するので、スパンの各端で一度に コマンドを実行する必要があります。

リンクの各端の POS ポートはラップされるので、CRC-ALARM がクリアされたときにラップを削除する(ラップ解除)には、調整が必要です。また、ソフトウェアはラッピングを発生させる他の エラーがないことを確認する必要があります。次の例では、単一方向と双方向両方の障害のこの処 理の方法を示します。簡単にするために、この例では、超過 CRC エラーはラッピングを引き起こ す唯一の条件であることを前提とします。

単一方向エラー

図 21-2 に、ノード E の POS ポート 0 での単一方向の 超過 CRC エラーによってラップされた RPR を示します。これは、CRC-ALARM も報告します。これにより、ノード E の POS ポート 1 とノード D の POS ポート 0 がラップします。図のキャプションでは、プロセスをさらに説明します。

図 21-2 単一方向の超過 CRC エラーでラップされた RPR

図 21-3 に、図 21-2 のラップ解除シーケンスを示します。ラップ解除のためのトラフィック ヒット は、ノード D でクリアされた PDI を宣言するのに必要なソーク時間に依存します。

図 21-3 双方向の超過 CRC エラーでラップ解除された RPR

双方向エラー

図21-4 に、双方向の超過 CRC エラーでラップされた RPR を示します。両方のポートが CRC-ALARM を報告します。図のキャプションでは、プロセスをさらに説明します。

図 21-4 双方向の超過 CRC エラーでラップされた RPR

図 21-5 に、図 21-4 のラップ解除シーケンスの最初の部分を示します。ノード E で unwrap コマンド が設定されたあと、ラップ解除が行われます。この双方向事例でのラップ解除の場合、リンクの両 端の POS ポートにコマンドを設定する必要があります。

図 21-5 双方向の超過 CRC エラーでラップ解除された RPR の最初の段階

最初の CRC-ALARM クリア コマンドのあと、ノード E は POS ポート 1 をラップ解除しません。 ノード D は PDI をノード E に送信し続けるので、CRC-ALARM がクリアされるとノード E は TPTFAIL アラームを発生します。この時点では、RPR は単一方向障害と同様のステートにいます。 図 21-5 に示すように、ユーザが 2 回めの unwrap コマンドを実行したらラップ解除は完了です。

図 21-6 双方向の超過 CRC エラーでラップ解除された RPR の第 2 段階

ML シリーズ カードの CRC エラー スレッシュホールドの設定

ML シリーズ カードの CRC エラー スレッシュホールドを設定するには、イネーブル EXEC モード を開始して、次の手順を実行します。

	コマンドの説明	目的
ステップ 1	ML_Series# configure terminal	グローバル コンフィギュレーション モードを開始します。
ステップ 2	ML_Series (config)# interface interface-type	インターフェイス コンフィギュレーション モードを開始
	interface-number	します。
ステップ 3	ML_Series (config-if)# [no] trigger crc threshold [<i>threshold-value</i>]	fcs エラー レベルを帯域幅のパーセンテージとして設定し、 SONET/SDH CRC-ALARM をトリップします。有効な値は 次のとおりです。
		 2 10e-2 または 1% トラフィック (100 パケットで 1 CRC エラー)
		 3 10e-3 または 0.1% トラフィック (1000 パケットで 1 CRC エラー) (デフォルト)
		 4 10e-4 または 0.01% トラフィック (10000 パケット で1 CRC エラー)
		このコマンドの no 形式では、 レベルの設定をデフォルトの スレッシュホールド 3 に戻します。
ステップ 4	ML_Series (config-if)# [no] trigger crc action	(任意)報告するポートに対して、リンクダウンを発生させ るよう CRC-ALARM を設定します。RPR POS ポートに対 して設定します。これも RPR をラップします。
		このコマンドの no 形式では、トリガの設定をデフォルトの オフに戻します。
ステップ 5	ML_Series(config-if)# [no] trigger crc delay soak-time	(任意)超過 CRC エラー検出のソーク時間(分)を設定し ます。有効な値は3~10分です。
		このコマンドの no 形式では、遅延の設定をデフォルトの 1 分に戻します。
ステップ 6	ML_Series# end	イネーブル EXEC モードに戻ります。
ステップ 7	ML_Series#show running-config	エントリを確認します。
ステップ 8	ML_Series# copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを保 存します。

クリア CRC エラー コマンドを使用した CRC-ALARM ラップの解除

Cisco IOS CLI の **clear crc alarm interface** *interface-type interface-number* コマンドは、対応する SONET/SDH エラーがなく、FCS エラーによって RPR ラップが発生したときにこれを解除します。 SONET/SDH 障害またはキープ アライブ(KA)障害などの他の原因によるラップの解除は行いま せん。FCS エラーがなくても SONET/SDH または KA 障害が存在する場合、ソフトウェアはエラー メッセージを出してコマンドを拒否します。FCS エラーが存在し、SONET/SDH または KA 障害が 存在する場合、コマンドはソフトウェアによって受け入れられますが、ノードは障害が解決してか らのみラップ解除します。この場合、SONET/SDH または KA 障害がクリアされたあと、コマンド を再度実行する必要はありません。

ラップ解除はただちに行われませんが、条件が満たされれば行われます。

ML シリーズ カードの CRC-ALARM をクリアするには、イネーブル EXEC モードを開始して、次の手順を実行します。

	コマンドの説明	目的
ステップ 1	ML_Series # clear crc alarm interface interface-type	SONET/SDH CRC-ALARM をクリアし、条件が満たされ
	interface-number	れば RPR がラップ解除できるようにします。

CRC エラーの ML シリーズ カードの RMON の設定

ML シリーズ カードは、CRC エラーのモニタリングを含め、NMS を使用して SNMP Performance Monitoring (PM)を行うことをサポートします。NMS が、ML シリーズ カード インターフェイス すべてのインターフェイス インデックス エラー (ifInErrors)をモニタするために、定期的なポー リングとプログラムされたスレッシュホールド値をサポートする場合、NMS を信頼して CRC エ ラーを管理およびモニタリングできます。

NMS がポーリングをサポートしない場合、または望ましいポーリング周波数によって使用される 帯域幅が多すぎる場合、Cisco IOS CLI を通じて SNMP トラップを ML シリーズ カードに設定でき ます。この方法は、ONS 15454 SONET/SDH の ML シリーズ カード専用です。ONS 15310-CL およ び ONS 15310-MA の ML シリーズ カードの RMON 機能は、Cisco Transport Controller (CTC)、 Transaction Language One (TL1)、または Cisco Transport Manager (CTM)を介した、ノードを管理 する標準的な方法で管理するのが一番です。

ML シリーズ カードの CRC スレッシュホールドの設定の注意事項

NMS PM アラートを生成するインターフェイス CRC エラー (ifInErrors)のスレッシュホールド値 を決定するための注意事項です。

- SONET/SDH ビット エラーは POS CRC エラーも作成します。SONET/SDH エラーと POS エラー 間にはアラーム抑制階層がないので、各エラー セットは個別のアラートを作成します。
- ・ インターフェイスの実際のパケット レートは、予測不可能です。高帯域幅のインターフェイスでは、低いデータトラフィックが続く特定の時間に、分単位でわずかなパケットのみを転送する可能性があります。これは、比較的少ない CRC エラー数でも 100% の損失であることを意味します。低帯域幅のインターフェイスは、特定の時間に、分単位で高パケット カウント(100万単位)を転送します。したがって、比較的少ない CRC エラー数の場合には、エラーレート10⁻⁹を意味します。この状況により、非パケットベースの PM にしばしば使用される最大 BERを単純に判別できなくなります。
- モニタリング問題または主要な問題の兆候を示す ML シリーズ カードの CRC エラーのモニタ リングも設定できます。マイナーな問題のモニタリングの場合、60 秒間に 10 個のエラーなど、 比較的速くて影響されやすいエラー レートのトリガを設定します。この方法は、インターフェ イスがアップ状態またはダウン状態になるか、ファイバ エラーが発生するか、あるいは SONET/SDH 保護イベントが発生する(保護が 50 ms 以内に発生しても)たびに NMS アラート を発生します。主要な問題のみをモニタリングし、アラート数を減らすには、300 秒間に 1000 個のエラーなど比較的高いスレッシュホールドを設定します。

SNMP を通じた CRC エラーへのアクセス

各インターフェイスの CRC エラーは、IF-MIB オブジェクトの ifInErrors (OID 1.3.6.1.2.1.2.2.1.14) で報告されます。SNMP get 要求により、ifInErrors の現在値を確認できます。各 ML シリーズ カー ドは、SNMP のインスタンスを個別に実行します。SNMP 要求は、コミュニティ ストリングに基づ いて各 ML シリーズ カードにリレーされます。コミュニティ ストリングは次の形式を使用します。

com_str_configured_from_CTC@ml_slot_number

Cisco IOS を使用した CRC エラー スレッシュホールドの SNMP トラップの設定

ML シリーズ カードは、Cisco IOS の RMON トラップ機能をサポートします。Cisco IOS CLI を使用 して、ifInErrors をモニタリングし、スレッシュホールドを超過した場合に NMS に対しトラップを 生成するよう RMON を設定する必要があります。ONS 15454 SONET/SDH の ML シリーズ カード は、SNMP set 要求による RMON トラップの設定をサポートしません。この要求は、一般にネット ワーク装置上のアクションを開始します。

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

ifInErrors をモニタリングし、スレッシュホールドを超過した場合に NMS に対しトラップを生成す るよう RMON を設定するには、イネーブル EXEC モードを開始して、次の手順を実行します。

		目的
ステップ 1	configure terminal	グローバル コンフィギュレーション モードを開始します。
ステップ 2	rmon event <i>number</i> [log] [trap <i>community</i>]	RMON イベント テーブルに RMON イベント番号に対応付
	[description string] [owner string]	けられたイベントを追加します。
		 numberには、イベント番号を指定します。指定できる 範囲は1~65535です。
		 (任意)イベントがトリガされたときに RMON ログエ ントリを生成するには、log キーワードを使用します。
		 (任意) trap community には、このトラップに使用される SNMP コミュニティ ストリングを入力します。
		 (任意) description string には、イベントの説明を指定 します。
		 (任意) owner string には、このイベントの所有者を指定します。
ステップ 3	rmon alarm number ifInErrors.ifIndex-number	MIB オブジェクトに対してアラームを設定します。
	interval {absolute delta } rising-threshold value [event-number] falling-threshold value [event-number] [owner string]	 numberには、イベント番号を指定します。指定できる 範囲は1~65535です。
		 <i>ifIndex-number</i> 変数は、10 進表記の ML シリーズ カードインターフェイスの ifIndex 番号です(この番号の決定に関する詳細は、「ML シリーズ カードの ifIndex 番号の判別」[p.21-18] を参照)。
		 <i>interval</i>には、MIB 変数をアラームがモニタする時間を 秒単位で指定します。範囲は、1 ~ 4,294,967,295 秒で す。
		 各 MIB 変数を直接テストするには、absolute キーワードを指定します。MIB 変数のサンプル間の変動をテストする場合は、delta キーワードを指定します。
		 value には、アラームをトリガする数値とアラームをリセットする数値を指定します。上限スレッシュホールドおよび下限スレッシュホールド値の範囲は、 -2,147,483,648 ~ 2,147,483,647 です。
		 (任意) event-number には、上限または下限スレッシュ ホールドの限度を超過したときにトリガされるイベン ト番号を指定します。
		 (任意)owner string には、このアラームの所有者を指定します。
ステップ 4	end	イネープル EXEC モードに戻ります。
ステップ 5	show running-config	エントリを確認します。
ステップ 6	copy running-config startup-config	(任意)コンフィギュレーション ファイルにエントリを保存します。

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

次に、CRC エラー スレッシュホールドの SNMP トラップを設定する例を示します。

```
ML_Series # configure terminal
ML_Series(config)# rmon event 10 log trap slot15 owner config
ML_Series(config)# rmon alarm 9 ifInErrors.983043 300 delta rising-threshold 1000 10
falling-threshold 1000 10 owner config
ML_Series(config)# end
ML_Series # show running-config
ML_Series # copy running-config startup-config
```

この例で、rmon alarm コマンドに使用される 10 進表記の ML シリーズ カード インターフェイス の ifIndex 番号は、ifInErrors.983043 です。この変数は、ML シリーズ カード インターフェイスの ifIndex 番号と組み合わせてモニタリングする MIB オブジェクトです。ML シリーズ カード イン ターフェイスの ifIndex 番号の決定に関する詳細は、「ML シリーズ カードの ifIndex 番号の判別」 (p.21-18)を参照してください。

次に、5 分間にスレッシュホールド 1000 を超過する 1002 ifInErrors によって生成された上限スレッシュホールド トラップの例を示します。

```
2005-03-22 16:25:38 ptlm9-454e56-97.cisco.com [10.92.56.97]:

SNMPv2-MIB:sysUpTime.0 = Wrong Type (should be Timeticks): 43026500

SNMPv2-MIB:snmpTrapOID.0 = OID: RMON-MIB:risingAlarm

RFC1271-MIB:alarmIndex.9 = 9

RFC1271-MIB:alarmVariable.9 = OID: IF-MIB:ifInErrors.983043

RFC1271-MIB:alarmSampleType.9 = deltaValue(2)

RFC1271-MIB:alarmValue.9 = 1002

RFC1271-MIB:alarmRisingThreshold.9 = 1000

SNMPv2-SMI:snmpModules.18.1.3.0 = IpAddress: 10.92.56.97
```

ML シリーズ カードの ifIndex 番号の判別

NMS がパフォーマンス データについて ML シリーズ カードをポーリングする場合、NMS は内部で ifIndex 番号を使用して、複数の MIB からのインターフェイス データを統合し、このデータとイン ターフェイス名を関連付けます。インターフェイス名は信頼できるので、実際の ifIndex 番号を知 る必要はありません。

Cisco IOS CLI を使用してトラップを直接、生成するよう ML シリーズ カードを設定する場合、この関連付けた名前は使用しません。トラップを設定している各インターフェイスの実際の ifIndex 番号を使用する必要があります。実際の ifIndex 番号を決定するには、NMS を使用して各 ML シリーズ カード インターフェイスと VLAN(仮想 LAN)サブインターフェイスの ifIndex 番号を取得する か、またはインターフェイスの ifIndex 番号を計算します。

また、MIB ブラウザ (SNMP MIB 定義の検索サービス)を使用して、適切な ifIndex 番号の ifDescr を検証できます。ifDescr からの ifIndex 番号は、希望の ifIndex 番号でなければなりません。

ML シリーズ カードでは、イーサネットおよび POS インターフェイスの ifIndex 番号は、次の2種類のカードの情報からコンパイルされています。

- カードのシャーシスロット番号 スロット番号は、ML シリーズカードが常駐するシェルフの物理的なスペースの番号です。ONS 15454 SONET/SDH シェルフの場合、有効な範囲はスロット1~6、またはスロット12~17です。この情報は、CTCのシェルフスロットのグラフ表示、あるいは物理シェルフの前面で見つけることができます。
- カード内のローカル ポート番号 ONS 15454 SONET/SDH の ML シリーズ カードのポート番号は、ファスト イーサネット インターフェイスおよびギガビット イーサネット インターフェイスのインターフェイス番号と一致します。POS ポート番号はインターフェイス番号と一致せず、イーサネット ポートを連続してナンバリングしません。連続値は、最後のイーサネットポート番号と最初の POS 番号 (POS ポート 0)の間ではスキップされます。インターフェイスのポート番号を表 21-1 に示します。

ML100T-12 ファストイーサネット インターフェイス	ML100T-12 POS インターフェイス	ML100X-8 ファストイーサネット インターフェイス	ML100X-8 POS インターフェイス	ML1000-2 ギガピット イーサネッ ト インターフェイス	ML1000-2 POS インターフェイス
FE 0 = ポート 0	POS 0 = ポート 13	FE 0 = ポート 0	POS 0 = ポート 9	GE 0 = ポート 0	POS 0 = ポート 3
FE 1 = ポート 1	POS 1 = ポート 14	FE 1 = ポート 1	POS 1 = ポート 10	GE 1 = ポート 1	POS 1 = ポート 4
FE 2 = ポート 2		FE 2 = ポート 2			
FE 3 = ポート 3		FE 3 = ポート 3			
FE 4 = ポート 4		FE 4 = ポート 4			
FE 5 = ポート 5		FE 5 = ポート 5			
FE 6 = ポート 6		FE 6 = ポート 6			
FE 7 = ポート 7		FE 7 = ポート 7			
FE 8 = ポート 8					
FE 9 = ポート 9					
FE 10 = ポート 10					
FE 11 = ポート 11					

表 21-1 ML シリーズ カードのインターフェイスのポート番号

次の公式を使用して、スロットおよびポートを組み合わせて ifIndex を出します。

ifIndex = (slot * 10000h) + (port)

10000h は、16 進数を示し 65536 に相当します。その結果の ifIndex は 16 進数で有意味な 2 値数字 ですが、10 進数では紛らわしく、明確でない数字です。たとえば、ifIndex E0002h はポート 2 のス ロット 14 です。10 進表記での同じ番号は 917506 になります。rmon alarm コマンドは、10 進数表 記の ifindex 番号を必要とします。

rmon alarm コマンドを使用して正確な ifindex 値を算出するための参照として、表 21-1 にスロット 1 ~ 17 のベース ifindex 番号を示します。希望のポート番号をスロット ベース番号に足すと正しい ifIndex 番号をすばやく決定できます。

表 21-2 ML シリーズ カードのインターフェイスのポート番号

ML シリーズ カードの スロット番号	16 進表記のベース ifIndex 番号	10 進表記のベース ifIndex 番号
1	10000h	65536
2	20000h	131072
3	30000h	196608
4	40000h	262144
5	50000h	327680
6	60000h	393216
12	C0000h	786432
13	D0000h	851968
14	E0000h	917504
15	F0000h	983040
16	100000h	1048576
17	110000h	1114112

ML シリーズ カードでの手動による CRC エラー検証

show interface コマンドを使用して、インターフェイス上の ML シリーズ カードの現在の CRC エ ラー カウントも検証できます。次に、6 つの総入力エラーの例を示します。これはすべての CRC エラーで、出力の最後の行にあります。

ML_Series(config)# show interface pos 0

POSO is up, line protocol is up Hardware is Packet/Ethernet over Sonet, address is 0005.9a39.713e (bia 0005.9a39.713e) MTU 1500 bytes, BW 48384 Kbit, DLY 100 usec, reliability 255/255, txload 1/255, rxload 182/255 Encapsulation: Cisco-EoS-LEX, crc 32, loopback not set Keepalive set (10 sec) Scramble enabled ARP type: ARPA, ARP Timeout 04:00:00 Last input never, output never, output hang never Last clearing of "show interface" counters never Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/40 (size/max) 5 minute input rate 34621000 bits/sec, 60083 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 311190527 packets input, 931220183 bytes Received 0 broadcasts (0 IP multicast) 6 runts, 0 giants, 0 throttles 0 parity 6 input errors, 6 CRC, 0 frame, 0 overrun, 0 ignored

RMON ステータスの表示

RMON ステータス コマンドは、POS インターフェイス用には動作しません。

RMON のステータスを表示するには、表 21-3 に示す 1 つまたは複数のイネーブル EXEC コマンド を使用します。

表 21-3 RMON ステータスの表示用コマンド

コマンドの説明	目的
show rmon	一般的な RMON 統計情報を表示します。
show rmon alarms	RMON アラーム テーブルを表示します。
show rmon events	RMON イベント テーブルを表示します。
show rmon history	RMON 履歴テーブルを表示します。
show rmon statistics	RMON 統計情報テーブルを表示します。

例 21-1 に、表 21-3 のコマンドの例を示します。

例 21-1 show rmon コマンドで表示された CRC エラー

ML_Series# show rmon alarms

Alarm 9 is active, owned by config Monitors ifInErrors.983043 every 300 second(s) Taking delta samples, last value was 0 Rising threshold is 1000, assigned to event 10 Falling threshold is 1000, assigned to event 10 On startup enable rising or falling alarm

ML_Series# show rmon events

Event 10 is active, owned by config Description is Event firing causes log and trap to community slot15, last event fired at 0y3w2d,00:32:39, Current uptime 0y3w6d,03:03:12 Current log entries: index uptime description 1 0y3w2d,00:32:39

SNMP の設定

この章では、MLシリーズカードとSNMP(簡易ネットワーク管理プロトコル)を連動させるための設定方法について説明します。

この章で使用されている全構文と使用方法の情報については、『*Cisco IOS Configuration Fundamentals Command Reference*』Release 12.2 を参照してください。

この章の内容は次のとおりです。

- SNMPの概要 (p.22-2)
- SNMPの設定 (p.22-7)
- SNMP ステータスの表示 (p.22-16)

SNMP の概要

SNMP は、マネージャとエージェント間の通信用にメッセージ形式を提供するアプリケーションレ イヤ プロトコルです。SNMP システムは、SNMP マネージャ、SNMP エージェント、および MIB で構成されます。SNMP マネージャは、CiscoWorks などの Network Management System (NMS; ネッ トワーク管理システム)に組み込むことができます。SNMP を設定するには、マネージャとエー ジェントの間の関係を定義します。

SNMP エージェントには MIB 変数があり、SNMP マネージャはこの変数の値を要求または変更でき ます。マネージャはエージェントから値を取得したり、エージェントに値を格納したりすることが できます。エージェントは、装置のパラメータとネットワーク データの情報リポジトリである MIB からデータを収集します。エージェントは、マネージャのデータ取得またはデータ設定要求に応じ ることもできます。

エージェントはマネージャに、非送信請求トラップを送信できます。トラップは、ネットワークの 状態を SNMP マネージャに伝えるメッセージです。トラップは、不正なユーザ認証、再起動、リン ク ステータス (アップまたはダウン)、MAC (メディア アクセス制御)アドレス追跡、TCP 接続 の終了、ネイバとの接続の切断、または他の重要なイベントを伝えることができます。

ここでは、次の内容について説明します。

- ML シリーズ カード上の SNMP (p.22-3)
- SNMPのバージョン (p.22-3)
- SNMP マネージャの機能(p.22-4)
- SNMP エージェントの機能 (p.22-4)
- SNMP コミュニティ ストリング (p.22-5)
- SNMP による MIB 変数へのアクセス (p.22-5)
- サポート対象の MIB (p.22-6)
- SNMP 通知 (p.22-6)

ML シリーズ カード上の SNMP

SNMP は、ONS 15454 SONET/SDH ML シリーズ カード上で、2 種類の方法で動作します。1 つは直接通信する方法です。これも、直接通信、Cisco IOS、データ プレーンを使用して、小さな Catalyst スイッチの SNMP が動作する方法です。ML シリーズ カードと連動する SNMP エージェントも ONS 15454 SONET/SDH および SONET ネットワークを経由して通信できます。両方の方法を 図 22-1 に示します。

ONS 15454 SONET/SDH ノードが ML シリーズ カードの SNMP 通信をリレーする場合、ノードはプロキシエージェントを使用して get 要求、getNext 要求、set 要求を受信および検証し、ML シリーズ カードに転送します。ML シリーズの要求には、ML シリーズ カードのスロット ID が含まれているので、ONS 15454 SONET/SDH ノードへの通常の SNMP 要求と区別できます。ML シリーズ カードからの応答は、ONS 15454 SONET/SDH ノードによって、要求を送信した SNMP エージェントにリレーされます。

SNMP アクセスは、ML シリーズ カードに対し、Cisco IOS データ プレーン イベント、アラーム、統計情報を収集するのに役立ちます。デフォルトでは、ML シリーズ カードで定義された SNMP イ ベントおよびトラップはすべて TCC2/TCC2P カードの SNMP エージェントに報告されます。 TCC2/TCC2P カードの SNMP エージェントがアクティブの場合、このイベントが定義済みの SNMP サーバに送信されます。

SNMP のバージョン

ML シリーズ カードと ONS 15454 SONET/SDH ノードは両方とも SNMP バージョン 1 (SNMPv1) と SNMP バージョン 2c (SNMPv2c)をサポートします。定義は次のとおりです。

- SNMPv1 Request For Comments (RFC; コメント要求) 1157 で定義されている、SNMP の完全 インターネット標準規格
- SNMPv2c では、SNMPv2 classic のパーティベース管理およびセキュリティ フレームワークが SNMPv2C のコミュニティストリングベース管理フレームワークに変わりましたが、 SNMPv2classic のバルク検索機能と改良されたエラー処理機能は残されています。バルク検索

メカニズムは、テーブルや大量の情報を検索し、必要な往復回数を削減します。SNMPv2c では エラー処理機能が改善され、さまざまなエラー状態を区別するための拡張エラー コードが使用 されています。これらのエラー状態は、SNMPv1の単一のエラー コードで報告されます。 SNMPv2c のエラー リターン コードはエラー タイプを報告します。

SNMPv1 および SNMPv2C は、次の同じセキュリティ モデルとレベルを使用します。

- レベル noAuthNoPriv
- 認証 コミュニティ ストリング
- 暗号化 なし
- 結果 認証用コミュニティ ストリングの一致を使用

管理ステーションによってサポートされる SNMP バージョンを使用するように、SNMP エージェントを設定する必要があります。エージェントは複数のマネージャと通信できるので、SNMPv1 プロトコルと SNMPv2 プロトコルを使用する通信をサポートするようソフトウェアを設定できます。

SNMP マネージャの機能

SNMP マネージャは MIB の情報を使用して、表 22-1 に示す動作を実行します。

動作	説明
get-request	特定の変数から値を取得します。
get-next-request	テーブル内の変数から値を取得します。 ¹
get-bulk-request ²	テーブルの複数の行など、通常はサイズの小さい多数のデータ ブロック に分割して送信する必要のある大きなデータ ブロックを取得します。
get-response	NMS から送信された get-request、get-next-request、set-request に応答します。
set-request	特定の変数に値を格納します。
trap	あるイベントが発生したときに、SNMP エージェントから SNMP マネー ジャに送信される非送信請求メッセージ

表 22-1 SNMP の動作

1. この動作の場合、SNMPマネージャは正確な変数名を知る必要はありません。順番に検索を実行し、テーブルの 中から必要な変数を見つけます。

2. get-bulk-request コマンドは、SNMPv2 以降でのみ動作します。

SNMP エージェントの機能

SNMP エージェントは、次の SNMP マネージャの要求に応答します。

- MIB 変数の取得 SNMP エージェントは NMS からの要求に応答して、この機能を開始しま す。エージェントは要求された MIB 変数の値を取得し、その値を使用して NMS に応答します。
- MIB 変数の設定 SNMP エージェントは NMS からのメッセージに応答して、この機能を開始 します。SNMP エージェントは、MIB 変数の値を NMS から要求された値に変更します。

SNMP エージェントは、エージェントで重要なイベントが発生したことを NMS に通知するために、 非送信請求トラップ メッセージも送信します。トラップ条件の例には、ポートまたはモジュールが アップまたはダウン状態になった場合、スパニングツリー トポロジーが変更された場合、認証エ ラーが発生した場合などが含まれます。

SNMP コミュニティ ストリング

SNMP コミュニティ ストリングは、MIB オブジェクトに対するアクセスを認証し、組み込みパス ワードとして機能します。NMS が ML シリーズ カードにアクセスするには、NMS 上のコミュニ ティ ストリング定義が ML シリーズ カード上の 3 つのコミュニティ ストリング定義の少なくとも 1 つと一致しなければなりません。

コミュニティストリングの属性は、次の3つのうちのいずれかです。

- read-only(RO) 許可した管理ステーションに、コミュニティストリングを除く MIB 内のオ ブジェクトすべてに対する読み取りアクセス権を与えます。ただし、書き込みアクセスは許可 しません。
- read-write(RW) 許可した管理ステーションに、MIB内のオブジェクトすべてに対する読み 取りおよび書き込みアクセス権を与えます。ただし、コミュニティストリングへのアクセスは 許可しません。
- read-write-all 許可した管理ステーションに、コミュニティ ストリングも含めた MIB 内のオ ブジェクトすべてに対する読み取りおよび書き込みアクセス権を与えます。

SNMP による MIB 変数へのアクセス

NMS の例として、CiscoWorks ネットワーク管理ソフトウェアがあります。CiscoWorks ソフトウェ アは、ML シリーズ カードの MIB 変数を使用して、装置の変数を設定し、ネットワーク上の装置 をポーリングして特定の情報を入手します。ポーリング結果はグラフとして表示されます。この結 果を分析して、問題のトラブルシューティング、ネットワーク パフォーマンスの改善、装置の設定 の確認、トラフィック負荷のモデルなどを行うことができます。

図 22-2 に示すように、SNMP エージェントは MIB からデータを収集します。エージェントは SNMP マネージャに対し、トラップまたは特定イベントの通知を送信します。SNMP マネージャはトラッ プを受信して処理します。トラップは、ネットワーク上で発生した不正なユーザ認証、再起動、リ ンク ステータス(アップまたはダウン) MAC アドレス追跡などに関する状態を SNMP マネージャ に通知します。SNMP エージェントはさらに、get-request、get-next-request、set-request 形式で SNMP マネージャから送信される MIB 関連のクエリに応答します。

図 22-2 SNMP ネットワーク

サポート対象の MIB

サポート対象となる ML シリーズ カードの MIB の完全リストは、使用している ONS ソフトウェア CD の MIBsREADME.txt ファイルにあります。このソフトウェア CD には、必要な MIB モジュール と MIB のロードに関する情報も含まれます。

サポート対象となる重要な MIB には次が含まれます。

- Bridge-MIB (RFC 1493)からの Spanning Tree Protocol (STP)のトラップ
- RFC 1157 の認証トラップ
- IF-MIB(RFC 1573)からのイーサネット ポート用リンクアップ トラップとリンクダウン トラップ
- CISCO-PORT-QOS-MIB 拡張による Quality of Service(QoS; サービス品質)統計のエクスポート

ML シリーズ カードの CISCO-PORT-QOS-MIB 拡張では、Class of Service (CoS; サービス クラス) ベースの QoS 指標がサポートされています。設定オブジェクトは、サポートされません。

SNMP 通知

SNMPを使用すると、MLシリーズカードは特定のイベントが発生したときに SNMPマネージャに 通知を送信できます。SNMP通知はトラップまたはインフォーム要求として送信できます。コマン ド構文内に、トラップ要求またはインフォーム要求を選択するコマンドオプションが指定されてい ない場合、キーワード traps はトラップ要求、インフォーム要求、またはその両方を表します。SNMP 通知をトラップ要求またはインフォーム要求のどちらで送信するかを指定するには、snmp-server host コマンドを使用します。

(注)

SNMPv1 はインフォーム要求をサポートしていません。

レシーバはトラップの受信時に確認応答を送信しないため、トラップは信頼性が低く、送信側はト ラップが受信されたかどうかを判別できません。SNMPマネージャはインフォーム要求を受信する と、SNMP応答 Protocol Data Unit (PDU; プロトコルデータユニット)を使用してメッセージを確 認します。送信側が応答を受信しない場合は、インフォーム要求が再送信されます。このため、イ ンフォーム要求の方がトラップよりも目的の宛先に到達する可能性が高くなります。

インフォームはトラップよりも信頼性が高いので、ML シリーズ カードおよびネットワーク内のリ ソースの消費量も多くなります。送信後すぐに廃棄されるトラップとは異なり、インフォーム要求 は応答を受信するか、または要求が時間切れになるまでメモリ内に保持されます。トラップの送信 は1回限りですが、インフォームは何回も再送信されたり、再試行されることがあります。再試行 が繰り返されるとトラフィックが増加し、ネットワークのオーバーヘッドが大きくなります。した がって、トラップおよびインフォームを使用する場合は信頼性とリソースのどちらを重視するかの 選択が必要となります。SNMP マネージャですべての通知を受信することが重要な場合はイン フォーム要求を使用します。ネットワークのトラフィックまたは ML シリーズ カードのメモリが重 要で、通知が必要ない場合は、トラップを使用します。

SNMP の設定

ここでは、MLシリーズカードに SNMPを設定する方法について説明します。以下の設定情報について説明します。

- SNMPのデフォルト設定 (p.22-7)
- SNMP 設定時の注意事項(p.22-7)
- SNMP エージェントのディセーブル化 (p.22-8)
- コミュニティストリングの設定(p.22-8)
- SNMP グループおよびユーザの設定 (p.22-10)
- SNMP 通知の設定 (p.22-11)
- エージェント コンタクトおよびロケーション情報の設定 (p.22-14)
- SNMP 経由で使用する TFTP サーバの制限 (p.22-14)
- SNMPの例 (p.22-15)

SNMP のデフォルト設定

表 22-2 にデフォルトの SNMP 設定を示します。

表 22-2 SNMP のデフォルト設定

機能	デフォルト設定
SNMP エージェント	イネーブル
SNMP コミュニティ ストリング	read-only:パブリック
	read-write:プライベート
	read-write-all:シークレット
SNMP トラップ レシーバ	設定なし
SNMP トラップ	TCP 接続のトラップ(tty)以外はディセーブル
SNMP バージョン	version キーワードを指定しない場合、デフォルトはバージョン
	1です。
SNMP 通知タイプ	タイプを指定しない場合、すべての通知が送信されます。

SNMP 設定時の注意事項

SNMPを設定する場合、以下の注意事項に従ってください。

- SNMP グループを設定する場合は、通知ビューを指定しないでください。snmp-server host グローバル コンフィギュレーション コマンドを使用すると、ユーザ用の通知ビューを自動生成し、そのユーザに関連付けられたグループにビューを追加します。グループの通知ビューを変更すると、そのグループに関連付けられたすべてのユーザに影響を与えます。通知ビューを設定する場合については、『Cisco IOS Configuration Fundamentals Command Reference』 Release 12.2 を参照してください。
- SNMP グループは、SNMP ユーザを SNMP ビューにマッピングするテーブルです。
- SNMP ユーザは、SNMP グループのメンバーです。
- SNMP ホストは、SNMP トラップ動作の受信側です。
- SNMP エンジン ID は、ローカルまたはリモート SNMP エンジンの名前です。

SNMP エージェントのディセーブル化

SNMP エージェントをディセーブルするには、イネーブル EXEC モードを開始して、次の手順を実行します。

	コマンドの説明	目的
ステップ 1	configure terminal	グローバル コンフィギュレーション モードを開始
		します。
ステップ 2	no snmp-server	SNMP エージェントの動作をディセーブルにしま
		す。
ステップ 3	end	イネーブル EXEC モードに戻ります。
ステップ 4	show running-config	エントリを確認します。
ステップ 5	copy running-config startup-config	(任意)コンフィギュレーション ファイルにエント
		リを保存します。

no snmp-server グローバル コンフィギュレーション コマンドは、装置上で実行されているすべて のバージョンをディセーブルにします。SNMP をイネーブルにする特定の IOS コマンドはありませ ん。最初に入力する snmp-server グローバル コンフィギュレーション コマンドによって、SNMP の すべてのバージョンがイネーブルになります。

コミュニティ ストリングの設定

SNMP マネージャとエージェント間の関係を定義するには、SNMP コミュニティ ストリングを使用 します。コミュニティ ストリングはパスワードと同様に機能し、ML シリーズ カードのエージェン トへのアクセスを許可します。任意で、文字列に関連付けられた次の特性を1つまたは複数指定で きます。

- コミュニティ ストリングを使用してエージェントにアクセスできる SNMP マネージャの IP ア ドレスを指定したアクセス リスト
- 特定のコミュニティにアクセス可能な、すべての MIB オブジェクトのサブセットを定義した MIB ビュー
- コミュニティがアクセスできる MIB オブジェクトに対応する読み書きアクセス許可または読み取り専用アクセス許可

ML シリーズ カード上でコミュニティ ストリングを設定するには、イネーブル EXEC モードを開始 して、次の手順を実行します。

	コマンドの説明	目的
ステップ 1	configure terminal	グローバル コンフィギュレーション モードを開始します。
ステップ 2	snmp-server community string [view	コミュニティ ストリングを設定します。
	view-name] [ro rw] [access-list-number]	 string には、パスワードのように機能し、SNMP プロト コルへのアクセスを許可する文字列を指定します。任 意の長さのコミュニティ ストリングを1つまたは複数 設定できます。
		 (任意) view view-name には、コミュニティがアクセス できるビューレコードを指定します。
		 (任意)許可された管理ステーションで MIB オブジェ クトを取得する場合、読み取り専用(ro)を指定しま す。または、許可された管理ステーションで MIB オブ ジェクトを取得および変更する場合、読み書き(rw) を指定します。デフォルトでは、コミュニティ ストリ ングのアクセス権は、すべてのオブジェクトに対して 読み取り専用になっています。
		 (任意) access-list-number には、1 ~ 99 および 1300 ~ 1999 の範囲で標準の IP アクセス リスト番号を入力し ます。
ステップ 3	access-list <i>access-list-number</i> { deny permit } <i>source</i> [<i>source-wildcard</i>]	(任意) ステップ 2 で標準の IP アクセス リスト番号を指定 した場合は、リストを作成し、必要な回数だけこのコマン ドを繰り返します。
		 access-list-number には、ステップ2で指定したアクセスリスト番号を入力します。
		 deny キーワードを指定すると、条件が一致した場合に アクセスが拒否されます。permit キーワードを指定す ると、条件が一致した場合にアクセスが許可されます。
		 sourceには、コミュニティストリングを使用してエージェントにアクセスできる SNMP マネージャの IP アドレスを指定します。
		 (任意) source-wildcard には、送信元に適用するワイル ドカード ビットをドット付き 10 進表記で入力します。 無視するビット位置に1 を配置します。
		アクセス リストは必ず、すべてに対し、暗黙的な拒否ス テートメントで終了することに注意してください。
ステップ 4	end	イネーブル EXEC モードに戻ります。
ステップ 5	show running-config	エントリを確認します。
ステップ 6	copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを保 存します。

(注)

SNMP コミュニティのアクセスをディセーブルにするには、そのコミュニティに対するコミュニ ティ ストリングをヌル ストリングに設定します (コミュニティ ストリングに値を入力しないでく ださい)。

特定のコミュニティ ストリングを削除するには、no snmp-server community string グローバル コン フィギュレーション コマンドを使用します。 次に、SNMP に comaccess という文字列を割り当て、読み取り専用アクセスを許可し、IP アクセス リスト4 がコミュニティ ストリングを使用して ML シリーズ カードの SNMP エージェントにアク セスするよう指定する方法を示します。

ML_Series(config) # snmp-server community comaccess ro 4

SNMP グループおよびユーザの設定

ML シリーズ カード上のローカルまたはリモート SNMP サーバ エンジンに、識別名(エンジン ID) を指定できます。SNMP ユーザを SNMP ビューにマッピングする SNMP サーバ グループを設定し、 SNMP グループに新規ユーザを追加できます。

ML シリーズ カード上で SNMP を設定するには、イネーブル EXEC モードを開始して、次の手順を 実行します。

	コマンドの説明	目的
ステップ 1	configure terminal	グローバル コンフィギュレーション モードを開始します。
ステップ 2	<pre>snmp-server engineID {local engineid-string remote ip-address [udp-port port-number]}</pre>	SNMP のローカル コピーまたはリモート コピーのいずれ かの名前を設定します。
		 engineid-string は、SNMPのコピー名を含む24文字の IDストリングです。
		 remote を選択した場合、SNMP のリモート コピーが格納された装置の <i>ip-address</i>、およびリモート装置上の任意の UDP ポートを指定します。UDP ポートのデフォルト値は 162 です。
ステップ 3	snmp-server group groupname {v1 v2c [auth	リモート装置に新規の SNMP グループを設定します。
	noauth priv] } [read readview] [write writeview]	• groupname には、グループ名を指定します。
	[notify notifyview] [access access-list]	• セキュリティ モデルを指定します。
		- v1 は、安全性が低いセキュリティ モデルです。
		 v2cは、安全性が高いセキュリティモデルです。このモデルを使用すると、インフォーム要求および 整数を標準の2倍の幅で伝送できます。
		(注) priv キーワードは、暗号ソフトウェア イメージが インストールされている場合のみ使用できます。
		 (任意) read readview には、エージェント内容のみを 表示できるビューの名前を示す文字列(64 文字以下) を指定して、入力します。
		 (任意) write writeview には、データを入力してエージェント内容を設定できるビューの名前を示す文字列(64 文字以下)を指定して、入力します。
		 (任意) notify notifyview には、通知、インフォーム要求、またはトラップを指定できるビューの名前を示す 文字列(64文字以下)を指定して、入力します。
		 (任意) access access-list には、アクセスリストの名前 を示す文字列(64文字以下)を指定して、入力します。

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

	コマンドの説明	目的
ステップ 4	snmp-server user username groupname [remote	SNMP グループに新規ユーザを設定します。
	<pre>host [udp-port port]] {v1 v2c [access access-list]}</pre>	 username は、エージェントに接続されたホスト上の ユーザ名です。
		 groupname は、ユーザが関連付けられているグループの名前です。
		 (任意)ユーザが属するリモート SNMP エンティティを 指定するには、remote を入力します。このエンティ ティのホスト名または IP アドレスを指定し、さらに任 意で UDP ポート番号を指定します。UDP ポートのデ フォルト値は 162 です。
		• SNMP バージョン番号(v1 または v2c)を入力します。
		 (任意) access access-list には、アクセスリストの名前 を示す文字列(64文字以下)を指定して、入力します。
ステップ 5	end	イネーブル EXEC モードに戻ります。
ステップ 6	show running-config	エントリを確認します。
ステップ 7	copy running-config startup-config	(任意) コンフィギュレーション ファイルにエントリを保 存します。

SNMP 通知の設定

トラップマネージャは、通知タイプ(トラップ)を受信して処理する管理ステーションです。ト ラップは、特定のイベントが発生した場合に、MLシリーズカードが生成するシステムアラートで す。デフォルトではトラップマネージャが定義されていないため、トラップは送信されません。す べてのトラップをイネーブルにするには、通知タイプキーワードを指定しないで、snmp-server enable traps コマンドを設定します。

表 22-3 に、一般的によく使用され、ML シリーズ カードによってサポートされるトラップの一部を 示します。これらのトラップの一部またはすべてをイネーブルにし、トラップ マネージャがトラッ プを受信するように設定できます。

表 22-3 ML シリーズ カードの通知タイプ

通知タイプのキーワード	説明
bridge	STP ブリッジ MIB トラップを生成します。
config	SNMP 設定の変更時にトラップを生成します。
config-copy	SNMP コピー設定の変更時にトラップを生成します。
entity	SNMP エンティティ トラップを生成します。
rsvp	RSVP フロー変更トラップを生成します。
rtr	SNMP Response Time Reporter (RTR)に対してトラップを生成し
	ます。

表 22-3 に示す通知タイプを特定のホストに受信させるには、snmp-server host グローバル コンフィ ギュレーション コマンドをそのホストに対して実行します。

ホストにトラップまたはインフォーム要求を送信するように ML シリーズ カードを設定するには、 イネーブル EXEC モードを開始して、次の手順を実行します。

	コマンドの説明	目的
ステップ 1	configure terminal	グローバル コンフィギュレーション モードを開始します。
ステップ 2	snmp-server engineID remote <i>ip-address</i>	リモート ホストの IP アドレスおよびエンジン ID を指定し
	engineid-string	ます。
ステップ 3	snmp-server user username groupname remote	ステップ 2 で作成したリモート ホストに関連付けるよう
	<i>host</i> [udp-port <i>port</i>] { v1 v2c }[access <i>access-list</i>]	SNMP ユーザを設定します。
		 username は、エージェントに接続されたホスト上の ユーザ名です。
		 groupname は、ユーザが関連付けられているグループの名前です。
		 (任意)ユーザが属するリモート SNMP エンティティを 指定するには、remote を入力します。このエンティ ティのホスト名または IP アドレスを指定し、さらに任 意で UDP ポート番号を指定します。UDP ポートのデ フォルト値は 162 です。
		• SNMP バージョン番号 (v1 または v2c)を入力します。
		 (任意) access access-list には、アクセスリストの名前 を示す文字列(64 文字以下)を指定して、入力します。
		(注) 最初にリモート ホストのエンジン ID を設定しな いと、アドレスに対してリモート ユーザを設定で きません。リモート エンジン ID を設定する前に ユーザを設定しようとすると、エラー メッセージ が表示され、コマンドは実行されません。
ステップ 4	snmp-server host host-addr	SNMP トラップ動作の受信側を指定します。
	[traps informs] [version {1 2c}] community-string [udp-port port]	 <i>host-addr</i>には、ホスト(対象となる受信側)の名前ま たはインターネットアドレスを指定します。
	[notification-type]	 (任意)SNMPトラップをホストに送信するには、traps (デフォルト)を入力します。
		 (任意)SNMP インフォーム要求をホストに送信するには、informs を入力します。
		• (任意)SNMP バージョン(1 または 2c)を指定しま す。SNMPv1 はインフォーム要求をサポートしていま せん。
		 community-string には、通知動作によって送信されたパ スワードと同様のコミュニティストリングを入力しま す。
		 (任意)udp-port port には、リモート装置の UDP ポートを入力します。
		 (任意)<i>notification-type</i>には、表 22-3に示すキーワード を使用します。タイプを指定しない場合、すべての通 知が送信されます。

	コマンドの説明	目的
ステップ 5	snmp-server enable traps notification-types	トラップまたはインフォーム要求を送信するよう ML シ
		リーズ カードをイネーブルにし、送信する通知タイプを指
		定します。通知タイプのリストについては、次を入力しま
		す。
		snmp-server enable traps ?
		複数のトラップ タイプをイネーブルにするには、トラップ
		タイプごとに snmp-server enable traps コマンドを個別に
		入力する必要があります。
ステップ 6	snmp-server trap-source interface-id	(任意)送信元インターフェイスを指定します。これによ
		り、トラップ メッセージ用の IP アドレスが設定されます。
		このコマンドにより、インフォーム要求用の送信元 IP アド
		レスも設定されます。
ステップ 7	snmp-server queue-length length	(任意)各トラップ ホストが保持できるトラップ メッセー
		ジ数(メッセージ キュー長)を設定します。指定できる範
		囲は1~1000です。デフォルトは10です。
ステップ 8	snmp-server trap-timeout seconds	(任意)トラップ メッセージの再送信間隔を定義します。 指
		定できる範囲は1~1000です。デフォルトは30秒です。
ステップ 9	end	イネーブル EXEC モードに戻ります。
ステップ 10	show running-config	エントリを確認します。
ステップ 11	copy running-config startup-config	(任意)コンフィギュレーション ファイルにエントリを保
		存します。

snmp-server host コマンドは、通知を受信するホストを指定します。snmp-server enable trap コマンドは、指定された通知(トラップまたはインフォーム要求用)のメカニズムをグローバルにイネーブルにします。インフォーム要求を受信するようホストをイネーブルにするには、ホストに対してsnmp-server host informs コマンドを設定して、snmp-server enable traps コマンドを使用してインフォーム要求をグローバルにイネーブルにする必要があります。

受信トラップから特定のホストを削除するには、no snmp-server host host グローバル コンフィギュ レーション コマンドを使用します。no snmp-server host コマンドにキーワードを指定しないで使用 すると、ホストに対して、トラップはディセーブルになりますが、インフォームはディセーブルに なりません。インフォーム要求をディセーブルにするには、no snmp-server host informs グローバ ル コンフィギュレーション コマンドを使用します。特定のトラップ タイプをディセーブルにする には、no snmp-server enable traps notification-types グローバル コンフィギュレーション コマンドを 使用します。

エージェント コンタクトおよびロケーション情報の設定

SNMP エージェントのシステム コンタクトおよびロケーションを設定して、コンフィギュレーショ ン ファイルからこれらの記述にアクセスできるように するには、イネーブル EXEC モードを開始 して、次の手順を実行します。

	コマンドの説明	目的
ステップ 1	configure terminal	グローバル コンフィギュレーション モードを開始します。
ステップ 2	snmp-server contact text	システム コンタクト ストリングを設定します。
		次に、例を示します。
		snmp-server contact Dial System Operator at beeper 21555.
ステップ 3	snmp-server location text	システム ロケーション ストリングを設定します。
		次に、例を示します。
		snmp-server location Building 3/Room 222
ステップ 4	end	イネーブル EXEC モードに戻ります。
ステップ 5	show running-config	エントリを確認します。
ステップ 6	copy running-config startup-config	(任意)コンフィギュレーション ファイルにエントリを保
		存します。

SNMP 経由で使用する TFTP サーバの制限

SNMP 経由でコンフィギュレーション ファイルの保存およびロードに使用する Trivial File Transfer Protocol (TFTP; 簡易ファイル転送プロトコル) サーバを、アクセス リストに指定されたサーバに 限定するには、イネーブル EXEC モードを開始して、次の手順を実行します。

	コマンドの説明	目的
ステップ 1	configure terminal	グローバル コンフィギュレーション モードを開始します。
ステップ 2	snmp-server tftp-server-list access-list-number	SNMP 経由でコンフィギュレーション ファイルのコピーに 使用する TFTP サーバを、アクセス リスト内のサーバに限 定します。
		access-list-number には、1 ~ 99 および 1300 ~ 1999 の範囲 で標準の IP アクセス リスト番号を入力します。

	コマンドの説明	目的
ステップ 3	<pre>access-list access-list-number {deny permit} source [source-wildcard]</pre>	標準アクセス リストを作成します。必要な回数だけこのコ マンドを繰り返します。
		 access-list-number には、ステップ 2 で指定したアクセスリスト番号を入力します。
		 deny キーワードを指定すると、条件が一致した場合に アクセスが拒否されます。permit キーワードを指定す ると、条件が一致した場合にアクセスが許可されます。
		 source には、ML シリーズ カードにアクセスできる TFTP サーバの IP アドレスを入力します。
		 (任意) source-wildcard には、送信元に適用するワイル ドカード ビットをドット付き 10 進表記で入力します。 無視するビット位置に1を配置します。
		アクセス リストは必ず、すべてに対し、暗黙的な拒否ス テートメントで終了することに注意してください。
ステップ 4	end	イネーブル EXEC モードに戻ります。
ステップ 5	show running-config	エントリを確認します。
ステップ 6	copy running-config startup-config	(任意)コンフィギュレーション ファイルにエントリを保存します。

SNMP の例

次に、SNMP のすべてのバージョンをイネーブルにする例を示します。この設定では、コミュニ ティ ストリング「public」を使用し、すべてのオブジェクトに読み取り専用権限でアクセスする許 可を SNMP マネージャに与えます。この設定では、ML シリーズ カードはトラップを送信しません。

ML_Series(config)# snmp-server community public

次に、コミュニティ ストリング「public」を使用し、すべてのオブジェクトに読み取り専用権限で アクセスする許可を SNMP マネージャに与える例を示します。ML シリーズ カードは、SNMPv1を 使用してホスト 192.180.1.111 および 192.180.1.33 に、SNMPv2C を使用してホスト 192.180.1.27 に、 それぞれ VTP トラップを送信します。コミュニティ ストリング「public」がトラップとともに送信 されます。

ML_Series(config)# snmp-server community public ML_Series(config)# snmp-server host 192.180.1.27 version 2c public ML_Series(config)# snmp-server host 192.180.1.111 version 1 public ML_Series(config)# snmp-server host 192.180.1.33 public

次に、コミュニティ ストリング comaccess を使用するアクセス リスト 4 のメンバーに、すべてのオ ブジェクトへの読み取り専用アクセスを許可する例を示します。その他の SNMP マネージャは、オ ブジェクトへのアクセス権がありません。コミュニティ ストリング「public」を使用し、SNMP 認 証失敗トラップが SNMPv2C によってホスト cisco.com に送信されます。

ML_Series(config)# snmp-server community comaccess ro 4
ML_Series(config)# snmp-server enable traps snmp authentication
ML Series(config)# snmp-server host cisco.com version 2c public

次に、エンティティ MIB トラップをホスト cisco.com に送信する例を示します。コミュニティ スト リングは制限されています。2 行めはこれらのトラップの宛先を指定し、ホスト cisco.com に対する 以前の snmp-server host コマンドを無効にします。

ML_Series(config)# snmp-server enable traps
ML_Series(config)# snmp-server host cisco.com restricted

次に、ML シリーズ カードがコミュニティ ストリング「public」を使用して、すべてのトラップを ホスト myhost.cisco.com に送信できるように設定する例を示します。

ML_Series(config)# snmp-server enable traps
ML_Series(config)# snmp-server host myhost.cisco.com public

SNMP ステータスの表示

不正なコミュニティストリングエントリ数、エラー数、要求された変数の数を含めた SNMP 入出 力の統計情報を表示するには、show snmp イネーブル EXEC コマンドを使用します。また、SNMP 情報を表示するには、表 22-4 のイネーブル EXEC コマンドも使用できます。この出力に表示され るフィールドの詳細については、『*Cisco IOS Configuration Fundamentals Command Reference*』Release 12.2 を参照してください。

機能	デフォルト設定
show snmp	SNMP 統計情報を表示します。
show snmp group	ネットワーク上の各 SNMP グループに関する情報を表示します。
show snmp pending	SNMP 要求のペンディングに関する情報を表示します。
show snmp sessions	現在の SNMP セッションに関する情報を表示します。
show snmp user	SNMP ユーザ テーブル内の各 SNMP ユーザ名に関する情報を表
	示します。

表 22-4 SNMP 情報の表示コマンド

E シリーズおよび G シリーズ イーサネットの運用

この章では、E シリーズ カードおよび G シリーズ イーサネット カードの運用について説明します。 E シリーズおよび G シリーズ カードは、ONS 15454、ONS 15454 SDH、および ONS 15327 でサポートされています。プロビジョニングは、Cisco Transport Controller(CTC)または Transaction Language One (TL1)を使用して行います。Cisco IOS は、E シリーズまたは G シリーズ カードでサポートされていません。

イーサネットカードの仕様については、『Cisco ONS 15454 Reference Manual』、『Cisco ONS 15454 SDH Reference Manual』、または『Cisco ONS 15327 Reference Manual』を参照してください。イーサネッ ト カードの回線の詳細な設定手順については、『Cisco ONS 15454 Procedure Guide』、『Cisco ONS 15454 SDH Procedure Guide』、または『Cisco ONS 15327 Procedure Guide』を参照してください。TL1 プロビジョニング コマンドについては、『Cisco ONS SONET TL1 Command Guide』または『Cisco ONS SDH TL1 Command Guide』を参照してください。

この章では、次の内容について説明します。

- Gシリーズのアプリケーション (p.23-2)
- Gシリーズカードの回線構成(p.23-8)
- G シリーズ ギガビット イーサネット トランスポンダ モード (p.23-10)
- E シリーズ カードのアプリケーション (p.23-15)
- E シリーズ カードの回線構成 (p.23-26)
- RMON 仕様アラーム スレッシュホールド (p.23-30)

G シリーズのアプリケーション

G シリーズ カードを使用すると、SONET/SDH バックボーン上でイーサネットおよび IP データを確 実に転送できます。ONS 15454 および ONS 15454 SDH の G シリーズ カードは、SONET/SDH 転送 ネットワークに最大 4 つのギガビット イーサネット ポートをマッピングし、1 カードあたり STS-48c/VC4-16 までの信号レベルで、スケーラブルでプロビジョニング可能な転送帯域幅を提供し ます。ONS 15327 の G シリーズ カードは 2 つのギガビット イーサネット ポートをマッピングしま す。G シリーズ カードでは、すべてのイーサネット フレーム(ユニキャスト、マルチキャスト、ブ ロードキャスト)で回線レートでの転送が可能であり、ジャンボ フレーム(最大 10,000 バイトと 定義される)をサポートするように設定できます。G シリーズ カードには、次のように、キャリア クラスのアプリケーション向けに最適化された機能が組み込まれています。

- High Availability (HA; ハイ アベイラビリティ)(ソフトウェア アップグレード時での中断のない[50 ミリ秒未満]パフォーマンス、およびあらゆるタイプの SONET/SDH 機器の保護切り替えを含む)
- 中断のない再プロビジョニング
- 最大回線レートでのギガビット イーサネット トラフィックのサポート
- 完全な TL1 ベースのプロビジョニング機能
- 拡張ポート状態、ターミナル ループバックとファシリティ ループバックおよび J1 パス トレー スなどの有用なオプション
- SONET/SDH 形式のアラーム サポート
- イーサネット Performance Monitoring (PM)と Remote Monitoring (RMON)機能

G シリーズ カードを使用して、従来の SONET/SDH 回線のように、イーサネット専用回線サービス をプロビジョイングして管理できます。G シリーズ カードのアプリケーションには、キャリアクラ スの Transparent LAN Service (TLS; 透過 LAN サービス) 100 Mbps イーサネット専用回線サービス (ギガビット アップリンクを持つ外部の 100 Mbps イーサネット スイッチと組み合せた場合) およ び HA 転送があります。

ONS 15454 または ONS 15327 のカードは、1 つのイーサネット ポートを 1 本の STS 回線にマップ します。G シリーズ カードの 4 つのポートは、STS-1、STS-3c、STS-6c、STS-9c、STS-12c、STS-24c、 および STS-48c のどの回線サイズの組み合わせでもそれぞれ個別にマップできます。ただし、1 枚 のカードで終端する回線サイズの合計は STS-48c 以内にする必要があります。

ONS 15454 SDH のカードは、1 つのイーサネット ポートを1本の STM 回線にマップします。G シ リーズ カードの 4 つのポートは、VC4、VC4-2c、VC4-3c、VC4-4c、VC4-8c と VC4-16c のどの回線 サイズの組み合せでもそれぞれ個別にマップできます。ただし、1 枚のカードで終端する回線サイ ズの合計は VC4-16c 以内にする必要があります。

ギガビット イーサネット ポートを最大の回線レートでサポートするには、1 Gbps (双方向では 2 Gbps)以上の容量を持つ STS/VC4 回線が必要です。ギガビット イーサネット ポートを最大の回線 レートでサポートできる最小の回線サイズは、STS-24c/VC4-8c です。G シリーズ カードは、最大回線レートのポートを 2 つまでサポートします。

G シリーズ カードは、OC-N/STM-N カードと同様の方法で J1 パス トレース バイトを送信およびモ ニタリングします。詳細については、『ONS 15454 Reference Manual』、『ONS 15454 SDH Reference Manual』、または『ONS 15327 Reference Manual』のうちから、該当するプラットフォームのリファ レンス マニュアルを参照してください。

G シリーズカードは LEX カプセル化を使用します。LEX は、RFC 1622 および RFC 2615 に記述されているように SONET/SDH 上での標準の High-Level Data Link Control (HDLC; ハイレベル データリンク制御) フレーミングで、PPP (ポイントツーポイント プロトコル) フィールドは RFC 1841 で定義されている値に設定されます。LEX の詳細については、第 20 章「ONS イーサネットカード上の POS」を参照してください。

G1K-4 カードと G1000-4 カードの比較

ONS 15454 および ONS 15454 SDH の G シリーズには、G1K-4 カードと G1000-4 カードがあります。 G1K-4 カードは、以前の G1000-4 カードと同等のハードウェアです。

Release 3.4 以前のソフトウェアを実行している ONS 15454 に装着して運用する場合は、どちらの カードにも XC10G カードが必要です。R4.0 以降のソフトウェアを実行している ONS 15454 に G1K-4 カードを取り付ける場合、XC10G カードを取り付けた ONS 15454 だけではなく、XC カード および XCVT カードを取り付けた ONS 15454 にも装着できます。R 4.0 以降のソフトウェアを実行 している ONS 15454 で XC カードおよび XCVT カードと併用する場合には、G1K-4 カードをスロッ ト 5、6、12、および 13 に装着する必要があります。

これらの制限は、ギガビット イーサネット トランスポンダ モードに設定された G シリーズ カード には適用されません。詳細については、「G シリーズ ギガビット イーサネット トランスポンダ モー ド」(p.23-10)を参照してください。

R4.0 以降のソフトウェアでは、G1K-4 カードは物理的に取り付けた際に認識されます。R3.4 以前の ソフトウェアでは、G1000-4 カードとG1K-4 カードの両方が、物理的に取り付けた際に G1000-4 と して認識されます。

G シリーズ カードの例

図 23-1 に、G シリーズのアプリケーションを示します。この例では、データ トラフィックがハイ エンド ルータのギガビット イーサネット ポートから、ONS ノードのポイントツーポイント回線を 経由して、別のハイエンド ルータのギガビット イーサネット ポートに到達しています。

図 23-1 G シリーズのポイントツーポイント回線上のデータ トラフィック

G シリーズ カードは、ギガビット イーサネット上でカプセル化および転送可能な任意のレイヤ3プ ロトコル(IP や IPX など)を伝送します。データは、ギガビット イーサネット ファイバによって ONS 15454 や ONS 15454 SDH G シリーズ カードの標準 Cisco GBIC(ギガビット インターフェイス コンバータ) ONS 15327 G シリーズ カードの標準 Small Form-Factor Pluggable (SFP)モジュール に送信されます。G シリーズ カードは、ペイロードを OC-N/STM-N カード上へ多重化して、イー サネット フレームを SONET/SDH ペイロードに透過的にマップします。ペイロードが宛先 ノードに 到達すると、逆のプロセスが行われ、宛先の G シリーズ カードの標準 Cisco GBIC または SFP から ギガビット イーサネット ファイバへデータが送信されます。 Gシリーズカードは、特定の種類のエラーが発生しているイーサネットフレームを、SONET/SDH 上で転送せずに廃棄します。エラーになったイーサネット フレームとは、破損して Cycle Redundancy Check (CRC; 巡回冗長検査)エラーになったフレームや、イーサネット規格の最小のフ レーム長である 64 バイトに満たない短いフレームなどです。Gシリーズカードは、正常なフレー ムには変更を加えないで SONET/SDH ネットワークに転送します。ヘッダー内の情報は、カプセル 化や転送によって影響を受けません。たとえば、IEEE 802.1Q 情報を含む形式のパケットは、影響 を受けずにプロセスを通過します。

IEEE 802.3z のフロー制御とフレーム バッファリング

G シリーズ カードでは、IEEE 802.3z のフロー制御とフレーム バッファリングにより、データ トラ フィックの輻輳を緩和できます。オーバーサブスクライブを避けるために、各ポートの送受信チャ ネルでは 512 KB のバッファ メモリを利用できます。イーサネット ポートのバッファ メモリが容 量に近づくと、G シリーズ カードは IEEE 802.3z のフロー制御を使用して、ギガビット イーサネッ ト接続の反対側で送信元にポーズ フレームを送信します。

ポーズ フレームは、送信元に一定期間パケットの送信を停止するように指示します。送信側ステーションは、要求された時間が経過してから残りのデータを送信します。図 23-1 は、G シリーズ カードと接続されているスイッチで送受信されているポーズ フレームを示しています。

G シリーズ カードには対称フロー制御機能があります。対称フロー制御により、G シリーズ カードは、外部装置から送信されたポーズ フレームに応答し、ポーズ フレームを外部装置に送信できます。R4.0 より前のソフトウェアでは、G シリーズ カードのフロー制御は非対称でした。つまり、カードはポーズ フレームを送信しますが、受信したポーズ フレームは廃棄します。

Release 5.0 以降のソフトウェアでは、自動ネゴシエーションとフロー制御を CTC で個別にプロビ ジョニングできます。自動ネゴシエーションが失敗すると、リンクがダウンします。

自動ネゴシエーションとフロー制御の両方をイネーブルにすると、G シリーズ カードでは接続され ているイーサネット装置に対して対称フロー制御が提案されます。フロー制御を使用するかどうか は、自動ネゴシエーションの結果によって異なります。

自動ネゴシエーションがイネーブルで、フロー制御がディセーブルの場合、Gシリーズカードでは 自動ネゴシエーションする際に、フロー制御が提案されません。このネゴシエーションが成功する のは、接続されている装置でフロー制御なしが同意された場合だけです。

自動ネゴシエーションがディセーブルの場合、接続されている装置のプロビジョニングは無視され ます。G シリーズ カードのフロー制御のイネーブルまたはディセーブルは、G シリーズ カードの プロビジョニングのみに基づきます。

このフロー制御メカニズムでは、送受信装置のスループットが、STS/VC 回線の帯域幅のスループットと一致します。たとえば、1 台のルータが G シリーズ カード上のギガビット イーサネット ポートに送信を行うとします。この特定のデータ レートは 622 Mbps を超える場合がありますが、G シリーズ ポートに割り当てられている SONET 回線は STS-12c (622 Mbps)のみです。この例では、ONS 15454 はポーズ フレームを送信し、一定期間ルータからの送信を遅らせるように要求します。フロー制御と十分なポート単位のバッファリング機能を使用すると、フレーム損失の大部分を制御できるため、回線レートの最大容量 (STS-24c)未満でプロビジョニングされる専用回線サービスが効率良く行えます。同じことが ONS 15454 SDH または ONS 15327 に適用されます。

Gシリーズカードでは、フロー制御のスレッシュホールドプロビジョニングが可能であり、ユーザ は3つの基準(バッファサイズ)設定、すなわち、デフォルト、低遅延、カスタム設定から1つを 選択できます。デフォルトが通常の使用に最適であり、R4.1より前のソフトウェアでは、デフォル トしか適用できませんでした。低遅延は、STS-1での Voice-over-IP(VoIP)のようなサブレートのア プリケーションに適しています。バッファリングが十分でない、ベストエフォートトラフィック、 またはアクセスする回線が長距離である接続装置では、Gシリーズカードを高遅延に設定します。 カスタム設定では、Flow Ctrl Lo と Flow Ctrl Hi に対して正確なバッファ サイズのスレッシュホール ドを設定できます。フロー制御高(Flow Ctrl Hi)の設定は接続されているイーサネット装置に [Pause On] フレームを送るための基準であり、このフレームは装置に一時的に送信を停止させる信号を送 信します。フロー制御低 (Flow Ctrl Lo)の設定は接続されているイーサネット装置に [Pause Off] フ レームを送るための基準であり、このフレームは装置に送信を再開させる信号を送信します。G シ リーズ カードでは、ポートに接続されている装置で自動ネゴシエーションがイネーブルになってい る場合にだけ、ポート上でフロー制御をイネーブルにできます。

(注)

自動ネゴシエーションを R 4.0 より前のソフトウェア リリースを実行している G シリーズ カード と相互運用するように設定している外部のイーサネット装置では、R4.0 以降のソフトウェアを実行 している G シリーズ カードと相互運用する際に自動ネゴシエーションの設定を変更する必要はあ りません。

GEC/IEEE 802.3ad リンク集約

G シリーズは、シスコ独自の規格である Gigabit EtherChannel (GEC)や IEEE 802.3ad 規格などのあ らゆる形式のリンク集約技術をサポートします。G シリーズ カードのエンドツーエンド リンク完 全性機能により、回線でイーサネット リンクをエミュレートできます。これにより、あらゆる種類 のレイヤ 2 および レイヤ 3 再ルーティングを、G シリーズ カードで適切に処理できます。図 23-2 に、G シリーズ カードの GEC サポートを示します。

図 23-2 G シリーズ カードの GEC のサポート

G シリーズ カードは、GEC を直接実行しませんが、接続されているイーサネット装置間のエンド ツーエンドの GEC 機能をサポートしています。GEC を実行している 2 つのイーサネット装置が G シリーズ カードを通じて ONS ネットワークに接続している場合、ONS SONET/SDH 側のネット ワークは EtherChannel 装置に対して透過的になります。2 つの EtherChannel 装置は、相互に直接接 続されているかのように動作します。G シリーズ カードのパラレル回線サイズを任意に組み合わせ て、GEC のスループットをサポートできます。

GEC は、接続されているイーサネット装置に回線レベルのアクティブな冗長性と保護(1:1)を提供します。また、パラレルのGシリーズデータリンクを1つにバンドルして、より集約された帯域幅を提供することもできます。Spanning Tree Protocol(STP;スパニングツリープロトコル)は、バンドルされたリンクが1本のリンクであるかのように動作し、GECに対して、これらの複数のパラレルパスを利用することを許可します。GECを使用しない場合、STPは1つのノンブロッキングパスのみを許可します。また、GECは、各種カード(または各種ノード)上のポートのグループをサポートできるため、Gシリーズカードのカードレベルの保護と冗長性を提供します。これにより、1つのポートまたはカードに障害が発生した場合でもトラフィックはほかのポートまたはカードに再ルーティングされます。

エンドツーエンドのイーサネット リンク完全性機能は、接続されている装置上の GEC 機能と組み 合せて使用できます。この機能を組み合わせることにより、スパニングツリーの再ルーティングな どの代替方法よりも応答時間が短いイーサネット トラフィックの回復スキームが提供されます。ま た、予備の帯域幅を予約する必要がないため、帯域幅をより効率的に利用できます。

イーサネット リンク完全性のサポート

Gシリーズカードは、エンドツーエンドのイーサネットリンク完全性をサポートします(図 23-3)。 この機能は、イーサネット専用回線サービスの提供と、接続されているイーサネット装置でのレイ ヤ2およびレイヤ3プロトコルの適切な運用に不可欠です。エンドツーエンドのイーサネットリン ク完全性では、エンドツーエンドのパスの一部に障害が発生すると、パス全体で障害が発生したこ とになります。パス全体の障害は、パスの各端にある送信レーザーがオフになることで確認できま す。接続されているイーサネット装置は、ディセーブルになった送信レーザーを搬送波損失と認識 し、その結果非アクティブリンクとみなします。

図 23-3 エンドツーエンドのイーサネット リンク完全性のサポート

搬送波損失状態を無視するように設定できるネットワーク装置もあります。搬送波損失状態を無視 するように設定された装置が一方の端でGシリーズカードに接続されている場合は、障害を回避 してトラフィックをルーティングするために代替の方法(レイヤ2またはレイヤ3のキープアライ ブメッセージの使用など)を用意する必要があります。通常、このような代替方法の応答時間は、 エラー状態の識別にリンク状態を使用する方法よりもかなり長くなります。

図 23-3 に示すように、パスの任意のポイントでの障害によって、各端のGシリーズカードではTx 送信レーザーがディセーブルになり、その結果、両端の装置はリンクがダウンしたことを検出しま す。イーサネット ポートの1つが管理上ディセーブルな場合やループバック モードで設定されて いる場合、エンドツーエンドのイーサネット パスは使用できなくなるため、そのポートはエンド ツーエンドのリンク完全性に関して「障害」とみなされます。ポートの「障害」により、パスの両 端もディセーブルになります。

イーサネット ポートおよび SONET/SDH ポートの管理状態とサービス状態およびソー ク時間

G シリーズ カードは、イーサネット ポートおよび SONET/SDH 回線の管理状態とサービス状態を サポートします。カードと回線のサービス状態の詳細については、『*Cisco ONS 15454 Reference Manual*』または『*Cisco ONS 15454 SDH Reference Manual*』の付録「Administrative and Service States」 を参照してください。

ギガビット イーサネット ポートには、IS AINS 管理状態を含む、サービス状態を設定できます。IS AINS はポートを最初に OOS-AU AINS 状態に設定します。このサービス状態では、アラーム レポー トは抑制されますが、トラフィックは伝送され、ループバックは許可されます。ソーク期間が終了 すると、ポートの状態が IS-NR に変わります。アラームがレポートされるかどうかに関係なく、発 生した障害状態は、CTC の Conditions タブまたは TL1 の RTRV-COND コマンドを使用して取得で きます。

イーサネット ポートのアラームおよび状態である、CARLOSS および TPTFAIL の2 つは、ポート が稼動中になるのを防ぎます。ギガビット イーサネット ポートを IS AINS 状態に設定して G シリー ズ回線をプロビジョニングし、アラームが抑制されている場合でも、この状態が発生します。これ は、G シリーズのリンク完全性機能がアクティブであり、パス内のすべての SONET およびイーサ ネット エラーが解決されるまで、どちらかの終端の Tx 送信レーザーがイネーブルにならないため です。リンク完全性機能によりエンドツーエンド パスがダウンした状態にある限り、両方のポート の状態は、AINS から IS への状態の変更を抑制するために必要な 2 つの状態のうちの少なくとも 1 つになります。これにより、ポートは AINS 状態のままとなり、アラーム レポートが抑制されます。

また、この状態はGシリーズカードの SONET/SDH 回線にも適用されます。SONET/SDH 回線の状 態が IS AINS 状態に設定されて、回線状態が IS に変わる前にイーサネット エラーが発生した場合、 イーサネット エラーが両端で解決されるまで、リンク完全性は回線の状態が IS に変わるのも防止 します。管理状態が IS AINS である限り、サービス状態は OOS-AU AINS となります。イーサネッ ト エラーまたは SONET エラーがなくなると、リンク完全性機能は両端でギガビット イーサネット Tx 送信レーザーをイネーブルにします。同時に、AINS カウントダウンが通常どおりに開始されま す。経過時間中に別の状態が発生しない場合は、各ポートの状態が IS NR 状態に変わります。AINS カウントダウン中、ソーク時間の残り時間が CTC および TL1 で使用できます。ソーク期間に状態 が再度発生すると、AINS ソーキング ロジックが最初から再開します。

IS AINS 状態にプロビジョニングされた SONET/SDH 回線は、回線のどちらかの側のギガビット イーサネット ポートの状態が IS NR に変わるまで最初の OOS 状態のままです。AINS から IS への 変更が完了するかどうかに関係なく、リンク完全性機能によりギガビット イーサネット ポートの Tx 送信レーザーがオンになると、SONET/SDH 回線はイーサネット トラフィックを転送し統計情報 をカウントします。

G シリーズ カードの回線構成

ここでは、G シリーズ カードのポイントツーポイント回線および手動クロスコネクトについて説明 します。イーサネットの手動クロスコネクトを使用すると、ONS 以外の SONET/SDH ネットワーク セグメントをブリッジングできます。

G シリーズ カードのポイントツーポイント イーサネット回線

G シリーズ カードは、ポイントツーポイント回線構成をサポートします(図 23-4)。回線は、SONET または SDH ライン カードと同様に CTC で設定できます。G シリーズ カードは、回線サービス状 態をサポートします。

ONS 15454 および ONS 15327 でプロビジョニング可能な SONET 回線のサイズは、STS 1、STS 3c、 STS 6c、STS 9c、STS 12c、STS 24c、および STS 48c です。ONS 15454 SDH でプロビジョニング可 能な SDH 回線のサイズは、VC4、VC4-2c、VC4-3c、VC4-4c、VC4-8c、VC4-9c、および VC4-16c で す。各イーサネット ポートは G シリーズ カードの個々の STS/VC 回線にマップされます。

図 23-4 G シリーズ カードのポイントツーポイント回線

G シリーズ カードでは、有効な回線サイズのリストの中から最大 4 つの回線を組み合わせて使用で きます。ただし、回線サイズの合計が 48 本の STS または 16 本の VC4 以内になるようにする必要 があります。

ハードウェア上の制限で、Gシリーズカードにドロップされる回線の組み合せには、さらにいくつ かの制約があります。この制約はノードで透過的に強制されるもので、回線の組み合せの制限を気 にする必要はありません。

1 本の STS-24c または VC4-8c がカードで終端する場合、そのカードの残りの回線を別の 1 本の STS-24c または VC4-8c に使用することも、合計 12 本以内の STS または合計 4 本以内の VC4 にな るように(つまり、カードでの STS の合計が 36 本または VC4 の合計が 12 本) STS-12c または VC4-4c 以内のサイズの回線を組み合わせることもできます。

STS-24c または VC4-8c 回線がカードにドロップされない場合は、全帯域幅が無制限に使用できます(たとえば、1本の STS-48c または VC4-16c や4本の STS-12c または VC4-4c 回線などを使用できます)。

この STS-24c または VC4-8c の制限は 1 本の STS-24c または VC4-8c 回線がドロップされた場合にの み適用されるので、この制限による影響は最小となります。カード上の STS-24c または VC4-8c 回 線は、ほかのサイズの回線と分離してグループ化します。グループ化した回線は、ほかの G シリー ズ カードにドロップできます。

G シリーズ カードは STS/VC クロスコネクトのみを使用します。VT レベルのクロスコネクトは使用されません。

G シリーズ カードは E シリーズ カードと接続できません。相互運用性の詳細については、第 20 章 「ONS イーサネット カード上の POS」を参照してください。

G シリーズ カードの手動クロスコネクト

ONS ノードで 通常のイーサネット回線のプロビジョニングを行うためには、ノード間でエンド ツーエンド CTC を確認できる必要があります。ONS ノード間に他のベンダーの機器が配置されて いる場合、そのベンダーの SNMP/Target Identifier Address Resolution Protocol (OSI/TARP; 簡易ネッ トワーク管理プロトコル / ターゲット ID アドレス解決プロトコル) ベースの機器では、ONS ノー ドの TCP/IP ベースの Data Communication Channel (DCC; データ通信チャネル)のトンネリングは 使用できません。矛盾した DCC を回避するために、イーサネット回線は、ONS 以外のネットワー クを使用して、STS/VC チャネルに手動でクロスコネクトする必要があります。手動によるクロス コネクトを使用すると、ONS 以外のネットワークを活用しながら、イーサネット回線を ONS ノー ド間で実行できます(図 23-5)。

(注)

ここでは「クロスコネクト」および「回線」を次のような意味で使用します。「クロスコネクト」 は、1つの ONS ノード内で発生する接続を表し、回線が ONS ノードに出入りできることを意味し ます。「回線」は、トラフィック送信元(トラフィックが ONS ノード ネットワークへ入る場所)か らドロップまたは宛先(トラフィックが ONS ノード ネットワークを出る場合)までの一連の接続 を表します。

図 23-5 G シリーズ カードの手動クロスコネクト

G シリーズ ギガビット イーサネット トランスポンダ モード

ONS 15454 および ONS 15454 SDH の G シリーズ カードはトランスポンダとして設定できます。 ONS 15327 の G シリーズ カードはトランスポンダとして設定できません。トランスポンダ モード は、G シリーズでサポートされている GBIC (SX、LX、ZX、Coarse Wavelength Division Multiplexing [CWDM; 低密度波長分割多重] や Dense Wavelength Division Multiplexing [DWDM; 高密度波長分割 多重]) とともに使用できます。図 23-6 は、トランスポンダ モードのカードレベルでの概略を示し ています。

図 23-6 G シリーズの1 ポート トランスポンダ モードのアプリケーションのカードレベルでの概略

トランスポンダとして設定された G シリーズ カードは、SONET/SDH 用に設定された G シリーズ カードとは全く異なる動作をします。SONET/SDH 設定では、G シリーズ カードはカード正面の イーサネット ポートと GBIC からギガビット イーサネット トラフィックを送受信します。このイー サネット トラフィックは、クロスコネクト カードと光カードを介して多重化されて SONET/SDH ネットワークを出入りします (図 23-7 参照)。

図 23-7 デフォルトの SONET/SDH モードでの G シリーズ

トランスポンダ モードでは、G シリーズのイーサネットのトラフィックはクロスコネクトカードや SONET/SDH ネットワークと通信することなく G シリーズ カードの内部に留まり、カード上で GBIC へ送り返されます (図 23-8)。

図 23-8 トランスポンダ モードでの G シリーズ カード (2 ポート双方向)

G シリーズ カードはトランスポンダ モードあるいは SONET/SDH デフォルトに設定できます。1 つ でもポートがトランスポンダ モードにプロビジョニングされると、カードはトランスポンダ モー ドとなり、カードのすべてのポートが SONET/SDH モードに戻らないと SONET/SDH 回線を設定で きません。G シリーズ ポートをトランスポンダ モードにプロビジョニングするには、『*Cisco ONS 15454 Procedure Guide*』または『*Cisco ONS 15454 SDH Procedure Guide*』を参照してください。 G シリーズ カードをトランスポンダ モードに設定する前に、すべての SONET/SDH 回線を削除す る必要があります。ONS 15454 または ONS 15454 SDH は、12 個のトラフィック スロットの任意の スロットまたはすべてのスロットでトランスポンダ モードに設定された G シリーズ カードをホス ティングでき、最大 24 双方向、あるいは 48 単方向のラムダをサポートします。

トランスポンダとして設定された G シリーズ カードは、次の3つのいずれかのモードになります。

- 2ポート双方向トランスポンダモード
- 1 ポート双方向トランスポンダ モード
- 2ポート単方向トランスポンダモード

2 ポート双方向トランスポンダ モード

2 ポート双方向トランスポンダ モードは、1 つの G シリーズ カード ポートの送受信イーサネット フレームを他のポートの送受信イーサネット フレームへマッピングします(図 23-8)。トランスポ ンダの双方向ポート マッピングは同一カードの任意の 2 つのポート間で可能です。

1 ポート双方向トランスポンダ モード

1 ポート双方向トランスポンダ モードは、あるポートで受信されたイーサネット フレームを同一 ポートの送信側へマッピングします(図 23-9)。このモードは、ポートが他のポートではなく同一 ポートにマッピングされる点を除けば、2 ポート双方向トランスポンダと同じです。1 ポート双方 向トランスポンダ モードのデータ パスはファシリティ ループバックと同一ですが、トランスポン ダ モードは保守モードではなく、搬送波損失(CARLOSS)のような非 SONET/SDH アラームを抑 制することはありません。

このモードは、中間 DWDM 信号再生成で使用し、CWDM および DWDM GBIC の広帯域容量の利 点を利用できます。その結果、ノードは複数の波長で受信できますが、送信できるのは固定波長で のみとなります。

図 23-9 1 ポート双方向トランスポンダ モード

9091

2 ポート単方向トランスポンダ モード

1つのレシーバーで受信されたイーサネットフレームは、他のポートの送信側から送信されます。 このモードは、1つの方向だけが使われる点を除けば、2ポート双方向トランスポンダと同じです (図23-10)。1つのポートは単方向送信専用としてプロビジョニングし、もう1つのポートは単方向 受信専用としてプロビジョニングする必要があります。単方向送信用として設定されたポートは受 信ポート上の損失信号を無視するので、受信ポートのファイバを接続する必要はありません。単方 向受信用として設定されたポートは送信レーザーをオンにしないので、送信ポートのファイバを接 続する必要はありません。

このモードは、たとえば、ある種の Video on Demand (VoD; ビデオ オン デマンド)アプリケーションのように、1方向のみが CWDM または DWDM 上で送信される必要がある場合に使用されます。

図 23-10 2 ポート単方向トランスポンダ

G シリーズ トランスポンダ モードの特性

G シリーズ カードのトランスポンダ モードでの動作は、SDH モードでの G シリーズ カードとはい くつかの点で異なっています。

- トランスポンダ モードに設定された G シリーズ カードは、ユーザが SONET/SDH 回線をプロ ビジョニングするときに、CTC のプロビジョニング可能なカード リストに表示されません。
- トランスポンダモードに設定されたGシリーズカードはクロスコネクトカード(たとえば、 XC10G)を必要としませんが、TCC2/TCC2Pカードを必要とします。
- トランスポンダに設定された G シリーズのポートは、フロー制御のポーズ フレームには応答 せず、ポーズ フレームを透過的にカードに通します。SONET/SDH モードでは、ポートはポー ズ フレームに応答し、ポーズ フレームをカードに通しません。
- TL1によるプロビジョニングではトランスポンダモードの設定はサポートされていません。ただし、トランスポンダモードおよびポート情報は、TL1コマンドのRTRV-G1000で表示できます。
- すべての SONET/SDH 関連のアラームは、カードがトランスポンダ モードに設定されている場合には抑制されます。

9091

- トランスポンダ モードの G1000-4 や G1K-4 カードには、スロット番号やクロスコネクトの制 約はありません。
- ファシリティと端末のループバックは、単方向のトランスポンダモードでは完全にはサポート されていませんが、両方の双方向トランスポンダモードではサポートされています。
- イーサネットの自動ネゴシエーションはサポートされておらず、単方向トランスポンダモードではプロビジョニングできません。自動ネゴシエーションは、両方の双方向トランスポンダモードでサポートされています。
- エンドツーエンドのリンク完全性機能はトランスポンダモードでは使用できません。

(注)

通常の SONET/SDH モードでは、G シリーズ カードはエンドツーエンドのリンク完全性機能をサ ポートします。この機能はイーサネットや SONET/SDH 障害により、対応するイーサネット ポー トの送信レーザーをディセーブルにしてオフにします。トランスポンダ モードでは、イーサネッ ト ポート上の信号損失は、対応するポートの送信信号には影響を与えません。

G シリーズ カードのトランスポンダ モードでの動作は、G シリーズ カードの SONET/SDH モード での動作に類似している点もあります。

- Gシリーズのイーサネット統計情報は、両方のモードのポートで使用可能です。
- イーサネット ポート レベルのアラームや条件は、両方のモードのポートで使用可能です。
- ジャンボ フレームや非ジャンボ フレーム動作は、両方のモードで同一です。
- すべての既存のカウンタや PM パラメータに対する収集、レポート、スレッシュホールド条件は、両方のモードで同一です。
- SNMP および RMON のサポートは両方のモードで同一です。

Eシリーズ カードのアプリケーション

ONS 15454、ONS 15454 SDH、ONS 15327 のすべてで E シリーズ カードをサポートします。E シ リーズ カードには、ONS 15454 および ONS 15454 SDH の E100T-12/E100T-G および E1000-2/E1000-2-G が含まれます。E100T-G と以前の E100T-12 の機能は同じです。E1000-2-G と以 前の E1000-2 も機能は同じです。XC10G カードを使用している ONS 15454 には、G バージョン (E100T-G または E1000-2-G)の E シリーズ イーサネット カードが必要です。ONS 15454 または ONS 15454 SDH は、最大 10 枚の E シリーズ カードをサポートします。E シリーズ イーサネット カードは任意の多目的スロットに装着できます。

ONS 15327 の E シリーズ カードは、E10/100-4 です。E シリーズの中でこのカードだけが、ML シ リーズ カードとの相互運用性を可能にする、LEX カプセル化の設定をサポートします。詳細につ いては、第 20章「ONS イーサネット カード上の POS」を参照してください。

ONS 15454 および ONS 15454 SDH の E シリーズ カードは、LEX カプセル化をサポートしません。

E シリーズ カード (ONS 15327 または ONS 15454) のどちらも G シリーズ カードと相互運用でき ません。

Eシリーズ カードのモード

E シリーズ カードは、マルチカード EtherSwitch グループ、シングルカード EtherSwitch、またはポートマップの3つのモードのどれか1つで動作します。マルチカード EtherSwitch グループまたはシングルカード EtherSwitch モードのE シリーズカードは、VLAN(仮想LAN) IEEE 802.1Q、STP、IEEE 802.1D などのレイヤ2機能をサポートします。ポートマップモードは、E シリーズ カードを、ストレート マッパー カードとして動作するように設定し、これらのレイヤ2機能はサポートしません。複数のE シリーズ カードを使用するノード内では、E シリーズ カードはそれぞれ、3つのモードのいずれかで動作できます。カードのモードを確認するには、CTC のイーサネット カードビューで、Provisioning > Ether Card タブをクリックします。

ポートマップモードでは、他のEシリーズモードに固有の問題を回避できます。これについては、 フィールド通知『E-Series Ethernet Line Card Packet Forwarding Limitations』で詳しく説明します。

E シリーズのマルチカード EtherSwitch グループ

マルチカード EtherSwitch グループでは、2 つ以上のイーサネット カードが 1 つのレイヤ 2 スイッ チとして機能するようにプロビジョニングします。図 23-11 に、マルチカード EtherSwitch の構成を 示します。マルチカード EtherSwitch は、ONS 15454 または ONS 15454 SDH-E シリーズ カードの 2 つのイーサネット回線ポイント間の帯域幅を STS-6c に、ONS 15327 E シリーズ カード間の帯域幅 を STS-3c に制限しますが、ノードとカードを追加して共有パケット リングを作成できます。 図 23-11 マルチカード EtherSwitch 構成

2 本の STS-3c/VC4-2c マルチカード EtherSwitch 回線をイーサネット カード上で終端させ、その後 最初の回線を削除する場合には、カードに STS-1/VC4 回線をプロビジョニングする前に、もう 1 本の STS-3c/VC4-2c 回線を削除する必要があります。最初の STS-3c/VC4-2c 回線を削除しただけで STS-1/VC4 回線を作成しようとすると、STS-1/VC4 回線は動作しませんが、アラームはこの状態を 表示しません。この状況を回避するために、2 本目の STS-3c/VC4-2c を削除してから、STS-1/VC4 回線を作成します。

E シリーズ シングルカード EtherSwitch

すべての E シリーズ カードでは、シングルカード EtherSwitch を使用すると、各イーサネット カードでは ONS ノード内に 1 つのスイッチ エンティティしか存在できません。図 23-12 に、シングル カード EtherSwitch の構成を示します。

図 23-12 シングルカード EtherSwitch 構成

ポートマップ(リニア マッパー)

ポートマップモード(リニアマッパー)では、特定のEシリーズイーサネットポートをカード固有のSTS/VC回線の1つにマップするようにEシリーズカードを設定します(図 23-13)。ポートマップモードでは、レイヤ1の転送で、ユニキャスト、マルチキャスト、および混合トラフィックの低遅延を実現できます。E100T-GカードまたはE10/100-4カード上のイーサネットとファストイーサネットは、回線レート速度で動作します。E1000-2-Gカードの最大帯域幅がSTS-12c/VC4-4cであるため、ギガビットイーサネットの転送は最大で600 Mbpsに制限されます。また、イーサネットフレームは最大1522 バイトまでのサイズがサポートされ、IEEE 802.1Q タグ付きフレームが転送できます。Q-in-Q フレーム(IEEE 802.1Q in IEEE 802.1Q ラップフレーム)の大きな最大フレームサイズはサポートされません。

図 23-13 E シリーズ カードのイーサネット ポートから STS/VC 回線へのマッピング

STS/VC 回線マッピングへの 1:1 イーサネット ポート

ポートマップ モードでは、シングルカード モードまたはマルチカード モードの E シリーズ カード でサポートされているレイヤ 2 機能 (STP、VLAN、MAC [メディア アクセス制御]アドレス学習 など)は使用できません。このモードを使用すると、クロスコネクトおよび TCC2/TCC2P カード切 り替えでのサービスに影響する時間を大幅に短縮できます。

ポートマップ モードでは、マルチカード モードとシングルカード モードと同じ方法では VLAN を サポートしません。マルチカード モードおよびシングルカード モードの E シリーズ カードのポー トは、特定の VLAN に加入することが可能ですが、ポートマップ モードの E シリーズ カードには、 レイヤ 2 機能がありません。このモードでは、ポート間でマップされた接続で外部の VLAN を透過 的に転送するだけです。ポートマップ モードの E シリーズ カードは、転送する VLAN のタグを検 査しないため、1 ~ 4096 の範囲の VLAN がポートマップ モードで転送できます。

ポートマップ モードでは、イーサネット フレーム ヘッダーの検査または検証を実行しません。イー サネットの CRC は検証され、無効なイーサネット CRC を持ったフレームはすべて廃棄されます。

また、ポートマップモードでは、任意の2枚のEシリーズカード(E100T-G、E1000-2-G、および E10/100-4 [ONS 15327のEシリーズカード])間にSTS/VC回線を作成できます。ポートマップモー ドでは、ONS 15454のEシリーズカードをMLシリーズカードまたはGシリーズカードに接続で きません。ただし、LEXカプセル化がプロビジョニングされたONS 15327 E10/100-4 カードはML シリーズカードに接続できます。

E シリーズ カード (ONS 15327 または ONS 15454)のどちらも G シリーズ カードとは相互運用で きません。

E シリーズ モードで使用可能な回線サイズ

表 23-1 に、ONS 15454、ONS 15454 SDH、および ONS 15327 の E シリーズ モードで使用可能な回 線サイズを示します。

表 23-1 ONS 15454 および ONS 15327 E シリーズ イーサネットの回線サイズ

ONS 15327 E シリーズ ポート マップおよび シングルカード EtherSwitch	ONS 15327 E シリーズ マルチ カード EtherSwitch	ONS 15454 E シリーズ ポート マップおよび シングルカード EtherSwitch	ONS 15454 E シリーズ マルチ カード EtherSwitch	ONS 15454 SDH E シリーズ ポート マップおよび シングルカード EtherSwitch	ONS 15454 SDH E シリーズ マルチ カード EtherSwitch
STS-1	STS-1	STS-1	STS-1	VC4	VC4
STS-3c	STS-3c	STS-3c	STS-3c	VC4-2c	VC4-2c
STS-6c	_	STS-6c	STS-6c	VC4-4c	
STS-12c	—	STS-12c	—	—	

E シリーズ モードで使用可能な合計帯域幅

表 23-1 に、ONS 15454、ONS 15454 SDH、および ONS 15327 の E シリーズ モードで使用可能な合 計帯域幅を示します。

表 23-2 ONS 15454 および ONS 15327 E シリーズの使用可能な合計帯域幅

ONS 15327 E シリーズ ポート マップおよび シングルカード EtherSwitch	ONS 15327 E シリーズ マルチ カード EtherSwitch	ONS 15454 E シリーズ ポート マップおよび シングルカード EtherSwitch	ONS 15454 E シリーズ マルチ カード EtherSwitch	ONS 15454 SDH E シリーズ ポート マップおよび シングルカード EtherSwitch	ONS 15454 SDH E シリーズ マルチ カード EtherSwitch
STS-12cの合計	STS-3c の合計	STS-12c の合計	STS-6c の合計	VC4-4c の合計	VC4-2c の合計

E シリーズ カードの IEEE 802.3z フロー制御

E100T-G または E10/100-4 (任意のモードで動作)と E1000-2-G (ポートマップ モードで動作)は、 IEEE 802.3z 対称フロー制御をサポートし、接続されているイーサネット装置と自動ネゴシエーショ ンする際に対称フロー制御を提案します。フロー制御を機能させるには、E シリーズのポートと接 続されているイーサネット装置を自動ネゴシエーション (AUTO)モードに設定する必要がありま す。接続されているイーサネット装置でフロー制御がイネーブルになっていることも必要です。フ ロー制御メカニズムでは、E シリーズ カードは、外部装置から送信されたポーズ フレームに応答 し、ポーズ フレームを外部装置に送信します。

E100T-G または E10/100-4 (任意のモードで動作) および E1000-2-G (ポートマップ モードで動作) の場合、フロー制御では送受信装置のスループットが STS 回線の帯域幅のスループットと一致しま す。同様のことが ONS 15454、ONS 15454 SDH、および ONS 15327 に適用されます。たとえば、 ルータがポートマップ モードの E シリーズ カードのギガビット イーサネットに送信するとしま す。ルータから送信されるデータ レートは 622 Mbps を超える場合もありますが、ポートマップ モードの E シリーズ カード ポートに割り当てられる ONS 15454 回線の帯域幅は、最大で STS-12c (622.08 Mbps)です。このシナリオでは、ONS 15454 はポーズ フレームを送信し、送信ルータに一 定の期間送信を遅らせるように要求します。

) ポートマップモードのEシリーズカードとSmartBitsテストセット間のフロー制御をイネーブルにするには、SmartBitsテストセットでMIIレジスタのビット5を手動で0に設定します。ポートマップモードのEシリーズカードとIxiaテストセット間のフロー制御をイネーブルにするには、接続されているIxiaポートのPropertiesメニューでEnable the Flow Controlを選択します。

E シリーズの VLAN サポート

CTC ソフトウェアを使用して、E シリーズ VLAN をプロビジョニングできます。特定のセットの ポートで、ONS ノード に対するブロードキャスト ドメインを定義します。VLAN ポートの定義に は、すべてのイーサネットとパケット交換の SONET/SDH ポート タイプが含まれます。VLAN の IP アドレス ディスカバリ、フラッディング、および転送はすべて、これらのポートに制限されます。

VLANの数が多すぎると(100以上)、トラフィックが停止する可能性があります。

IEEE 802.1Q ベースの VLAN メカニズムでは、一般的な SONET/SDH 転送インフラストラクチャ上 で加入者 LAN トラフィックを論理的に分離します。各加入者はそれぞれのサイトにイーサネット ポートを 1 つずつ持ち、それぞれの加入者が 1 つの VLAN を割り当てられます。加入者の VLAN データは共有回線上を流れますが、加入者にはサービスは専用のデータ転送のように見えます。

ポートマップ モードは VLAN をサポートしません。

回線で使用される VLAN の数と使用可能な VLAN の合計数は、CTC の VLAN カウンタに表示され ます(図 23-14)。

図 23-14 使用可能な VLAN を示す Edit Circuit ダイアログボックス

E シリーズ カードの Q タギング (IEEE 802.1Q)

シングルカード モードとマルチカード モードの E シリーズ カードは、IEEE 802.1Q をサポートします。IEEE 802.1Q を使用すると、同じ物理ポートに複数の 802.1Q VLAN を収容できます。各 IEEE 802.1Q VLAN はそれぞれ別の論理ネットワークを表します。ポートマップ モードの E シリーズカードは IEEE 802.1Q タグ (Q タグ)を転送しますが、これらのタグの削除や追加は行いません。

ONS ノード は、IEEE 802.1Q をサポートするイーサネット装置とも、IEEE 802.1Q をサポートしな いイーサネット装置とも相互運用できます。E シリーズ イーサネット ポートに接続されている装 置が IEEE 802.1Q をサポートしない場合、ONS ノード は Q タグを内部でのみ使用します。ONS ノー ドはこれらの Q タグを特定のポートに関連付けます。

IEEE 802.1Q をサポートしないイーサネット装置を使用している場合、ONS ノード は ONS ネット ワークに入るタグなしのイーサネット フレームを取得し、Q タグを使用してそのパケットを ONS ネットワークの入力ポートと関連付けられた VLAN に割り当てます。受信側の ONS ノードは、フ レームが ONS ネットワークを出る時に、(古いイーサネット装置が、IEEE 802.1Q パケットを不正 なフレームであると誤って識別しないように)Q タグを削除します。ONS ネットワークの入力ポー トと出力ポートは、Untag に設定して削除できるようにする必要があります。Untag は、ONS ポー トのデフォルト設定です。図 23-15 の例 1 は、ONS ネットワーク内でのみ Q タグを使用する例を示 しています。

図 23-15 VLAN を経由する Q タグの推移

ONS ノードは、IEEE 802.1Q をサポートする外部のイーサネット装置によって付加された Q タグを 使用します。パケットは、既存の Q タグが付いて ONS ネットワークに入ります。ONS ノードは ONS ネットワーク内でこの同じ Q タグを使用してパケットを転送し、パケットが ONS ネットワー クを出るときには Q タグが付加された状態のままにします。この処理が行われるためには、ONS ネットワークの入力ポートと出力ポートを Tagged に設定しておく必要があります。図 23-15 の例 2 は、O タグを使用して、ONS ネットワークに出入りするパケットの処理の様子を表しています。

ポートの Tagged および Untag の設定手順の詳細については、『Cisco ONS 15454 Procedure Guide』、 『Cisco ONS 15454 SDH Procedure Guide』、または『Cisco ONS 15327 Procedure Guide』を参照してく ださい。

ONS ノードは、別のノードのネットワーク ビューにノードが表示されているときは、そのノード が同じ SONET/SDH ネットワークに存在するかあるいは DCC を通じて接続されているかに関係な く、必ず VLAN を伝播しています。たとえば、DCC で接続されていない 2 つの ONS ノードが同 じログイン ノード グループに属している場合、VLAN はその 2 つの ONS ノード間で伝播されま す。ONS ノードが同じ SONET/SDH リングに属していない場合でも、VLAN は伝播されます。

E シリーズ カードの優先キューイング (IEEE 802.1Q)

優先キューイングを行わないネットワークでは、すべてのパケットを First-in-first-out (FIFO; 先入 れ先出し)の原則に基づいて処理します。優先キューイングを行うと、イーサネット トラフィック がプライオリティ レベル別にマッピングされるため、ネットワーク輻輳の影響が緩和されます。E シリーズ カードは優先キューイングをサポートします。E シリーズ カードは IEEE 802.1Q で指定さ れている 8 つのプライオリティを 2 つのキュー (ロー プライオリティとハイ プライオリティ)に マップします (表 23-3)。

表 23-3 優先キューイング

ユーザのプライオリティ	キュー	割り当て帯域幅
0, 1, 2, 3	Π-	30%
4、5、6、7	ハイ	70%

Q タグは、ネットワークを通じて優先キューイング情報を伝送します(図 23-16)。

図 23-16 優先キューイングのプロセス

ONS ノードでは、「漏出バケット」アルゴリズムを使用して重み付けプライオリティを設定します。 完全プライオリティとは反対に、重み付けプライオリティでは、優先順位の高いパケットに帯域幅 へのアクセスをより多く提供しますが、優先順位の低いパケットをまったく優先使用しないわけで はありません。ネットワーク輻輳の期間中、帯域幅のおよそ 70 % がハイ プライオリティのキュー に、残りの 30 % はロー プライオリティのキューに振り分けられます。過度に輻輳しているネット ワークでは、パケットが廃棄されます。

IEEE 802.1Q は、以前は IEEE 802.1P と呼ばれていました。

ポートマップ モードの E シリーズ カードおよび G シリーズ カードは優先キューイング (IEEE 802.1Q)をサポートしません。

E シリーズのスパニングツリー(IEEE 802.1D)

E シリーズ カードでは IEEE 802.1D の STP を実行します。E シリーズ カードは、回線ごとに一般的 な STP を合計 8 つの STP インスタンスまでサポートします。VLAN 単位の STP はサポートされま せん。シングルカード モードでは、回線の作成中に回線単位で STP をディセーブルまたはイネー ブルにできます。STP をディセーブルにすると、使用可能な STP インスタンスの数が保持されます。

STP は、イーサネット ポートおよび OC-N/STM-N ポートを含むすべてのパケット交換ポートで動 作します。イーサネット ポート上では、STP はデフォルトでイネーブルになっていますが、ディ セーブルにすることもできます。ユーザはまた、ポイントツーポイント構成でシングルカード EtherSwitch (束になっていない)として設定したイーサネット カードで、回線単位で STP をディ セーブルまたはイネーブルにできます。ただし、回線単位で STP 保護をオフにすると、SONET/SDH システムは、その回線でイーサネット トラフィックを保護しなくなるため、イーサネット トラ フィックはイーサネット ネットワークの別のメカニズムによって保護される必要があります。 OC-N/STM-N インターフェイス ポートでは、ONS ノードはデフォルトで STP を有効化し、ユーザ が STP をディセーブルにすることはできません。

イーサネット カードは、イーサネット ポート上で STP をイネーブルにし、接続されているイーサ ネット装置への冗長パスを作成できます。STP では、機器とファシリティの両方が障害から保護さ れるようにカードを接続します。

STP はネットワーク ループを検出して排除します。STP が、2 つのネットワーク ホスト間で複数の パスを検出した場合は、2 つのネットワーク ホスト間のパスが1 つだけになるまでポートをブロッ クします(図 23-17)。パスを1 つにすることで、ブリッジ ループの発生を回避できます。これは、 必然的にループを含む共有パケット リングにとって重要です。

図 23-17 STP ブロック パス

ループを削除するために STP では、広域ネットワークのすべてのスイッチにわたるツリーを定義し ます。STP は、一定の冗長データパスをスタンバイ(ブロック)状態にします。STP のあるネット ワーク セグメントが到達不能になると、STP アルゴリズムは STP トポロジーを再構成し、ブロッ クされたパスを再度有効にして、リンクを再確立します。STP 操作はエンド ステーションに透過的 であり、単一の LAN セグメントへの接続と、複数のセグメントがあるスイッチド LAN への接続は、 エンド ステーションでは区別されません。ONS ノードは、回線ごとに 1 つの STP インスタンス、 ONS ノードごとに最大 8 つの STP インスタンスをサポートします。

Circuit ウィンドウのスパニングツリー マップには、転送スパンとブロック スパンが表示されます (図 23-18)。

図 23-18 Circuit ウィンドウのスパニングツリー マップ

(注)

緑色は、転送スパンを表し、紫はブロック(保護)スパンを表します。パケット リング構成の場 合は、1つ以上のスパンが紫色になります。

注意

STP 保護がイネーブル化されている複数の回線では、それらの回線が1枚の共通カードを通過し、 同じ VLAN を使用する場合には、ブロッキングが発生します。

(注) E シリーズ カードのポートマップ モードは STP (IEEE 802.1D)をサポートしません。

E シリーズ カードの複数インスタンス スパニングツリーと VLAN

ONS ノードでは、ループトポロジーで VLAN をサポートするために STP の複数のインスタンスを 動作させます。SONET/SDH リング上の別個の回線を、それぞれの VLAN グループ専用の回線にで きます。各回線はそれぞれ独自の STP を実行して、複数リング環境で VLAN 接続を維持します。

回線単位のスパニングツリー

ポイントツーポイント構成のシングルカード EtherSwitch E シリーズ カードでは、回線単位でも STP をディセーブルまたはイネーブルにできます。この機能で、スパニング ツリー保護回線を同一カー ド上の保護されていない回線と混在させることができます。また、同一ノードにある2枚のシング ルカード EtherSwitch E シリーズ カードで、相互ノード回線を構成することもできます。

Eシリーズ カードのスパニングツリー パラメータ

デフォルトの STP パラメータは、ほとんどの状況に適するように設定されています(表 23-4)。デフォルトの STP パラメータを変更する場合は、その前に Cisco Technical Assistance Center (Cisco TAC)に相談してください。連絡方法については、「テクニカル サポート」(p.xxvii)を参照してください。

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

パラメータ	説明
BridgeID	コンフィギュレーション Bridge Protocol Data Unit (BPDU; ブリッジ プロトコ
	ル データ ユニット)を送信する ONS ノードの一意の ID。 ブリッジ ID は、ブ
	リッジのプライオリティと ONS ノードの MAC アドレスを組み合わせたもの
	です。
TopoAge	最後にトポロジーが変更されてからの経過時間(秒)
TopoChanges	ノードが起動してから STP トポロジーが変更された回数
DesignatedRoot	特定の STP インスタンスの STP の指定ルート
RootCost	指定ルートへのパス コストの合計
RootPort	ルートに到達するために使用するポート
MaxAge	受信したプロトコル情報が廃棄されるまでの最大保持時間
HelloTime	スパニングツリーのルートであるブリッジまたはスパニングツリーのルート
	になろうとするブリッジによってコンフィギュレーション BPDU が送信され
	る間隔(秒)
HoldTime	指定したポートで設定情報を送信する間の最小経過時間(秒)
ForwardDelay	リスニング ステートおよびラーニング ステートのポートの経過時間

表 23-4 スパニングツリーのパラメータ

E シリーズ カードのスパニングツリー設定

スパニングツリー設定を表示するには、ノード ビューで、Provisioning > Etherbridge > Spanning Trees タブをクリックします (表 23-5)。

表 23-5 スパニングツリーの構成

カラム	デフォルト値	値の範囲
Priority	32768	0 ~ 65535
Bridge Max Age	20 秒	6~40秒
Bridge Hello Time	2秒	1~10秒
Bridge Forward Delay	15 秒	4~30秒

E シリーズ カードの回線構成

E シリーズのイーサネット回線では、ポイントツーポイント(ストレート)、共有パケットリング、 またはハブアンドスポーク構成を通じて ONS ノードをリンクできます。ノードが2つの場合は、通 常、ポイントツーポイント構成で接続します。3つ以上のノードは、通常、共有パケットリング構 成かハブアンドスポーク構成で接続します。イーサネットの手動クロスコネクトを使用すると、 個々のイーサネット回線を ONS ノードの光インターフェイス上の STS/VC チャネルに相互接続し たり、ONS 以外の SONET/SDH ネットワーク セグメントをブリッジングすることもできます。E シ リーズの回線を設定する方法については、『Cisco ONS 15454 Procedure Guide』、『Cisco ONS 15454 SDH Procedure Guide』、または『Cisco ONS 15327 Procedure Guide』を参照してください。

E シリーズ カードの回線保護

E シリーズの回線設定と SONET/SDH ネットワーク トポロジーのさまざまな組み合わせによって、 異なるレベルの E シリーズ回線保護を提供します。表 23-6 に、使用可能な保護を詳しく示します。

表 23-6 E シリーズ回線設定の保護

構成	UPSR (SNCP)	BLSR (MS-SPRing)	1 + 1
ポイントツーポイント マルチカード	なし	SONET/SDH	SONET/SDH
EtherSwitch			
ポイントツーポイント シングルカード	SONET/SDH	SONET/SDH	SONET/SDH
EtherSwitch			
ポイントツーポイント ポートマップ モード	SONET/SDH	SONET/SDH	SONET/SDH
共有パケット リング マルチカード EtherSwitch	STP	SONET/SDH	SONET/SDH
共通制御カード スイッチ	STP	STP	STP

STS/STM 回線サイズを選択してから、イーサネット接続を行ってください。

STS-12c/VC4-4c イーサネット回線を作成する場合は、イーサネット カードをシングルカード EtherSwitch モードまたはポートマップ モードに設定する必要があります。 マルチカード モードは STS-12c/VC4-4c イーサネット回線をサポートしません。

Eシリーズ カードのポイントツーポイント イーサネット回線

ONS ノードでは、ポイントツーポイント(ストレート)のイーサネット回線をシングルカード、 ポートマップ、またはマルチカードの回線として設定できます(図 23-19)。

図 23-19 マルチカード EtherSwitch のポイントツーポイント回線

シングルカード EtherSwitch モードとポートマップ モードでは、イーサネット回線の 2 つのエンド ポイント間で STS-12c の全帯域幅を利用できます(図 23-20)。

図 23-20 シングルカード EtherSwitch またはポートマップのポイントツーポイント回線

ポートマップ回線、ポイントツーポイント回線は E シリーズのポートベースの VLAN に加入できませんが、外部 VLAN を転送できます。

E シリーズ カードの共有パケット リング イーサネット回線

共有パケット リングでは、送信元ノードと宛先ノード以外にも、イーサネット STS 回線にアクセスするノードを追加できます。追加ノードのEシリーズ カード ポートは、回線の VLAN および帯 域幅を共有できます。図 23-21 に共有パケット リングを示します。実際のネットワーク アーキテクチャは、この例とは異なる場合があります。

E シリーズ カードのハブアンドスポーク イーサネット回線のプロビジョニング

ハブアンドスポーク構成は、ポイントツーポイント回線(スポーク)を集約ポイント(ハブ)に接続します。多くの場合、ハブは高速接続にリンクしており、スポークはイーサネット カードです。 図 23-22 にハブアンドスポーク リングを示します。実際のネットワーク アーキテクチャは、この例 とは異なる場合があります。

図 23-22 ハプアンドスポーク構成のイーサネット回線

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

E シリーズ カードのイーサネット手動クロスコネクト

ONS ノードで 通常のイーサネット回線のプロビジョニングを行うためには、CTC でノード間のエ ンドツーエンドでそれらを確認できる必要があります。ONS ノード間に他のベンダーの機器が配置 されている場合、そのベンダーの OSI/TARP ベースの機器では、ONS ノードにおける TCP/IP ベー スの DCC のトンネリングは使用できません。矛盾した DCC を回避するために、ONS 以外のネット ワークを使用してイーサネット回線を STS チャネルに手動で相互接続する必要があります。手動ク ロスコネクトを使用すると、ONS 以外のネットワークを利用しながら、イーサネット回線を ONS ノード間で実行できます。

ここでは「クロスコネクト」および「回線」を次のような意味で使用します。「クロスコネクト」 は、1 つの ONS ノード内の接続を表し、回線が ONS 15454 に出入りできることを意味します。回 線は、トラフィック送信元(トラフィックが ONS 15454 ネットワークに入る場所)からドロップ または送信先(トラフィックが ONS 15454 ネットワークを出る場所)までの一連の接続を表します。

RMON 仕様アラーム スレッシュホールド

ONS ノードには、ネットワーク オペレータが Network Management System (NMS; ネットワーク管 理システム)でネットワークの状態をモニタリングできる RMON 機能があります。

ONS ノードの RMON MIB (管理情報ベース)の1つは、アラームグループです。アラームグルー プは、alarmTable から構成されます。NMS は、alarmTable を使用して、ネットワークパフォーマン スのアラームが発生するスレッシュホールドを検索します。スレッシュホールドは、現在の15分 の間隔と、現在の24時間の間隔に適用されます。RMON は、イーサネット コリジョンなどいくつ かの変数をモニタリングし、その間隔の間に変数がスレッシュホールドを超えるとイベントをトリ ガーします。たとえば、スレッシュホールドが1000 コリジョンに設定されている場合、15分の間 隔の間に1001 のコリジョンが発生するとイベントがトリガーされます。CTC により、イーサネッ トの統計のスレッシュホールドをプロビジョニングできます。

RMON アラーム スレッシュホールドの手順については、『Cisco ONS 15454 Troubleshooting Guide』、 『Cisco ONS 15454 Troubleshooting Guide』、または『Cisco ONS 15327 Troubleshooting Guide』を参照 してください。

CE-100T-8 イーサネットの運用

この章では、ONS 15454 および ONS 15454 SDH でサポートされている CE-100T-8 (キャリア イー サネット)カードの運用について説明します。ONS 15454 SONET に取り付られた CE-100T-8 カー ドは SONET 動作にのみ限定されていて、ONS 15454 SDH に取り付けられた CE-100T-8 カードは SDH 動作にのみ限定されます。別バージョンの CE-100T-8 カードは、ONS15310-CL でサポートさ れています。

プロビジョニングは、Cisco Transport Controller (CTC)または Transaction Language One (TL1)を 使用して行います。Cisco IOS は、CE-100T-8 カードではサポートされていません。

イーサネット カードの仕様については、『Cisco ONS 15454 Reference Manual』または『Cisco ONS 15454 SDH Reference Manual』を参照してください。イーサネット カードの回線の詳細な設定手順 については、『Cisco ONS 15454 Procedure Guide』または『CiscoONS 15454 SDH Procedure Guide』を 参照してください。TL1 プロビジョニング コマンドについては、『Cisco ONS SONET TL1 Command Guide』または『Cisco ONS SDH TL1 Command Guide』を参照してください。

この章では、次の内容について説明します。

- CE-100T-8の概要(p.24-2)
- CE-100T-8 のイーサネットの機能(p.24-3)
- CE-100T-8の SONET/SDH 回線および機能(p.24-8)

CE-100T-8 の概要

CE-100T-8 は、8 個の 10/100 イーサネット ポートを備えたレイヤ 1 マッパー カードです。このカードは、各ポートをポイントツーポイント設定で一意の SONET 回線にマップします。図 24-1 に、 CE-100T-8 のアプリケーション例を示します。この例では、スイッチのファスト イーサネット ポートからのデータ トラフィックがポイントツーポイント回線を経由して別のスイッチのファスト イーサネット ポートに伝送されます。

CE-100T-8 カードを使用して、従来の SONET/SDH 回線のように、イーサネット専用回線サービス をプロビジョニングして管理できます。CE-100T-8 カードのアプリケーションには、キャリアクラ スのイーサネット専用回線サービスおよびハイアベイラビリティ転送があります。

CE-100T-8 カードは、イーサネット上でカプセル化および転送可能な任意のレイヤ3プロトコル(IP や IPX など)を伝送します。データネットワークからのイーサネット フレームは、イーサネット ケーブルで CE-100T-8 カード上の標準 RJ-45 ポートに送信されます。CE-100T-8 カードは、 Packet-over-SONET/SDH (POS)カプセル化を使用して SONET/SDH ペイロードにイーサネット フ レームを透過的にマップします。次に、カプセル化されたイーサネットを内部に持つ POS 回線は、 他の SONET Synchronous Transport Signal (STS; 同期転送信号)や SDH Synchronous Transport Mode (STM; 同期転送モード)と同じように、光カードに多重化されます。ペイロードが宛先ノードに達 すると、逆のプロセスが行われ、宛先の CE-100T-8 カードの標準 RJ-45 ポートからイーサネット ケーブルおよびイーサネット データ ネットワークへデータが送信されます。POS プロセスについ ては第 20 章「ONS イーサネット カード上の POS」を参照してください。

CE-100T-8 カードは、ITU-T G.707 および Telcordia GR-253 規格標準をサポートします。このカード ではソフトリセットが可能で、多くの場合エラーが発生しません。ソフトリセット中にプロビジョ ニングが変更された場合、またはソフトウェアのアップグレード中にファームウェアが置き換えら れる場合、リセットはハードリセットに相当します。CTC を使用した CE-100T-8 カードのソフト リセットの詳細については、『Cisco ONS 15454 Procedure Guide』または『Cisco ONS 15454 SDH Procedure Guide』を参照してください。

CE-100T-8 のイーサネットの機能

CE-100T-8 カードには、10BASE-T イーサネットおよび 100BASE-TX イーサネット メディア用に標準 RJ-45 コネクタを使用するフロントエンド イーサネット ポートが 8 基装備されています。イー サネット ポート 1 ~ 8 の各ポートは、対応する番号の POS ポートにそれぞれマップされます。 CE-100T-8 カードのコンソール ポートは機能しません。

CE-100T-8 カードは、正常なイーサネット フレームには変更を加えないで SONET/SDH ネットワークに転送します。ヘッダー内の情報は、カプセル化や転送によって影響を受けません。たとえば、 IEEE 802.1Q が含まれた情報は、影響を受けずにプロセスを通過します。

ONS 15454 SONET/SDH CE-100T-8 および ONS 15310-CL CE-100T-8 は、Cyclic Redundancy Check (CRC; 巡回冗長検査)を含めて最大 1548 バイトのイーサネット フレーム サイズをサポートします。 Maximum Transmission Unit (MTU; 最大伝送ユニット)サイズは 最大 1500 バイト(標準イーサネッ ト MTU)に設定されており、変更できません。標準イーサネット フレームが IEEE 802.1 Q タグま たは Multiprotocol Label Switching (MPLS; マルチプロトコル ラベル スイッチング)タグで拡張され るベビー ジャイアント フレームもサポートされています。フル ジャンボ フレームはサポートされ ません。

CE-100T-8 カードは、特定の種類のエラーが発生しているイーサネット フレームを、SONET/SDH 上で転送せずに廃棄します。エラーになったイーサネット フレームとは、破損して CRC エラーに なったフレームや、イーサネット規格の最小のフレーム長である 64 バイトに満たない短いフレー ムなどです。

多くのイーサネット属性も、Network Element (NE; ネットワーク要素)のデフォルト機能によって 利用できます。NEのデフォルト機能の詳細については、『*Cisco ONS 15454 Reference Manual*』また は『*Cisco ONS 15454 SDH Reference Manual*』の付録「Network Element Defaults」を参照してください。

自動ネゴシエーション、フロー制御、およびフレーム バッファリング

CE-100T-8 では、イーサネット リンク自動ネゴシエーションがデフォルトでオンに設定されていて います。また、ポートのデュプレックス モードや速度が auto になっているときもオンに設定され ます。CTC のカード レベルの Provisioning タブを使用して、リンク速度、デュプレックス、および フロー制御を手動で設定することもできます。

CE-100T-8 は、IEEE 802.3x フロー制御とフレーム バッファリングをサポートし、データ トラフィックの輻輳を緩和できます。フロー制御はデフォルトでオンに設定されています。

オーバーサブスクライブを避けるために、各ポートでバッファメモリを利用できます。イーサネットポートのバッファメモリがキャパシティに近づくと、CE-100T-8 は IEEE 802.3x のフロー制御を使用して、接続されているイーサネット装置にポーズ フレームを送信します。フロー制御と自動ネゴシエーション フレームは、ファスト イーサネット インターフェイスおよび接続されているイーサネット装置に対してローカルです。これらのフレームは、POS ポートを経由して送信されません。

CE-100T-8 カードには対称フロー制御機能があります。この機能により、接続されているイーサネット装置とフロー制御を自動ネゴシエーションする際に、対称フロー制御が提案されます。対称フロー制御により、CE-100T-8 カードは、外部装置から送信されたポーズフレームに応答し、ポーズフレームを外部装置に送信できます。

ポーズ フレームは、送信元に一定期間パケットの送信を停止するように指示します。送信側のス テーションは、要求された時間が経過してから、残りのデータを送信します。図 24-2 は、CE-100T-8 カードと接続されているスイッチで送受信されているポーズ フレームを示しています。 このフロー制御メカニズムでは、送受信装置のスループットが、STS 回線の帯域幅のスループット と一致します。たとえば、1台のルータが CE-100T-8 カード上のイーサネット ポートに送信を行う とします。この特定のデータ レートは 51.84 Mbps を超える場合がありますが、CE-100T-8 ポートに 割り当てられている SONET 回線は STS-1 (51.84 Mbps)のみです。この例では、CE-100T-8 はポー ズフレームを送信し、ルータからの送信を一定期間遅らせるように要求します。フロー制御と十分 なポート単位のバッファリング機能を使用すると、フレーム損失の大部分を制御できるため、回線 レートの最大容量(STS-1)未満でプロビジョニングされる、専用回線サービスが効率良く行えます。

イーサネット リンク完全性のサポート

CE-100T-8 は、エンドツーエンドのイーサネット リンク完全性をサポートします(図 24-3)。この 機能は、イーサネット専用回線サービスの提供と、接続されているイーサネット装置でのレイヤ 2 およびレイヤ 3 プロトコルの適切な運用に不可欠です。

エンドツーエンドのイーサネット リンク完全性では、エンドツーエンドのパスの一部に障害が発生 すると、パス全体で障害が発生したことになります。 リモート イーサネット ポートが SONET/SDH ネットワーク上で転送できない場合、またはリモート イーサネット ポートが無効な場合には、 CE-100T-8 カードのイーサネット ポートが無効になります。

パス全体の障害は、パスの各端にある送信ペアがオフになっていることで確認できます。接続されているイーサネット装置は、ディセーブルになった送信ペアを搬送波損失と認識し、その結果非ア クティブリンクまたはリンク障害とみなします。

図 24-3 エンドツーエンドのイーサネット リンク完全性のサポート

(注) 搬送波損失状態を無視するように設定できるネットワーク装置もあります。搬送波損失状態を無視するように設定された装置が一方の端で CE-100T-8 カードに接続されている場合は、障害を回避してトラフィックをルーティングするために代替方法(レイヤ2またはレイヤ3のキープアライブメッセージの使用など)を用意する必要があります。通常、このような代替方法の応答時間は、エラー状態の識別にリンク状態を使用する方法よりもかなり長くなります。

イーサネット ポートおよび SONET/SDH ポートの管理状態とサービス状態およびソー ク時間

CE-100T-8 カードは、イーサネット ポートおよび SONET/SDH 回線の管理状態とサービス状態をサ ポートします。カードと回線のサービス状態の詳細については、『*Cisco ONS 15454 Reference Manual*』 または『*Cisco ONS 15454 SDH Reference Manual*』の付録「Administrative and Service States」を参照 してください。

イーサネット ポートには、In-Service, Automatic In-service (IS,AINS)管理状態を含む、ESM サービス状態を設定できます。IS, AINS は、ポートを最初に Out-of-Service and Autonomous, Automatic In-Service (OOS-AU,AINS) 状態に設定します。このサービス状態では、アラーム レポートは抑制されますが、トラフィックは伝送され、ループバックは許可されます。ソーク期間が終了すると、ポートの状態が In-Service and Normal (IS-NR) に変わります。アラームがレポートされるかどうかに関係なく、発生した障害状態は、CTC の Conditions タブまたは TL1 の RTRV-COND コマンドを使用して取得できます。

イーサネット ポートのアラームおよび状態である、CARLOSS および TPTFAIL の 2 つは、ポート が稼動中になるのを防ぎます。アラーム レポートが抑制されている場合でも、イーサネット ポー トが IS,AINS 状態に設定されて CE-100T-8 回線がプロビジョニングされているときに、これが発生 します。これは、CE-100T リンク完全性機能がアクティブで、パス上のすべての SONET およびイー サネット エラーが解決されるまで両端でリンクがイネーブルにならないようになっているからで す。リンク完全性機能によりエンドツーエンド パスがダウンした状態にある限り、両方のポートの 状態は、AINS から IS への状態の変更を抑制するために必要な 2 つの状態のうちの少なくとも 1 つ になります。したがって、ポートは AINS 状態のままとなり、アラーム レポートが抑制されます。

また、ESM は CE-100T-8 カードの SONET/SDH 回線にも適用されます。SONET/SDH 回線の状態が IS,AINS に設定されて、回線状態が IS に変わる前にイーサネット エラーが発生した場合、イーサ ネット エラーが両端で解決されるまで、リンク完全性は回線の状態が IS に変わるのも防止します。 管理状態が IS,AINS である限り、サービス状態は OOS-AU,AINS となります。イーサネット エラー または SONET エラーがなくなると、リンク完全性機能が両端でイーサネット ポートをイネーブル にします。同時に、AINS カウントダウンが通常どおりに開始されます。経過時間中に別の状態が 発生しない場合は、各ポートの状態が IS-NR 状態に変わります。AINS カウントダウン中、ソーク 時間の残り時間が CTC および TL1 で使用できます。ソーク期間に状態が再度発生すると、AINS ソーキング ロジックが最初から再開します。

IS,AINS 状態にプロビジョニングされた SONET/SDH 回線は、回線の両端のイーサネット ポートの 状態が IS-NR に変わるまで最初の Out-of-Service (OOS)状態のままです。AINS から IS への変更が 完了するかどうかに関係なく、リンク完全性機能によりイーサネット ポートがオンになると、 SONET/SDH 回線はイーサネット トラフィックを転送し統計情報をカウントします。

IEEE 802.1Q CoS および IP ToS キューイング

CE-100T-8 は、優先キューイングを行うための IEEE 802.1Q Class of Service (CoS; サービス クラス) スレッシュホールドおよび IP Type of Service (ToS; サービス タイプ)(IP Differentiated Services Code Point [DSCP]) スレッシュホールドを参照しています。CE-100T-8 の CoS スレッシュホールドおよ び ToS スレッシュホールドは、ポート レベルごとにプロビジョニングします。これにより、ユー ザは、CE-100T-8 に接続されているデータ ネットワークの既存のオープンスタンダード Quality of Service (QoS; サービス品質)方式に基づくプライオリティ処理を提供できます。QoS 処理は、イー サネット ポートと POS ポートの両方に適用されます。

設定されているスレッシュホールドを超えるプライオリティのパケットまたはフレームはプライ オリティ トラフィックとして処理されます。このプライオリティ トラフィックは、通常のキュー ではなく、プライオリティ キューに送信されます。バッファリングが発生すると、プライオリティ キューのパケットが、通常のキューのパケットよりも優先されます。その結果、Voice over IP(VoIP) など、遅延に影響されやすいトラフィックなどのプライオリティ トラフィックが低遅延となります。

これらのプライオリティは個別のキューに置かれるため、優先キューイング機能は、レートベースの CIR/EIR マーク付けされたトラフィックの分離には使用しないでください(メトロ イーサネット サービス プロバイダーのエッジでときどき行われます)。その結果、同じアプリケーションのパケットが順序正しく配信されなくなることがあります。これは、一部のアプリケーションではパフォーマンスの問題の原因になります。

IP ToS タグ付きパケットの場合、CE-100T-8 は IP ToS で指定されている 256 のプライオリティのい ずれもプライオリティまたはベスト エフォートにマップします。CTC の Provisioning > Ether Ports タブを使用してカード レベル ビューで別の ToS を設定できます。CTC で指定された ToS クラスよ り高い ToS クラスは、できるだけ遅延を発生させないキューであるプライオリティ キューにマッ プされます。デフォルトでは、ToS は最高値の 255 に設定されます。その結果、デフォルトではす べてのトラフィックが同じプライオリティで処理されます。

表 24-3 に、IP ToS 設定例でプライオリティ キューにマップされる値を示します (ToS 設定の範囲 は 0 ~ 255 ですが、一部の設定のみを示しています)。

CTC での ToS 設定	プライオリティ キューに送信される ToS 値
255 (デフォルト)	なし
250	251 ~ 255
150	151 ~ 255
100	101 ~ 255
50	51 ~ 255
0	1 ~ 255

表 24-1 IP ToS プライオリティ キューのマッピング

CoS タグ付きフレームの場合、CE-100T-8 は CoS で指定されている 8 のプライオリティをプライオ リティまたはベスト エフォートにマップできます。CTC の Provisioning > Ether Ports タブを使用 してカード レベル ビューで別の CoS を設定できます。CTC で指定された CoS クラスより高い CoS クラスは、できるだけ遅延を発生させないキューであるプライオリティ キューにマップされます。 デフォルトでは、CoS が最高値の 7 に設定されます。その結果、デフォルトではすべてのトラフィッ クが同じプライオリティで処理されます。

表 24-3 に、CoS 設定でプライオリティ キューにマップされる値を示します。

表 24-2	CoS プライオリティ キューのマッピング	

CTC での CoS 設定	プライオリティ キューに送信される CoS 値
7(デフォルト)	なし
6	7
5	6、7
4	5, 6, 7
3	4、5、6、7
2	3, 4, 5, 6, 7
1	2, 3, 4, 5, 6, 7
0	1, 2, 3, 4, 5, 6, 7

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド
VLAN タグなしのイーサネット フレームは、ToS および CoS 優先キューイングの両方がカードで アクティブな場合、ToS ベースの優先キューイングを使用します。CE-100T-8 カードで CoS および ToS 優先キューイングをアクティブにするには、カードの ToS 設定は 255 (デフォルト)より小さ く、CoS 設定は 7 (デフォルト)より小さくする必要があります。ToS 設定が 255 (デフォルト)の 場合には ToS 優先キューイングがディセーブルになるため、この場合には CoS 設定が使用されま す。

VLAN タグ付きのイーサネット フレームは、ToS および CoS 優先キューイングの両方がカードで アクティブな場合、CoS ベースの優先キューイングを使用します。ToS 設定は無視されます。CoS 設定が7(デフォルト)の場合には CoS ベースの優先キューイングがディセーブルになるため、こ の場合には ToS 設定が使用されます。

CE-100T-8 カードの ToS 設定が 255 (デフォルト) で CoS 設定が 7 (デフォルト)の場合、カード で優先キューイングがアクティブでなくなり、データはデフォルトの通常のトラフィック キューに 送信されます。CE-100T-8 カードに送られるデータに ToS 値や CoS 値がタグ付けされていない場合 にも、データはデフォルトの通常のトラフィック キューに送信されます。

CE-100T-8 でフロー制御がイネーブル(デフォルト)に設定されている場合、優先キューイングは 効果がありません。フロー制御がイネーブルの場合に、6 キロバイトの単一プライオリティ First-in first-out(FIFO;先入れ先出し)バッファが満たされると、ポーズフレームが送信されます。その結 果、パケット順序のプライオリティは、フロー制御のポーズフレームを受信してバッファリング を行う外部装置の責任となります。

E) CE-100T-8 で STS-3C 回線がプロビジョニングされている場合、優先キューイングは効果がありません。STS-3c 回線はファスト イーサネットよりもデータ容量が大きいため、CE-100T-8 バッファリングは必要ありません。優先キューイングはバッファリングの際にのみ影響します。

RMON および SNMP のサポート

CE-100T-8 カードには、ネットワーク オペレータが Network Management System (NMS; ネットワー ク管理システム)でネットワークの状態をモニタリングできる Remote Monitoring (RMON)機能が あります。CE-100T-8 は ONG RMON を使用します。ONG RMON には、標準 RMON MIB からの統 計情報、履歴、アラーム、イベント MIB (管理情報ベース)グループが含まれます。RMON スレッ シュホールドのプロビジョニングにアクセスするには、TL1 または CTC を使用します。CTC での RMON スレッシュホールドのプロビジョニングについては、『Cisco ONS 15454 Procedure Guide』 (NTP-A279)および『Cisco ONS 15454 Troubleshooting Guide』、または『Cisco ONS 15454 SDH Procedure Guide』 および『Cisco ONS 15454 SDH Troubleshooting Guide』を参照してください。

統計情報およびカウンタ

CE-100T-8 のイーサネット統計情報および POS 統計情報は、Performance > Ether Ports または Performance > POS Ports を選択してすべて表示できます。

24-7

CE-100T-8の SONET/SDH 回線および機能

CE-100T-8 には1~8の番号が付いた POS ポートが8基装備されています。ポートの番号は CTC またはTL1 で管理できます。各 POS ポートは対応するイーサネット ポートに静的にマップされま す。カード レベルの Provisioning > POS Ports タブをクリックして、管理状態、フレーミング タイ プ、およびカプセル化タイプを設定できます。カード レベルの Performance > POS Ports タブをク リックして、POS ポートの統計情報、利用率、および履歴を表示できます。

利用可能な回線サイズと組み合わせ

各 POS ポートは、独立した Contiguous Concatenation (CCAT) または Virtual Concatenation (VCAT; バーチャル コンカチネーション)回線を終端します。イーサネット以外のライン カードに対して SONET/SDH 回線を作成するのと同じように、CTC または TL1 を使用してこれらのポートに対して SONET/SDH 回線を作成します。表 24-3 および 表 24-4 に、CE-100T-8 で利用可能な回線サイズを 示します。

表 24-3 ONS 15454 の CE-100T-8 でサポートされている SONET 回線サイズ

CCAT	VCAT 高次	VCAT 低次
STS-1	STS-1-1v	VT1.5- nV ($n=1 \sim 64$)
STS-3c	STS-1-2v	
	STS-1-3v	

CCAT	VC-3 VCAT	VC-12 VCAT
VC-3	VC-3-1v	VC-12- nV (n=1 ~ 63)
VC-4	VC-3-2v	
	VC-3-3v	

表 24-4 ONS 15454 SDH の CE-100T-8 でサポートされている SDH 回線サイズ

1 本の回線の最大スループットは 100 Mbps になります。この最大スループットは、155 Mbps の帯 域幅を持つ より大きな STS-3c または VC-4 回線がプロビジョニングされた場合でも同様です。こ れは、ファスト イーサネット ポートのハードウェア制限によるものです。また、VCAT 回線も同 様に制限されます。表 24-5 に、ワイヤ スピードのサービスの配信に必要な最小 SONET 回線サイズ を示します。

表 24-5 イー	-サネット速度に対す	「る最小 SONET	回線サイズ
-----------	------------	------------	-------

イーサネット ワイヤ スピード	CCAT 高次	VCAT 高次	VCAT 低次
回線レート 100BASE-T	STS-3c	STS-1-3v, STS-1-2v ¹	VT1.5- xv (x=56 ~ 64)
サブレート 100BASE-T	STS-1	STS-1-1v	VT1.5- <i>xv</i> (x=1 ~ 55)
回線レート 10BASE-T	STS-1	適用されない	VT1.5-7v
サブレート 10BASE-T	適用されない	適用されない	VT1.5-xv (x=1 ~ 6)

1. STS-1-2v は合計で 98 Mbps の転送容量を提供します。

表 24-6 に、10 Mbps および 100 Mbps ワイヤ スピード サービスに必要な最小 SDH 回線サイズを示します。

表 24-6 SDH 回線サイズおよびイーサネット サービス

イーサネット ワイヤ スピード	ССАТ	VC-3 VCAT	VC-12 VCAT
回線レート 100BASE-T	VC-4	VC-3-3v, VC-3-2v ¹	VC-12- xv (x=50 ~ 63)
サブレート 100BASE-T	VC-3	VC-3-1v	VC-12- <i>xv</i> (x=1 ~ 49)
回線レート 10BASE-T	VC-3	VC-3-1v	VC-12-5v
サブレート 10BASE-T	適用されない	適用されない	VC-12-xv ($x=1 \sim 4$)

1. VC-3-2v は合計で 98 Mbps の転送容量を提供します。

CE-100T-8 での使用可能な回線数と合計の帯域幅は、設定する回線サイズの組み合わせによって異なります。表 24-7 に、ONS 15454 の CE-100T-8 で使用可能な CCAT 高次回線サイズの組み合わせ を示します。

表 24-7 SONET の CCAT 高次回線サイズの組み合わせ

STS-3c 回線の数	STS-1 回線の最大数
なし	8
1	7
2	6
3	3
4	なし

表 24-8 に、ONS 15454 SDH の CE-100T-8 で使用可能な CCAT 高次回線サイズの組み合わせを示します。

表 24-8	SDH の CCAT 高次回線サイズの組み合わせ
--------	--------------------------

VC-4 回線の数	VC-3 回線の最大数
なし	8
1	7
2	6
3	3
4	なし

表 24-9 に、ONS 15454 の CE-100T-8 で使用可能な VCAT 高次回線サイズの組み合わせを示します。

表 24-9 STS-1-3v および STS-1-2v SONET の VCAT 高次回線の組み合わせ

STS-1-3v 回線の数	STS-1-2v 回線の最大数
なし	4
1	3
2	2
3	1
4	なし

表 24-10 に、ONS 15454 SDH の CE-100T-8 で使用可能な VC-3-3v および VC-3-2v 回線サイズの組み 合わせを示します。

VC-3-3v 回線の数	VC-3-2v 回線の最大数
なし	4
1	3
2	2
3	1
4	なし

表 24-10 SDH の VC-3-3v および VC-3-2v の VCAT 回線の組み合わせ

CCAT 高次、VCAT 高次、および VCAT 低次回線を組み合わせることができます。CE-100T-8 は、 最大 8 本の低次 VCAT 回線をサポートします。

使用可能な SONET 回線サイズは VT1.5-Xv です。X の範囲は 1 ~ 64 です。最大の低次 VCAT SONET 回線サイズ VT1.5-64v では、最大で 4 本の回線が利用できます。表 24-11 に、SONET における最大 密度でのサービスの組み合わせについて詳細に説明します。

使用可能な SDH 回線サイズは VC-12-Xv です。X の範囲は 1 ~ 63 です。最大の低次 VCAT SDH 回 線サイズ VC-12-63v では、最大で 4 本の回線が利用できます。表 24-12 に、SDH における最大密度 でのサービスの組み合わせについて詳細に説明します。

表 24-11	SONET (D CE-100T-8	サービ	ス密度の実例
---------	---------	-------------	-----	--------

サービスの 組み合わせ	STS-3c または STS-1-3v	STS-1-2v	STS-1	VT1.5-xV	アクティ ブな サービスの数
1	4	0	0	0	4
2	3	1	1	0	5
3	3	0	3	0	6
4	3	0	0	4 (x=1 ~ 21) ¹	7 ¹
5	2	2	2	0	6
6	2	1	4	0	7
7	2	1	1	4 (x=1 ~ 21) ¹	8 ¹
8	2	0	6	0	8
9	2	0	3	3 (x=1 ~ 28)	8
10	2	0	0	6 (x=1 ~ 28)	8
11	1	3	3	0	7
12	1	2	5	0	8
13	1	2	2	3 (x=1 ~ 28)	8
14	1	1	1	5 (x=1 ~ 28)	8
15	1	0	7	0	8
16	1	0	3	4 (x=1 ~ 42)	8
17	1	0	0	7 (x=1 ~ 42)	8
18	0	4	4	0	8
19	0	3	3	2 (x=1 ~ 42)	8
20	0	0	8	0	8

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

表 24-11 SONET の CE-100T-8 サービス密度の実例 (続き)

サービスの 組み合わせ	STS-3c または STS-1-3v	STS-1-2v	STS-1	VT1.5-xV	アクティブな サービスの数
21	0	0	4	4 (x=1 ~ 42)	8
22	0	0	0	8 (x=1 ~ 42)	8

1. この低次 VCAT 回線の組み合わせは、カード上に作成された最初の2本の回線のどちらかが低次 VCAT 回線の 場合に実現できます。カード上に作成された最初の2本の回線が高次 VCAT または CCAT 回線の場合、最大で3 本の低次 VCAT 回線がカード上で作成できます。

表 24-12 SDH の CE-100T-8 サービス密度の例

サービスの 組み合わせ	VC-4 または VC-3-3v	VC-3-2v	VC-3	VC-12-xv	アクティブな サービスの数
1	4	0	0	0	4
2	3	1	1	0	5
3	3	0	3	0	6
4	3	0	0	3 (x=1 ~ 21)	6
5	2	2	2	0	6
6	2	1	4	0	7
7	2	1	1	3 (x=1 ~ 21)	7 ¹
8	2	0	6	0	8
9	2	0	3	3 (x=1 ~ 21)	8
10	2	0	0	6 (x=1 ~ 21)	8
11	1	3	3	0	7
12	1	2	5	0	8
13	1	2	2	3 (x=1 ~ 21)	8 ¹
14	1	1	1	5 (x=1 ~ 21)	8 ¹
15	1	0	7	0	8
16	1	0	3	2 (x=1 ~ 32)	8
				および	
				2 (x=1 ~ 31)	
17	1	0	0	7 (x=1 ~ 28)	8
18	0	4	4	0	8
19	0	3	3	1 (x=1 ~ 32)	8
				および	
				1 (x=1 ~ 31)	
20	0	0	8	0	8
21	0	0	4	2 (x=1 ~ 32)	8
				および	
				2 (x=1 ~ 31)	
22	0	0	0	4 (x=1 ~ 32)	8
				および	
				4 (x=1 ~ 31)	

1. これらのサービスの組み合わせでは、VC-3 回線を作成する前に VC-12-xv 回線を作成する必要があります。

CE-100T-8 プール

CE-100T-8 回線の合計容量は、4 つのプールに分けられます。各プールの最大容量は、SONET の場合 STS-1 が 3 本で、SDH の場合 VC-3 が 3 本です。

STS/VT 割り当てタブまたは VC4/VC LO 割り当てタブでの CE-100T-8 プール情報の表示

CTC のカード レベル ビューのメンテナンスタブで、ONS 15454 SONET の STS/VT 割り当てタブお よび ONS 15454 SDH の VC4/VC LO 割り当てタブに、プロビジョニングされた回線が 4 つのプール をどのように実装するかが表示されます。Nずれの画面でも、POS Port テーブルの行には、各ポー トごとに 3 つのカラムが表示されます。各行には、ポート番号、回線サイズとタイプ、帯域幅を使 用するプールが表示されます。Pool Utilization テーブルは 4 つのカラムで構成され、プール番号、そ のプールでの回線タイプ、使用されているプール容量、および追加容量が使用可能かどうかを表示 します。

図 24-4 にタブの SDH バージョンを、図 24-5 にタブの SONET バージョンを示します。

Ether101 and 17	01/101/1	01+10(11(0))							
808 810	1 100								
B41 (2-1007-8	2								
tation Artive									
ervice State: uni	locked-mail			05	1001-0				
media ibilitatione				1148	P08				
et 2 (Philippen				11-					
148. 3 (P02)-20-m				10					
res. 4 (2001)(Dom.									
let 1 (POT)/Dom					- 21				
HER & IPOTI-IDown.									
164 7 (POI) (Dom.				10	- 10				
and I of the local	- 11			20-	- 10				
out 2 (ETHER) (Des	2 1			25-					
out 1 (ETHER) Due									
vet 4 (ETHER) (Dow				1000					
tert 4 (ETHER):Dow	5 H								
uet 4 (ETHER):Dov uet 5 (ETHER):Dov uet 6 (ETHER):Dov									
net 4 (ETHER):Dow net 6 (ETHER):Dow net 6 (ETHER):Dow net 7 (ETHER):Dow									
net 4 (ETHER):low net 5 (ETHER):low net 6 (ETHER):low net 7 (ETHER):low									
ect 4 (RTMEP) (Sov ect 5 (RTMEP) (Sov ect 6 (RTMEP) (Sov ect 7 (RTMEP) (Sov ect 7 (RTMEP) (Sov	terr Create Press	nong Matteriete Jackenaer	•1		lide				
ert 4 (ETHEP) (Downert 5 (ETHEP)	And Party of State	away Matteratic Jackson	-	- Partie	lister L. Jan	L constitues	T. Butthese	Income	
et 4 (ETREP) Der en 6 (ETREP) Der et 6 (ETREP) Der et 7 (ETREP) Der ette (ETREP) Der ette (ETREP) Der ette (ETREP) Der ette (ETREP) Der ette (ETREP) Der ette (ETREP) Der	Ren (Crouds) Rend ROL Part Mar Part 1	away Martineric Juckeman Akosta	•]	hard The	Audior Japa	Charlinge	PostUrage	Prot A-media	
et 4 (KTNEP) (by et 6 (KTNEP) (by et 6 (KTNEP) (by et 7 (ROS Part New Post Part 1 Post Date 1 Post Date 1 Post Date 1 Post Date 1	Aberbanette Parlamente Aberbanette N VC LD (VCAT, MCPALCAD) N VC LD (VCAT, MCPALCAD)	•] Post	- Fact	Ruther Tops MCLD	Constituee	Post Linge 4 or 13	Food Avenueses	
et 4 (ETRE2) (by et 6 (ETRE2) (by et 6 (ETRE2) (by et 7 (ETRE2) (by et 7 (ETRE2) (by fail) (base (and (b) Alexan Artic loss	100 Port Mes 100 Port Mes 1 (PC0) 2 (PC0) 3 (PC0)	Alexandre Declamante Alexandre A VC LD (VCAF, MCRUCAR) A VC LD (VCAF, MCRUCAR) A VCA (CCAF)	*] Post 2	Factor	Rudier NCLO VCs VCs	Conditione AUT 1014	Post Usage 4 or 13 7 or 1 7 or 1	Food Accession Ann Peo	
et 4 (ETHER) (by ret 6 (ETHER) (by ret 6 (ETHER) (by ret 7 (ETHER) (by ret 7 (ETHER) (b) field (b) (b) field (b) (b) field (b) (b) Add bise	100 Fords Free 100 Ford Hes 100 Ford Hes 100 Ford Hes 100 Ford 100 Fo	Advention Packanners Advention A VC LO (VCAF, MCNALCAS) A VCA (CCAF) A VCA (CCAF)	Piel	Parta Parta 2 2 2 4	Tops MC10 VCs VCs VCs	Conditione A 014 1 014 1 011 2 011	Post Usage 4 or 63 3 of 1 7 of 1 2 of 3	Post Available No. No. No. No. No. No. No. No. No.	
Ant 4 (ETHER) Dor the (ETHER) Dor the (ETHER) Dor the (ETHER) Dor the (ETHER) Dor the (ETHER) Dor and (Ether) Dor Contact Ant base	For Grade Press For Fred Proto Proto Proto Proto Proto Proto Proto	Abertanistis Partament Average A vec LO over A, Adheucean A vec LO over A, Adheucean A vec B over A, Adheucean A vec B ocean A vec B	* Peet	Para Para Para Para Para Para Para Para	MCLD VCB VCB VCS VCS VCS	Cristinge 4.01 1.01 1.01 1.01 2.01	Post Usinge 4 of 52 7 of 1 2 of 1 2 of 2	Pool Available Fee Fee Fee Fee Fee	
ert 4 (ETHER) Dor nut 6 (ETHER) Dor nut 6 (ETHER) Dor nut 7 (ETHER) Dor nut 7 (ETHER) Dor Make base (2405 (10 Alexan) Alex base	100 Ant Mark	Alexandre Parlamente A VC LO (VCAF, MCRoLCAS) A VC LO (VCAF, MCRoLCAS) A VCA (CCAF) A VCA (CCAF) A VCA (CCAF) A VCA (CCAF) A VCA (CCAF) A VCA (CCAF) A VCA (CCAF)	* 7 3 2 2 4	For 1	Notes Mices Mice Mice Mice Mice	0004150ge A 014 1 014 1 014 1 011 2 01	Post Usinge 4 of 13 3 of 1 2 of 1 2 of 3	Post Available Fig. Fig. Fig. Fig. Fig. Fig.	
et 4 (ETRE) be et 1 (ETRE) be	1 (Finite) 1 (Fi	Advention Pachamore Advention A VC LO (VCAF, ACAULCAS) A VCA (CCAF) A VCAF) A VCA (CCAF) A VCAF) A VCAF A V	* 2 2 2 4 3 3 2 2 2 3 3 3 3 3 3 3 3 3 3 3	For 3	Tother No.0 VCR VCR VCR VCR VCR VCR	Oriellinge Aufe 3 of e 3 of e 3 of 1 3 of 1	Post Usinge 4 or 63 3 of 1 2 of 2 2 of 2	Post Available No. No. No. No. No. No.	
et 4 (ETHER) Dor et 8 (ETHER) Dor et 8 (ETHER) Dor et 8 (ETHER) Dor et 9 (ETHER)	Crude Peers Crude	Abertanistis Partemens Average Partemens A VC LO (VC.RT, MCPauLCAS) A VC LO (VC.RT, MCPauLCAS) A VC R (CC.RT) A VC R (CC.RT) A VC R (CC.RT) A VC LO (CC.RT) B VC LO (CC.RT) B VC LO (CC.RT) B VC LO (VC.RT, LC.RT)	* 7 2 2 2 4 4 7 7	Para Para Para Para Para Para	Rutilee MCLD VCB VCB VCB	Dridtbege Auf 1 1 of 4 1 of 1 2 of 1 2 of 1	Post Usage 4 of 53 7 of 1 7 of 1 2 of 2	Figst An-selection File File File File File File File File	
et 4 (ETHER) Dor nt 5 (ETHER) Dor nt 6 (ETHER) Dor nt 7 (ETHER) Dor nt 7 (ETHER) Dor nt 7 (ETHER) Dor nt 10000000 (Ho Note: Langton Add Dor	1 (Constant) (Constant) 1 (Constant) (Constant) 1 (Constant) (Constant) 1 (Constant	Average Mechanical Performance A VC LO (VCAF, MORALCAR) A VC LO (VCAF, MORALCAR) A VCA (CCAF) A VCA (CCAF) A VCA (CCAF) A VCA (CCAF) A VCA (CCAF) A VC LO (VCAF, LCAR) B VC LO (VCAF, LCAR)	* 7 3 2 3 4 4 3 7 7	Part 1	Notice Misso Vice Vice Vice	Constitute Art 1 or 1 or 2 or 1	Post Usinge 4 of 53 7 of 1 7 of 1 2 of 3 2 of 3	Post Available Fits Fits Fits Fits	
et 4 (ETHER) Dor et 8 (ETHER) Dor et 6 (ETHER) Dor et 7 (ETHER) Dor et 8 (ETHER)	1 (Control (Contro) (Contro) (Contro) (Contro) (Contro) (Contro) (Contro) (Contro) (Advention Advention A VC LO (VCAF, MCALCAR) A VC LO (VCAF, MCALCAR) A VCA (CCAF) A VCA (CCAF) A VCA (CCAF) A VC LO (CCAF) A VC LO (CCAF) A VC LO (VCAF, LCAR) A VC LO (VCAF, LCAR)	* Post 3 3 2 2 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Fac: 4	Notes With With With	Oriellinge Auto Juri Juri Juri Juri	Boot Unique 4 of 52 7 of 1 2 of 3 2 of 3	Pod Analistic No. No. No. No. No. No. No. No.	
et 4 (ETHER) Dor net 8 (ETHER) Dor et 6 (ETHER) Dor et 7 (ETHER) Dor et 7 (ETHER) Dor ett 7 (ETHER) Dor ett 7 (ETHER) Dor etter 7 (ETHER) DOR ette	1 (Prod) 2 (Prod) 2 (Prod) 2 (Prod) 3 (Pro	Advention of the function of t	* Post 7 2 2 3 4 4 3 7 7	Para Para 2 1	Note With With With	0004100pr 4 of 4 3 of 1 3 of 1 2 of 1	Post Usage 4 or 63 3 of 1 3 of 1 2 of 3	Post Annuality File File File File File File File File	

図 24-4 SDH の CE-100T-8 割り当てタブ

and they like the	a Transport Contin	-						-
BAGE	21 + +							01
Coll Coll<	100 mit 1							
And Instance Marry And Insta Complete UNIT Advantum	And	Another Pressor	nel .	Post Utilization Test 2 2 4	18 27 5 5 5	those 2 of 1 5 of 1 5 of 1 5 of 1	1 	T
		ette ordanis una jordanis una jordanis una jordanis dadi				neveritane (.)	Dia e 11 de Perdiji	.146
								-

図 24-5 CE-100T-8 の STS/VT 割り当てタブ

ポート6と^ポート7は 両方ともプール1に所属

CE-100T-8 プール割り当ての例

回線のプロビジョニングのために1つのプールに十分な容量がない場合には、その回線のプロビジョニングに必要な帯域幅を解放するのにこの情報が役立ちます。4つのプールのなかの既存の回線の配分を表示して、該当の回線のために帯域幅を解放するのに削除する必要のある回線を決定できます。

たとえば、図 24-5 に示すように、SONET CE-100T-8 カードで STS-3c または STS-1-3v をプロビジョ ニングする必要がある場合、STS-3c または STS-1-3v に相当する帯域幅は 4 つのプールのいずれか らも使用可能ではありません。帯域幅を解放するために同じプールから回線を削除する必要があり ます。帯域幅が使用可能でも複数のプール間で散在している場合、回線はプロビジョニングできま せん。POS Port Map テーブルを参照すると、どの回線がどのプールに属するかがわかります。図 24-5 の Pool カラムと Port カラムには、ポート 6 およびポート 7 は両方ともプール 1 を使用してお り、他の回線はプール 1 を使用していないことが表示されています。これらの 2 つの STS-1 回線を 削除すると、単一のプールから STS-3c または STS-1-3v に相当する帯域幅が解放されます。

削除する回線をテーブルの情報から決定しない場合、ポート 3、ポート 5、およびポート 6 の STS-1 回線を削除することが考えられます。この場合、STS-3c または STS-1-3v に相当する帯域幅が解放 されますが、必要な帯域幅が単一のプールから得られないため、STS-3c または STS-1-3v 回線をプ ロビジョニングできません。

CE-100T-8 プール プロビジョニング規則

すべての VCAT 回線メンバーは同じプールからのメンバーである必要があります。3 個のプールに 高次回線をサポートするのに十分な帯域幅が存在する場合には、4 個のメモリ プールの内の 1 つは 低次 VCAT 回線用に予約されます。高次 CCAT 回線は、単一のメモリ プールから使用可能なすべ ての容量を使用してから、新しいプールの容量を使用します。要求された回線サイズをサポートす るのに十分な帯域幅がメモリ プールにある場合には、それらのプールが代わりに最初の 3 本の高次 VCAT 回線に割り当てられます。余分な帯域幅を防ぐために、最初に高次 VCAT 回線をプロビジョ ニングしてこれらの回線を平等に分配します。

CE-100T-8 の VCAT の特性

ML-100T-8 カードおよび CE-100T-8 カード(ONS 15310-CL バージョンおよび ONS 15454 SONET/SDH バージョンの両方)は、ITU-T G.7042 規格の Link Capacity Adjustment Scheme (LCAS; リンク キャパシティ調整方式)がハードウェア ベースでサポートされています。このサポートにより、VCG の他のメンバーに影響を与えることなく(エラーなしで)、CTC または TL1 を使用して 高次および低次 VCAT 回線サイズを動的に変更できます。

ONS 15454 SONET/SDH ML シリーズ カードには、Software-based LCAS (SW-LCAS; ソフトウェア ベースの リンク キャパシティ調整方式)があります。この方式は、ML-100T-8 カードおよび CE-100T-8 カード(ONS 15310-CL バージョンおよび ONS 15454 SONET/SDH バージョンの両方)で もサポートされていますが、反対側が ONS 15454 SONET/SDH ML シリーズ カードで終端されてい る回線でのみサポートされます。

CE-100T-8 カードでは、VCAT 回線の各メンバに対して独立したルーティングおよび保護優先を行うことができます。完全に保護されているまたは保護されていない、または Protection Channel Access (PCA)(PCA が使用可能な場合)を使用する VCAT 回線の容量の合計を制御することもできます。 アラームは、Virtual Concatenation Group (VCG)ごとだけでなく、メンバーごとにサポートされています。

CE-100T-8 の最大許容 VCAT 遅延差は 48 ミリ秒です。VCAT 遅延差は、VCG メンバー間の相対的 な到着時間を計算したものです。

CE-100T-8 の POS カプセル化、フレーム化、および CRC

CE-100T-8 は Cisco EoS LEX (LEX)を使用します。LEX は ONS イーサネット カードの基本カプセ ル化方式です。このカプセル化では、プロトコル フィールドは、Internet Engineering Task Force (IETF; インターネット技術特別調査委員会)の Request For Comments (RFC; コメント要求) 1841 で規定された値に設定されます。ユーザは、Frame-mapped Generic Framing Procedure (GFP-F)フ レーミング (デフォルト)または High-Level Data Link Control (HDLC; ハイレベル データリンク制 御)フレーミングをプロビジョニングできます。GFP-F フレーミングでは、32 ビット CRC (デフォ ルト)または CRC なし(なし)も設定できます。GFP-F 上で LEX が使用される場合、LEX は ITU-T G.7041 に基づいた GFP-F 上の標準マップ イーサネットです。HDLC フレーミングは設定済み 32 ビット CRC を提供します。カプセル化、フレーム化、および CRC の情報を含め、ONS イーサネッ トカードの相互運用性の詳細については、「ONS イーサネットカード上の POS」の章を参照してく ださい。

CE-100T-8 カードは GFP-F のヌル モードをサポートします。GFP-F の CMF はカウントされてから 廃棄されます。

CE-100T-8 のループバック、J1 パス トレース、および SONET/SDH アラーム

CE-100T-8 カードは、ターミナル ループバックとファシリティ ループバックをサポートします。また、OC-N カードと同様の方法で SONET/SDH アラームをレポートし、J1 パス トレース バイトを転送およびモニタリングします。次のパス終端機能がサポートされています。

- H1 および H2 連結表示
- C2 信号ラベル
- Bit Interleaved Parity 3 (BIP-3; ビット インターリーブド パリティ 3) 生成
- G1 パス ステータス表示
- C2 パス信号ラベルの読み取り / 書き込み
- Loss Of Pointer (LOP; ポインタ損失)、未実装、ペイロード不一致、Alarm Indication Signal (AIS; アラーム表示信号)検出、および Remote Defect Indication (RDI; リモート障害表示)を含む、 パスレベルのアラームと条件
- 高次 CCAT パスの J1 パス トレース
- メンバーレベルでの高次 VCAT 回線の J2 パス トレース
- メンバーレベルでの低次 VCAT 回線の J2 パス トレース
- 低次パスの拡張信号ラベル

CE-1000-4 イーサネットの動作

この章では、Cisco ONS 15454 および Cisco ONS 15454 SDH でサポートされている CE-1000-4(キャ リア イーサネット)カードの動作について説明します。ONS 15454 SONET に取り付られた CE-1000-4 カードは SONET 動作にのみ限定されていて、ONS 15454 SDH に取り付けられた CE-1000-4 カードは SDH 動作にのみ限定されます。

CE-1000-4 カードをプロビジョニングするには、Cisco Transport Controller (CTC)または Transaction Language One (TL1)を使用します。Cisco IOS は、CE-1000-4 カードではサポートされていません。

イーサネット カードの仕様については、『Cisco ONS 15454 Reference Manual』または『Cisco ONS 15454 SDH Reference Manual』を参照してください。イーサネット カードの回線の詳細な設定手順 については、『Cisco ONS 15454 Procedure Guide』または『CiscoONS 15454 SDH Procedure Guide』を 参照してください。TL1 プロビジョニング コマンドについては、『Cisco ONS SONET TL1 Command Guide』または『Cisco ONS SDH TL1 Command Guide』を参照してください。

この章では、次の内容について説明します。

- CE-1000-4の概要 (p.25-2)
- CE-1000-4 イーサネットの機能(p.25-3)
- CE-1000-4の SONET/SDH 回線および機能(p.25-7)

CE-1000-4 の概要

CE-1000-4 は、4 個のギガビット イーサネット ポートを備えたレイヤ 1 マッパー カードです。この カードは、各ポートをポイントツーポイント設定で一意の SONET 回線にマップします。図 25-1 に、 CE-1000-4 のアプリケーション例を示します。この例では、スイッチのギガビット イーサネット ポートからのデータ トラフィックがポイントツーポイント回線を経由して別のスイッチのギガ ビット イーサネット ポートに伝送されます。

CE-1000-4 カードを使用して、従来の SONET/SDH 回線のように、イーサネット専用回線サービス をプロビジョニングして管理できます。CE-1000-4 カードは、キャリアクラスのイーサネット専用 回線サービスおよびハイアベイラビリティ転送を提供します。

CE-1000-4 カードは、イーサネット上でカプセル化と転送が可能な任意のレイヤ 3 プロトコル (IP や IPX など)を伝送します。データネットワークからのイーサネット フレームは、CE-1000-4 カード上の GBIC (ギガビット インターフェイス コンバータ)に送信されます。CE-1000-4 カードは、Packet-over-SONET/SDH (POS) カプセル化を使用して SONET/SDH ペイロードにイーサネット フレームを透過的にマップします。次に、カプセル化されたイーサネットを持つ POS 回線は、他の SONET Synchronous Transport Signal (STS; 同期転送信号)や SDH Synchronous Transport Mode(STM; 同期転送モード)と同じように、光カードに多重化されます。ペイロードが宛先ノードに達すると、逆のプロセスが行われ、宛先の CE-1000-4 カードの GBIC からデータ ネットワークのイーサネット ヘデータが送信されます。POS プロセスについては第 20 章「ONS イーサネット カード上の POS」 を参照してください。

CE-1000-4 カードは、ITU-T G.707 および Telcordia GR-253 ベースの規格をサポートします。この カードではソフト リセットが可能で、エラーが発生しません。ソフト リセット中にプロビジョニ ングが変更された場合、またはソフトウェアのアップグレード中にファームウェアが置き換えられ た場合は、エラーとなることがあります。この場合、リセットはハード リセットと同じになりま す。CTC を使用した CE-1000-4 カードでソフト リセットを実行するには、『Cisco ONS 15454 Procedure Guide』または『Cisco ONS 15454 SDH Procedure Guide』を参照してください。

CE-1000-4 イーサネットの機能

CE-1000-4 カードには、ギガビット イーサネット用に標準 GBIC コネクタを使用するフロントエン ド イーサネット ポートが 4 つ装備されています。イーサネット ポート 1 ~ 4 の各ポートは、対応 する番号の POS ポートにそれぞれマップされます。これらのイーサネット ポートは、デイジー チェーン接続できます。

イーサネット ポート レベルでは、次の特性を設定できます。

- ポート名
- 管理状態
- Automatic In-Service (AINS) ソーク時間
- フロー制御
- フロー制御の水準点
- 自動ネゴシエーション

CE-1000-4 カードは、有効なイーサネット フレームに変更を加えずに SONET/SDH ネットワークに 転送します。ヘッダー内の情報は、カプセル化や転送によって影響を受けません。たとえば、IEEE 802.1Q 情報は、影響を受けずにプロセスを通過します。

CE-1000-4 は、デフォルトではイーサネットの Cyclic Redundancy Check (CRC; 巡回冗長検査)を含めて最大 10004 バイトのジャンボ フレームをサポートします。CTC では、イーサネット CRC を含めて最大 1548 バイトのイーサネット フレーム サイズも設定できます。

(注)

イーサネット属性の多くは、Network Element (NE; ネットワーク要素)のデフォルト機能によって 利用できます。NEのデフォルト機能の詳細については、『*Cisco ONS 15454 Reference Manual*』また は『*Cisco ONS 15454 SDH Reference Manual*』の付録「Network Element Defaults」を参照してください。

自動ネゴシエーションおよびフレーム バッファリング

CE-1000-4 カードでは、イーサネット リンク自動ネゴシエーションがデフォルトでオンに設定され ていています。また、カード レベルの CTC の Provisioning タブを使用して、自動ネゴシエーション をイネーブルおよびディセーブルにできます。

CE-1000-4 は、Field Programmable Gate Array (FPGA) バッファリングをサポートし、データ トラ フィックの輻輳を緩和できます。FPGA バッファリングは、SONET/SDH オーバーサブスクライブ をサポートします。バッファがキャパシティに近づくと、CE-1000-4 カードは IEEE 802.3x のフロー 制御を使用して、接続されているイーサネット装置にポーズ フレームを送信します。フロー制御と 自動ネゴシエーション フレームは、ギガビット イーサネット インターフェイスおよび接続されて いるイーサネット装置に対してローカルです。これらのフレームは、POS ポートを経由して送信さ れません。

フロー制御

CE-1000-4 カードは IEEE 802.3x フロー制御をサポートします。このカードでは、対称フロー制御と 非対称フロー制御をイネーブルにし、フロー制御をディセーブルにできます。この設定は、ポート レベルの CTC で実行されます。 デフォルトでは、CE-1000-4 カードは対称フロー制御機能を使用します。この機能により、接続されているイーサネット装置とフロー制御を自動ネゴシエーションする際に、対称フロー制御のみが 提案されます。対称フロー制御により、CE-1000-4 カードは、外部装置から送信されたポーズ フレームに応答し、ポーズフレームを外部装置に送信できます。

ポーズ フレームは、送信元に一定期間パケットの送信を停止するように指示します。送信側のス テーションは、要求された時間が経過してから、残りのデータを送信します。図 25-2 は、CE-1000-4 カードと接続されているスイッチで送受信されているポーズ フレームを示しています。

このフロー制御メカニズムでは、送受信装置のスループットが、STS 回線の帯域幅のスループット と一致します。たとえば、1 台のルータが CE-1000-4 カード上のギガビット イーサネット ポートに 送信を行うとします。この特定のデータ レートは 51.84 Mbps を超える場合がありますが、CE-1000-4 ポートに割り当てられている SONET 回線は STS-1(51.84 Mbps)のみである可能性があります。こ の例では、CE-1000-4 カードはポーズ フレームを送信し、ルータからの送信を一定期間遅らせるよ うに要求します。フロー制御と十分なポート単位のバッファリング機能を使用すると、フレーム損 失の大部分を制御できるため、回線レートの最大容量(STS-1)未満でプロビジョニングされる専 用回線サービスが効率良く行えます。

非対称により、CE-1000-4 はフロー制御ポーズを受信できますが、フロー制御ポーズを生成できま せん。このモードは、フロー制御ポーズは受信できませんが、フロー制御ポーズを送信できるリン クパートナーをサポートします。CE-1000-4 には、フロー制御ポーズを送信するモードはあります が、フロー制御ポーズを受信できません。

パススルー モードでは、送信フロー制御フレームはイーサネット インターフェイス ポートによっ て生成されず、受信フロー制御フレームは透過的に通過します。パススルー モードは、Ethernet over SONET/SDH 転送を使用して、クライアントの間のエンドツーエンドフロー制御をサポートします。

フロー制御のスレッシュホールド プロビジョニング

CE-1000-4 カードでは、フロー制御のスレッシュホールド プロビジョニングが可能であり、ユーザ は3つの基準(バッファサイズ)設定、すなわち、デフォルト、低遅延、カスタム設定から1つを 選択できます。デフォルトは、通常の使用に最適です。低遅延は、STS-1での Voice-over-IP(VoIP) のようなサブレートのアプリケーションに適しています。バッファリングが十分でない、ベストエ フォートトラフィック、またはアクセスする回線が長距離である接続装置では、高遅延を設定しま す。

フロー制御高(Flow Ctrl Hi)の設定は接続されているイーサネット装置に「Pause On」フレームを 送るための基準であり、このフレームは装置に一時的に送信を停止させる信号を送信します。フ ロー制御低(Flow Ctrl Lo)の設定は接続されているイーサネット装置に「Pause Off」フレームを送 るための基準であり、このフレームは装置に送信を再開させる信号を送信します。デフォルトの水 準点の設定値は、高いスレッシュホールドで485、低いスレッシュホールドで25です。低遅延の水 準点の設定値は、高いスレッシュホールドで10、低いスレッシュホールドで5です。 カスタム設定では、Flow Ctrl Lo および Flow Ctrl Hi に対して、1 ~ 511 の範囲の正確なバッファ サ イズのスレッシュホールドを両方のスレッシュホールドに設定できます。ただし、低いスレッシュ ホールドは高いスレッシュホールドよりも小さい値に設定する必要があります。

イーサネット リンク完全性のサポート

CE-1000-4 は、エンドツーエンドのイーサネット リンク完全性をサポートします(図 25-3)。この 機能は、イーサネット専用回線サービスの提供と、接続されているイーサネット装置でのレイヤ 2 およびレイヤ 3 プロトコルの適切な動作に不可欠です。Ethernet over SONET/SDH 接続が、接続さ れているイーサネット装置からのイーサネット ケーブルと同様に動作するように、リンク完全性は 実行されます。

エンドツーエンドのイーサネットリンク完全性では、エンドツーエンドのパスの一部に障害が発生 すると、パス全体で障害が発生します。リモート イーサネット ポートが信号を受信しないか、ま たは遠端障害の端の近くで SONET/SDH が検出された場合、CE-1000-4 カードのイーサネット ポー トトランスミッタが無効になります。パス全体の障害は、パスの各端にある送信ペアがオフになっ ていることで確認できます。接続されているイーサネット装置は、ディセーブルになった送信ペア を搬送波損失と認識し、その結果非アクティブリンクまたはリンク障害とみなします。ポート ト ランスミッタがディセーブルの場合、Transport Fail アラームも発生します。両方のイーサネット ポートが信号を受信しない場合に、リンク完全性は二重の障害をサポートします。

図 25-3 エンドツーエンドのイーサネット リンク完全性のサポート

搬送波損失状態を無視するように設定できるネットワーク装置もあります。搬送波損失状態を無視 するように設定された装置が一方の端で CE-1000-4 カードに接続されている場合は、障害を回避し てトラフィックをルーティングするために代替方法(レイヤ2またはレイヤ3のキープアライブ メッセージの使用など)を用意する必要があります。通常、このような代替方法の応答時間は、エ ラー状態の識別にリンク状態を使用する方法よりもかなり長くなります。

イーサネット ポートおよび SONET/SDH ポートの管理状態とサービス状態およびソー ク時間

CE-1000-4 カードは、イーサネット ポートおよび SONET/SDH 回線の管理状態とサービス状態をサ ポートします。カードと回線のサービス状態の詳細については、『*Cisco ONS 15454 Reference Manual*』 または『*Cisco ONS 15454 SDH Reference Manual*』の付録「Administrative and Service States」を参照 してください。

イーサネット ポートには、In-Service, Automatic In-service (IS,AINS)管理状態を設定できます。IS, AINS は、ポートを最初に Out-of-Service and Autonomous, Automatic In-Service (OOS-AU,AINS)状態に設定します。このサービス状態では、アラーム レポートは抑制されますが、トラフィックは伝送され、ループバックは許可されます。ソーク期間が終了すると、ポートの状態が In-Service and Normal (IS-NR) に変わります。 デフォルトのソーク期間は、8 時間 0 分です。Provisioning タブ > Ether Ports タブ、または Provisioning タブ > POS Ports タブを選択して AINS ソーク期間を設定できます。Maintenance タブ > AINS Soak タブを選択して、AINS ソーク期間と IS までの残りの時間を表示できます。

アラームがレポートされるかどうかに関係なく、発生した障害状態は、CTC の Conditions タブまた は TL1 の RTRV-COND コマンドを使用して取得できます。イーサネット ポートのアラーム / 状態 の CARLOSS と TPTFAIL の 2 つは、ポートが稼働するのを防ぎます。アラーム レポートが抑制さ れている場合でも、イーサネット ポートが IS,AINS 状態に設定されて CE-1000-4 回線がプロビジョ ニングされているときに、これが発生します。これは、CE-1000-4 リンク完全性機能がアクティブ で、パス上のすべての SONET/SDH およびイーサネット エラーが解決されるまで両端でリンクがイ ネーブルにならないようになっているためです。リンク完全性機能によりエンドツーエンド パスが ダウンした状態にある場合、両方のポートの状態は、AINS から IS への状態の変更を抑制するため に必要な 2 つの状態のうちの少なくとも 1 つになります。したがって、ポートは AINS 状態のまま となり、アラーム レポートが抑制されます。

また、ESM は CE-1000-4 カードの SONET/SDH 回線にも適用されます。SONET/SDH 回線の状態が IS,AINS に設定されて、回線状態が IS に変わる前にイーサネット エラーが発生した場合、イーサ ネット エラーが両端で解決されるまで、リンク完全性は回線の状態が IS に変わるのも防止します。 管理状態が IS,AINS である限り、サービス状態は OOS-AU,AINS となります。イーサネット エラー または SONET エラーがなくなると、リンク完全性機能が両端でイーサネット ポートをイネーブル にします。同時に、AINS カウントダウンが通常どおりに開始されます。経過時間中に別の状態が 発生しない場合は、各ポートの状態が IS-NR 状態に変わります。AINS カウントダウン中、ソーク 時間の残り時間が CTC および TL1 で使用できます。ソーク期間に状態が再度発生すると、AINS ソーキング ロジックが最初から再開します。

IS,AINS 状態にプロビジョニングされた SONET/SDH 回線は、回線の両端のイーサネット ポートの 状態が IS-NR に変わるまで最初の Out-of-Service (OOS)状態のままです。AINS から IS への変更が 完了するかどうかに関係なく、リンク完全性機能によりイーサネット ポートがオンになると、 SONET/SDH 回線はイーサネット トラフィックを転送し統計情報をカウントします。

RMON および SNMP のサポート

CE-1000-4 カードには、ネットワーク オペレータが Network Management System (NMS; ネットワー ク管理システム)でネットワークの状態をモニタリングできる RMON 機能と SNMP (簡易ネット ワーク管理プロトコル)機能があります。CE-1000-4 は ONG RMON を使用します。ONG RMON に は、標準 RMON MIB からの統計情報、履歴、アラーム、およびイベント MIB (管理情報ベース) グループが含まれます。RMON スレッシュホールドのプロビジョニングにアクセスするには、TL1 または CTC を使用します。CTC での RMON スレッシュホールドのプロビジョニングについては、 『*Cisco ONS 15454 Procedure Guide*』または『*Cisco ONS 15454 SDH Procedure Guide*』を参照してくだ さい。

統計情報およびカウンタ

CE-1000-4 のイーサネット統計情報および POS 統計情報は、Performance > Ether Ports タブまたは Performance > POS Ports タブを選択してすべて表示できます。

CE-1000-4 の SONET/SDH 回線および機能

CE-1000-4 には 1 ~ 4の番号が付いた POS ポートが 4 つ装備されています。ポートの番号は CTC または TL1 で管理できます。各 POS ポートは対応するイーサネット ポートに統計的にマップされます。CE-1000-4 カードは、ONS 15454 内の互換スロットに STS-48c の総帯域幅を、または ONS 15454 SDH 内の互換スロットに STM-16 の総帯域幅を提供します。

POS ポート レベルでは、次の特性を設定できます。

- ポート名
- 管理状態
- AINS ソーク時間
- フレーミングタイプ
- カプセル化 CRC

(注)

フレーミング タイプが GFP に設定されている場合、カプセル化 CRC をオンおよびオフ (CRC あ りまたは CRC なし)にできます。フレーミング タイプが High-Level Data Link Control (HDLC; ハ イレベル データリンク制御)に設定されている場合、CRC は常にオンです。

カード レベルの Provisioning > POS Ports タブをクリックして、管理状態、フレーミング タイプ、カ プセル化タイプを設定できます。カード レベルの Performance > POS Ports タブをクリックして、POS ポートの統計情報、利用率、履歴を表示できます。

CE-1000-4 カードの特定のサイズと互換カード スロットについては、『*Cisco ONS 15454 Reference Manual*』または『*Cisco ONS 15454 SDH Reference Manual*』の「Ethernet Cards」の章を参照してください。

CE-1000-4 VCAT の特性

CE-1000-4 カードでは、Software Link Capacity Adjustment Scheme (SW-LCAS; ソフトウェア リンク キャパシティ調整方式)がサポートされています。これにより、CE-1000-4 カードは ONS 15454 SONET/SDH ML シリーズ カードとの互換性を持ち、SW-LCAS もサポートします。CE-1000-4 カー ドでは、ハードウェア ベースの標準 LCAS がサポートされません。CE-1000-4 も SW-LCAS がイ ネーブルの状態では動作しません。このモードでは、ML シリーズ カードに SW-LCAS が設定され ていない場合、CE-1000-4 は ONS 15454 SONET/SDH の G シリーズ カード、CE-100T-8 カード、ML シリーズ カードと互換性があります。イーサネット カードの互換性の詳細については、第 20 章 「ONS イーサネット カード上の POS」を参照してください。

CE-1000-4 カードはフレキシブル VCAT グループ(VCG)と固定(ピュアまたは非フレキシブル) VCG をサポートします。フレキシブル VCG は SW-LCAS に、固定 VCG は LCA なしに対応します。 フレキシブル VCG では、CE-1000-4 は次の動作を実行できます。

- グループからメンバーを追加または削除します。
- メンバーを IS 状態または OOS 状態にします。これもグループからメンバーを追加または削除します。
- VCG からクロスコネクト回線を追加または削除します。
- グループからエラー メンバーを自動的に削除します。

VCG からメンバーを追加または削除すると、サービスに影響します。関連付けられたメンバーが グループ内に存在しない場合、クロスコネクト回線を追加または削除してもサービスに影響しませ ん。 CE-1000-4 カードも固定(ピュアまたは非フレキシブル)VCG をサポートします。非フレキシブル VCG では、CE-1000-4 はより制限され、次の動作のみを実行できます。

- メンバーを IS 状態または OOS 状態にします。
- メンバーに関連付けられたクロスコネクト回線を追加または削除します。

非フレキシブル VCG では、CE-1000-4 の制限事項には次が含まれます。

- グループからメンバーを追加または削除できません。
- グループからエラーメンバーを自動的に削除できません。

CE-1000-4 カードでは、VCAT 回線の各メンバに対して独立したルーティングおよび保護優先を行うことができます。完全に保護されているまたは保護されていない、または Protection Channel Access (PCA)(PCA が使用可能な場合)を使用する VCAT 回線の容量の合計を制御することもできます。 アラームは、Virtual Concatenation Group (VCG) ごとだけでなく、メンバーごとにサポートされています。

CE-1000-4 カードでは、共通ファイバでの VCAT のルーティングとスプリット ファイバ(ダイバー ス)での VCAT のルーティングがサポートされます。共通ファイバのルーティングは、2 ファイバ Bidirectional Line Switched Ring (BLSR; 双方向ライン スイッチ型リング)保護方式および APS と互 換性があります。これは、Unidirectional Path Switch Ring (UPSR; 単方向パス スイッチ型リング)と 4 ファイバ BLSR 保護方式はサポートしません。スプリット ファイバ ルーティングでは、UPSR、2 ファイバ BLSR、4 ファイバ BLSR、リニア スイッチ (1+1)のすべての保護タイプがサポートされ ます。

VCAT スプリット ファイバルーティングでは、CCAT および VCAT の共通ファイバルーティング が必要とするパスと同じパスを経由する必要はなく、SONET/SDH ネットワーク経由で各メンバー を個別にルーティングできます。これにより、ネットワーク帯域幅をより効率よく使用できます。 ただし、パス長と遅延が異なるので、VCG の各メンバーの到着時間にわずかにズレが生じます。 VCAT 遅延差は、VCG メンバー間の相対的な到着時間を計算したものです。CE-1000-4 カードの VCAT スプリット ファイバ ルーティングの最大許容遅延差は、約 120 ミリ秒です。サポートされ ている最大遅延差を超えた場合、Loss of Alignment(アラインメント損失)アラームが生成されます。

CTC 回線設定プロセス中に、スプリット ファイバ ルーティングを選択すると、遅延差補償機能が 自動的にイネーブルになります。CCAT および VCAT の共通ファイバ ルーティングは、遅延差を イネーブルにしたり、サポートする必要がありません。

遅延差補償機能がイネーブルの場合、60 ミリ秒未満の保護スイッチは保証されません。補償時間 をスイッチング時間に追加できます。

TL-1 の場合、スプリット ファイバ ルーティングのサポートをイネーブルするには、EXPBUFFERS パラメータを ENT-VCG でオンに設定する必要があります。

CE-1000-4 の POS カプセル化、フレーム化、および CRC

CE-1000-4 は Cisco EoS LEX (LEX) を使用します。LEX は ONS イーサネット カードの基本カプセ ル化方式です。この専用の HDLC ベースのカプセル化では、プロトコル フィールドは、Internet Engineering Task Force (IETF; インターネット技術特別調査委員会) の Request For Comments (RFC; コメント要求) 1841 で指定された値に設定されます。

ユーザは、CE-1000-4 上でフレーミングを、Frame-mapped Generic Framing Procedure(GFP-F)フレー ミング(デフォルト)または HDLC フレーミングのいずれかとしてプロビジョニングできます。

GFP-F フレーミングでは、32 ビット CRC (デフォルト)または CRC なし(なし)も設定できます。 GFP-F 上で LEX が使用される場合、LEX は ITU-T G.7041 に基づいた GFP-F 上の標準マップ イー サネットです。

HDLC フレーミングは設定済み 32 ビット CRC を提供します。

カプセル化、フレーム化、CRC の情報を含め、ONS イーサネット カードの相互運用性の詳細については、「ONS イーサネット カード上の POS」の章を参照してください。

CE-1000-4 のループバック、J1 パス トレース、および SONET/SDH アラーム

CE-1000-4 カードは、ターミナル ループバックとファシリティ ループバックをサポートします。また、OC-N カードと同様の方法で SONET/SDH アラームをレポートし、J1 パス トレース バイトを転送およびモニタリングします。次のパス終端機能がサポートされています。

- H1 および H2 連結表示
- Bit Interleaved Parity 3 (BIP-3; ビット インターリーブド パリティ 3) 生成
- G1 パス ステータス表示
- C2 パス信号ラベル (読み取り専用)
- Loss Of Pointer (LOP; ポインタ損失)、未実装、ペイロード不一致、Alarm Indication Signal (AIS; アラーム表示信号)検出、および Remote Defect Indication (RDI; リモート障害表示)を含む、 パス レベルのアラームと条件
- 高次回線パスの J1 パス トレース
- 低次パスの拡張信号ラベル

コマンド リファレンス

この付録では、Cisco IOS コマンドのコマンド リファレンスまたは ML シリーズ カードに固有の Cisco IOS コマンドの特徴について説明します。標準的な Cisco IOS Release 12.2 コマンドの詳細に ついては、http://www.cisco.com/univered/cc/td/doc/product/software/ios122/ から入手できる Cisco IOS のマニュアルを参照してください。

[no] bridge bridge-group-number protocol {drpri-rstp | ieee | rstp}

ブリッジ グループで使用するプロトコルを定義するには、bridge protocol グローバル コンフィギュ レーション コマンドを使用します。ブリッジ グループでプロトコルを使用しない場合、このコマ ンドは必要ありません。ブリッジ グループからプロトコルを削除するには、このコマンドの no 形 式を、適切なキーワードおよび引数と一緒に使用します。

シンタックスの説明	パラメータ	説明
	drpri-rstp	ML シリーズ カードの Dual Resilient Packet Ring Interconnect (DRPRI; 二 重復元パケット リング相互接続)機能をイネーブルにするプロトコル
	ieee	IEEE 802.1D Spanning Tree Protocol (STP; スパニングツリー プロトコル)
	rstp	IEEE 802.1D Rapid Spanning Tree Protocol (RSTP; 高速スパニングツリー プロトコル)
	bridge-group-number	プロトコルに割り当てられるブリッジ グループの識別番号

デフォルト

- **コマンドモード** グローバル コンフィギュレーション
- 使用上のガイドライン プロトコル DRPRI-RSTP は、ML シリーズ カードを DRPRI の一部として設定する場合にのみ使用 します。DRPRI が設定されているブリッジ グループでは、プロトコルは1つに制限されるため、そ のブリッジ グループには、RSTP または STP を併せて実装することはできません。
- **例** 次の例では、ブリッジ グループ番号 100 のブリッジ グループに DRPRI プロトコルを割り当てます。 Router(config)#**bridge 100 protocol drpri-rstp**

関連コマンド bridge-group

[no] clock auto

システム クロック パラメータを Advanced Timing, Communications, and Control/Advanced Timing, Communications, and Control Plus (TCC2/TCC2P) カードから自動的に設定するかどうかを決定する には、clock auto コマンドを使用します。このコマンドがイネーブルになっていると、夏時間と時 間帯が両方とも自動的に設定され、システム クロックが定期的に TCC2/TCC2P カードに同期され ます。この機能をディセーブルにする場合は、このコマンドの no 形式を使用します。

- シンタックスの説明 このコマンドには、引数またはキーワードはありません。
- デフォルト デフォルトの設定は clock auto です。
- **コマンドモード** グローバル コンフィギュレーション
- **使用上のガイドライン** このコマンドの no 形式は、夏時間、時間帯、またはクロックを手動で設定するために必須です。また、 no 形式は、Network Time Protocol (NTP)が Cisco IOS で設定されている場合は必須です。ONS 15454 SONET/SDH も Cisco Transport Controller (CTC)から設定され、NTP または SNTP(簡易ネットワーク タイム プロトコル)サーバを使用してノードの日付と時刻が設定できるようになっています。
- 例 Router(config)# no clock auto
- **関連コマンド** clock

clock timezone

clock set

interface spr 1

Resilient Packet Ring (RPR; 復元パケット リング)のために ML シリーズ カード上で Shared Packet Ring (SPR; 共有パケット リング)を作成するには、このコマンドを使用します。インターフェイ スがすでに作成されている場合は、このコマンドによって spr インターフェイス コンフィギュレー ション モードに入ります。有効な spr インターフェイス番号は 1 のみです。

デフォルト

- **コマンドモード** グローバル コンフィギュレーション
- **使用上のガイドライン** このコマンドを使用すると、RPR/SPR で使用する仮想インターフェイスを作成できます。さらに、 spr wrap や spr station-id などのコマンドを SPR コンフィギュレーション コマンド モードから RPR に適用できます。
- **例** 次の例では、共有パケット リング インターフェイスを作成します。

Router(config)# interface spr 1

関連コマンド spr drpri-id

spr-intf-id

spr station-id

spr wrap

[no] ip radius nas-ip-address {hostname | ip-address}

ML シリーズ カードを使用すると、ユーザは各 ML シリーズ カードに対して個別の nas-ip-address を設定できます。これにより、Remote Authentication Dial In User Service (RADIUS)サーバが同一 ONS ノード内の ML シリーズ カードを個別に識別できます。ONS ノードに ML シリーズ カードが 1 つしかない場合は、このコマンドを使用するメリットはありません。ONS ノードのパブリック IP アドレスは、サーバに送信される RADIUS パケット内の nas-ip-address として機能します。

サーバに要求を送信した特定の ML シリーズ カードを識別できると、サーバのデバッグ時に便利で す。nas-ip-address は、主に RADIUS 認証およびアカウンティング要求の検証に使用されます。

この値が設定されていない場合、nas-ip-address は、ip radius-source コマンドで設定された値を使用 して通常の Cisco IOS メカニズムによって設定されます。値が設定されていない場合は、サーバへ の最良のルートとなる IP アドレスが使用されます。サーバにルーティングされているアドレスが 使用できない場合は、サーバの IP アドレスが使用されます。

デフォルト

コマンドモード グローバル コンフィギュレーション

使用上のガイドライン このコマンドを使用すると、ユーザは RADIUS パケット内にある属性 4 (nas-ip-address)の IP アドレスまたはホスト名を指定できます。

例 次の例では、RADIUS パケットの 属性 4 の IP アドレスを作成します。

Router# configure terminal Router (config)# [no] ip radius nas-ip-address 10.92.92.92

関連コマンド aaa new-model

aaa authentication login

microcode fail system reload

マイクロコード障害の際に、フラッシュメモリに情報を保存してリブートするように ML シリーズ カードを設定します。保存される情報は、Cisco TAC で使用されます。TAC への連絡については、 「テクニカル サポート」(p.xxvii)を参照してください。

デフォルト

コマンドモード グローバル コンフィギュレーション

使用上のガイドライン このコマンドと機能は、ML シリーズ カード固有のものです。

例 ML-Series(config)# microcode fail system-reload

関連コマンド

78-17207-01-J

[no] pos pdi holdoff *time*

Virtual Concatenation(VCAT; バーチャル コンカチネーション)メンバー回線が Virtual Concatenation Group(VCG)に追加された場合に、Path Defect Indication(PDI; パス障害表示)を遠端に送信しな いで待機する時間をミリ秒単位で指定するには、このコマンドを使用します。デフォルト値を使用 するには、このコマンドの no 形式を使用します。

シンタックスの説明	パラメータ	説明
	time	ミリ秒単位の遅延時間(100~1000)
デフォルト	デフォルト値は 100	0 ミリ秒です。
コマンドモード	インターフェイス	コンフィギュレーション モード (Packet-over-SONET/SDH [POS] のみ)
使用上のガイドライン	通常、この値は Pee の時間単位は 1 ミリ	er Terminal Equipment(PTE)の設定と一致するように設定します。このコマンド J秒です。
例	Gateway(config)# Gateway(config-if	int pos0)# pos pdi holdoff 500
関連コマンド	pos trigger defects	

[no] pos report alarm

アラームおよび信号をコンソールに記録するかどうかを指定するには、このコマンドを使用しま す。このコマンドは、アラームが Advanced Timing Communications, and Control/Advanced Timing, Communications, and Control Plus (TCC2/TCC2P)および CTC にレポートされるかどうかに影響しま せん。このような条件は、Telcordia GR-253 に従ってソークされ、クリアされます。特定のアラー ムや信号のレポートをディセーブルにするには、このコマンドの no 形式を使用します。

シンタックスの説明	パラメータ	説明
	alarm	コンソールに記録される SONET/SDH アラームです。アラームの種類は
		次のとおりです。
		all すべてのリンク ダウン アラーム障害
		ber_sd_b3 PBIP BER SD スレッシュホールド超過障害
		ber_sf_b PBIP BER SF スレッシュホールド超過障害
		encap パス信号ラベル カプセル化ミスマッチ障害
		pais パス アラーム表示信号障害
		plop パス ポインタ喪失障害
		ppdi パス ペイロード障害表示障害
		pplm ペイロード ラベル ミスマッチ パス
		prdi パス リモート障害表示障害
		ptim パス トレース ID ミスマッチ障害
		puneq ゼロと同等のパス ラベル障害
デフォルト	デフォルトではすべての	Dアラームをレポートします。
コマンド モード	インターフェイス コン	フィギュレーション モード (Packet-over SONET/SDH [POS] のみ)
使用上のガイドライン	通常、この値は Peer Ter	rminal equipment(PTE)の設定と一致するように設定します。
例	Gateway(config)# int	pos0
	Gateway(config-if)# p Gateway(config-if)# p	os report all os flag c2 1
	03:16:51: %SONET-4-AL	ARM: POS0: PPLM
	Gateway(config-if)# p 03:17:34: %SONET-4-AL	ws flag c2 0x16 WARM: POS0: PPLM cleared
関連コマンド	pos trigger defects	

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

[non] pos trigger defects condition

関連付けられた Packet-over-SONET/SDH(POS)リンク状態が条件によって変わるように指定する には、このコマンドを使用します。これらの条件は、pos trigger delay コマンドで指定した遅延を 使用してソークまたはクリアされます。特定の条件でのトリガーをディセーブルにするには、この コマンドの no 形式を使用します。

シンタックスの説明	パラメータ	
	condition	リンク状態を変更する SONET/SDH 状態です。状態は次のとおりです。
		all すべてのリンク ダウン アラーム障害
		ber_sd_b3 Path Bit Interleaved Parity (PBIP; パス ビット インターリー ブド パリティ)Bit Error Rate(BER; ビット エラー レート)Signal Degrade (SD; 信号劣化) スレッシュホールド超過障害
		ber_sf_b PBIP BER SF スレッシュホールド超過障害
		encap パス信号ラベル カプセル化ミスマッチ障害
		pais パス アラーム表示信号障害
		plop パス ポインタ喪失障害
		ppdi パス ペイロード障害表示障害
		pplm ペイロード ラベル ミスマッチ パス
		prdi パス リモート障害表示障害
		ptim パス トレース ID ミスマッチ障害
		puneq ゼロと同等のパス ラベル障害
デフォルト	デフォルトではすべて リストを参照してく <i>†</i>	ての状態をレポートします。すべての状態のリストについては、上記の説明の どさい。
コマンドモード	インターフェイス コ	ンフィギュレーション モード (Packet-over SONET/SDH [POS] のみ)
使用上のガイドライン	通常、この値は Peer ′	Terminal Equipment(PTE)の設定と一致するように設定します。
例	Gateway(config)# ir Gateway(config-if)#	nt pos0 # pos trigger defects all

関連コマンド pos trigger delay

[no] pos trigger delay time

関連付けられた Packet-over-SONET/SDH (POS)リンク状態が条件によって変わるように指定する には、このコマンドを使用します。pos trigger defects コマンドで指定した条件は、遅延を使用して ソークまたはクリアされます。デフォルト値を使用するには、このコマンドの no 形式を使用しま す。

シンタックスの説明	パラメータ	説明
	time	ミリ秒単位の遅延時間 (200 ~ 2000)
デフォルト	デフォルト値は 200 3	ミリ秒です。
コマンドモード	インターフェイス コ	ンフィギュレーション モード (Packet-over SONET/SDH [POS] のみ)
使用上のガイドライン	通常、この値は Peer ′ の最小単位は 50 ミリ	Ferminal Equipment(PTE)の設定と一致するように設定します。このコマンド 秒です。
例	Gateway(config)# ir Gateway(config-if)#	nt pos0 # pos trigger delay 500
関連コマンド	pos trigger defects	

[no] pos scramble-spe

スクランブリングをイネーブルにするには、このコマンドを使用します。

シンタックスの説明 このコマンドには、引数またはキーワードはありません。

デフォルト デフォルト値はカプセル化によって異なります。

カプセル化	スクランプリング
LEX	pos scramble-atm
PPP/HDLC	no pos scramble-spe

コマンドモード インターフェイス コンフィギュレーション モード (Packet-over SONET/SDH [POS] のみ)

使用上のガイドライン 通常、この値は Peer Terminal Equipment (PTE)の設定と一致するように設定します。このコマンド によって pos flag c2 の設定が変わる可能性があります。

 Ø
 Gateway(config)# int pos0

 Gateway(config-if)# pos scramble-spe

関連コマンド関連 pos flag c2

[no] pos vcat defect {immediate | delayed}

Virtual Concatenation (VCAT; バーチャル コンカチネーション)障害処理モードを、状態の変化を検 出したらただちに処理するように設定するか、または pos trigger delay で指定した時間の間待機す るように設定します。デフォルト値を使用するには、このコマンドの no 形式を使用します。

シンタックスの説明	パラメータ	説明
	immediate	ステートの変化を検出したらただちに障害を処理します。
	delayed	コマンド pos trigger delay で指定した時間が経過してから障害を処理しま す。遅延を設定していて、かつ回線が Resilient Packet Ring (RPR; 復元パ ケット リング) 上にある場合は、RPR 障害処理も指定した遅延時間だけ 遅れます。
デフォルト	デフォルトの設定	は immediate です。
コマンド モード	POS インターフェ	イス設定
使用上のガイドライン	VCAT 回線が非保 す。SONET 保護回 は Unidirectional Pa (Subnetwork Conne Protection Ring [M 使用する必要があ	護 SONET/SDH 回線を使用している場合は、immediate を使用する必要がありま]路(Bidirectional Line Switch Ring [BLSR;双方向ライン スイッチ型リング]また ath Switch Ring [UPSR;単方向パス スイッチ型リング])または SDH 保護回路 action Protection[SNCP;サブネットワーク接続保護]または Multiplex Section-Shared IS-SPRing;多重化セクション共有保護リング])を使用している場合、delayed を ります。
例	次の例では、ML: Router(config)#	シリーズ カードを delayed に設定しています。 interface pos 1
関連コマンド	Router (config-if interface spr 1 spr wrap interface pos 1)# pos vcat defect delayed
	pos trigger delay	

[no] pos vcat resequence {enable | disable}

Software Link Capacity Adjustment Scheme (SW-LCAS; ソフトウェア リンク キャパシティ調整方式) の H4 バイト シーケンス番号の再シーケンス機能をイネーブルまたはディセーブルにします。 Release 4.6.2 以降のソフトウェアを実行している ML シリーズ カードが、Release 4.6.0 または 4.6.1 のソフトウェアを実行している ML シリーズ カードと相互運用している場合は、Release 4.6.2 以降 のソフトウェアを実行している ML シリーズ カードの設定に pos vcat resequence disable コマンド を追加する必要があります。

シンタックスの説明	パラメータ	説明
	Enable	Virtual Concatenation (VCAT; バーチャル コンカチネーション) グループ
		にメンバーを追加した際または VCAT グループからメンバーを削除し
		た際に実行する H4 バイト シーケンス番号の再シーケンスをイネーブル
		にします。両メンバーがアップ状態の場合は、メンバー 0 のシーケンス
		番号がゼロ(0)になり、メンバー1のシーケンス番号が1になります。
		1 つのメンバーだけがアップ状態の場合は、そのメンバーのシーケンス
		番号はゼロ(0)になります。
	Disable	VCAT グループにメンバーを追加した際または VCAT グループからメン
		バーを削除した際に実行する H4 バイト シーケンス番号の再シーケンス
		をディセーブルにします。メンバー0のシーケンス番号は必ずゼロ(0)
		になり、メンバー1のシーケンス番号は必ず1になります。
デフォルト	デフォルトの設定は	Enableです。
	Packet over SONET/SI	OH (POS) ポート設定ごと
	racket-over-some 1/si	
使用上のガイドライン	このコマンドの no 形	式ではモードがデフォルトに設定されます。
例	次の例では、POS ポ -	- ト 0 に対して H4 バイト シーケンス番号の再シーケンスをディセーブルにし
	ます。	
	Router(config)# int Router(config)# pos	; pos 0 ; vcat resequence disable
関連コマンド	なし	

show controller pos interface-number [details]

Packet-over-SONET/SDH (POS) コントローラの状態を表示するには、このコマンドを使用します。 インターフェイスの SONET および POS の追加情報を取得するには、details 引数を使用します。

```
シンタックスの説明
                 パラメータ
                                     説明
                 interface-number
                                     POS インターフェイスの番号 (0~1)
デフォルト
コマンドモード イネーブル EXEC
使用上のガイドライン このコマンドは、POSとSONETの問題を診断して特定するために使用できます。
例
Continuous Concatenation Circuit (CCAT)のShow Controllerの出力例
                 Router# show controller pos 0
                 Interface POS0
                 Hardware is Packet/Ethernet over Sonet
                 Concatenation: CCAT
                 Circuit state: IS
                 PATH
                                             = 0
= 0
                   PATS
                           = 0
                                     PLOP
                                                          PRDI = 0
                                                                            PTTM = 0
                   PPLM
                           = 0
                                      PUNEQ
                                                          PPDI
                                                                 = 0
                                                                            PTIU = 0
                   BER_SF_B3 = 0
                                      BER_SD_B3 = 0
                                                          BIP(B3) = 20
                                                                             REI = 2
                          = 0
                                               = 0
                                                                 = 0
                   NEWPTR
                                      PSE
                                                          NSE
                 Active Alarms : None
                 Demoted Alarms: None
                 Active Defects: None
                 Alarms reportable to CLI: PAIS PLOP PUNEQ PTIM PPLM PRDI PPDI BER_SF_B3 BER_SD_B3
                 VCAT_OOU_TPT LOM SQM
                 Link state change defects: PAIS PLOP PUNEQ PTIM PPLM PRDI PPDI BER SF B3
                 Link state change time : 200 (msec)
                 DOS FPGA channel number : 0
                 Starting STS (0 based) : 0
                 VT ID (if any) (0 based) : 255
                 Circuit size
                                     : VC4
                 RDT Mode
                                     : 1 bit
                 C2 (tx / rx)
                                    : 0x01 / 0x01
                 Framing
                                     : SDH
                 Path Trace
                               : off
                  Mode
                  Transmit String :
                  Expected String :
                  Received String :
                  Buffer : Stable
                  Remote hostname :
                  Remote interface:
                  Remote IP addr :
                 B3 BER thresholds:
                 SFBER = 1e-4, SDBER = 1e-7
```

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

5 total input packets, 73842 post-HDLC bytes 0 input short packets, 73842 pre-HDLC bytes 0 input long packets, 0 input runt packets 67 input CRCerror packets, 0 input drop packets 0 input abort packets 0 input packets dropped by ucode 0 total output packets, 0 output pre-HDLC bytes 0 output post-HDLC bytes Carrier delay is 200 msec

VCAT の Show Controller の出力例

```
Router# show controller pos 1
Interface POS1
Hardware is Packet/Ethernet over Sonet
Concatenation: VCAT
VCG State: VCG NORMAL
LCAS Type:NO LCAS
Defect Processing Mode: IMMEDIATE
PDI Holdoff Time: 100 (msec)
Active Alarms : None
Demoted Alarms: None
ESM State: IS
VCG Member State: VCG_MEMBER_NORMAL
 PAIS = 0 	 PLOP = 0
PPLM = 0 	 PUNEQ = 0
                                      PRDI = 0
                                                        PTIM = 0
                                      PPDI = 0
                                                        PTIU = 0
 BER_SF_B3 = 0
                    BER_SD_B3 = 0
                                       BIP(B3) = 16
                                                         REI = 17
 NEWPTR = 0
                    PSE = 0
                                       NSE = 0
Active Alarms : None
Demoted Alarms: None
Active Defects: None
Alarms reportable to CLI: PAIS PLOP PUNEQ PTIM PPLM PRDI PPDI BER_SF_B3 BER_SD_B3
VCAT_OOU_TPT LOM SQM
Link state change defects: PAIS PLOP PUNEQ PTIM PPLM PRDI PPDI BER_SF_B3
Link state change time : 200 (msec)
DOS FPGA channel number : 2
Starting STS (0 based) : 3
VT ID (if any) (0 based) : 255
Circuit size : VC4
RDI Mode
                   : 1 bit
                  : 0x01 / 0x01
C2 (tx / rx)
Framing
                   : SDH
Path Trace
Mode : off
Transmit String :
Expected String :
Received String :
Buffer : Stable
Remote hostname :
Remote interface:
Remote IP addr :
B3 BER thresholds:
SFBER = 1e-4, SDBER = 1e-7
ESM State: IS
VCG Member State: VCG_MEMBER_NORMAL
         = 0
                   PLOP = 0
                                      PRDI = 0
                                                       PTIM = 0
 PAIS
```

```
= 0
                      PUNEQ = 0
BER_SD_B3 = 0
                                                                PTIU = 0
  PPLM
                                            PPDI = 0
  BER_SF_B3 = 0
                                            BIP(B3) = 15
                                                                 REI = 35
  NEWPTR = 0
                       PSE = 0
                                             NSE
                                                     = 0
Active Alarms : None
Demoted Alarms: None
Active Defects: None
Alarms reportable to CLI: PAIS PLOP PUNEQ PTIM PPLM PRDI PPDI BER_SF_B3 BER_SD_B3
VCAT OOU TPT LOM SOM
Link state change defects: PAIS PLOP PUNEQ PTIM PPLM PRDI PPDI BER_SF_B3
Link state change time : 200 (msec)
DOS FPGA channel number : 3
Starting STS (0 based) : 24
VT ID (if any) (0 based) : 255
Circuit size
               : VC4
                     : 1 bit
: 0x01 / 0x01
RDI Mode
C2 (tx / rx)
Framing
                      : SDH
Path Trace
                : off
Mode
Transmit String :
Expected String :
Received String :
 Buffer
               : Stable
 Remote hostname :
Remote interface:
 Remote IP addr :
B3 BER thresholds:
SFBER = 1e-4, SDBER = 1e-7
13 total input packets, 5031 post-HDLC bytes
0 input short packets, 5031 pre-HDLC bytes
0 input long packets, 0 input runt packets
0 input CRCerror packets , 0 input drop packets
0 input abort packets
0 input packets dropped by ucode
13 total output packets, 5031 output pre-HDLC bytes
5031 output post-HDLC bytes
Carrier delay is 200 msec
```

関連コマンド

show interface pos

clear counters
show interface pos *interface-number*

Packet-over-SONET/SDH (POS)の状態を表示するには、このコマンドを使用します。

シンタックスの説明	パラメータ 説明
	interface-number POS インターフェイスの番号 (0~1)
デフォルト	
コマンド モード	イネーブル EXEC
使用上のガイドライン	このコマンドは、POS と SONET/SDH の問題を診断して特定するために使用できます。
伊	<pre>Gateway# show interfaces pos0 pos0 is up, line protocol is up Hardware is Packet/Ethernet over Sonet Description: foo bar MTU 4470 bytes, BW 155520 Kbit, DLY 100 usec, reliability 255/255, txload 1/255 Encapsulation HDLC, crc 32, loopback not set Keepalive set (10 sec) Scramble enabled Last input 00:00:09, output never, output hang never Last clearing of "show interface" counters 05:17:30 Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/16 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/40 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/40 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/16 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/40 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/40 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/16 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/16 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/16 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/16 (size/max/drops/flushes); Total output grops: 0 Queueing strategy: fifo Output queue: 0/16 (size/max/drops/flushes); Total output sckets, 223743 post-HDLC bytes 0 input short packets, 223951 pre-HDLC bytes 0 input cRCerror packets, 0 input runt packets 0 input abort packets, 0 input runt packets 0 input abort packets, 0 input drop packets 0 input packets dropped by ucode 0 packets input, 0 bytes Received 0 broadcasts, 0 runts, 0 giants, 0 throttles 0 parity 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort 2216 total output packets, 223807 output pre-HDLC bytes 224003 output post-HDLC bytes 0 packets output, 0 bytes, 0 underruns 0 output errors, 0 applique, 8 interface resets 0 output transit</pre>
関連コマンド	show controller pos

show ons alarm

Cisco IOS CLI (コマンドライン インターフェイス) セッションを実行している ML シリーズ カード上でアクティブなすべてのアラームを表示するには、このコマンドを使用します。

シンタックスの説明 このコマンドには、引数またはキーワードはありません。

デフォルト

コマンドモード イネーブル EXEC

使用上のガイドライン このコマンドは、カードの問題を診断して特定するために使用できます。

例

router# **show ons alarm** Equipment Alarms Active: CONTBUS-IO-A CTNEQPT-PBWORK

Port	Ala	arms			
POS	50	Active:	None		
POS	51	Active:	None		
Fas	stEt	hernet0	Activ	e:	None
Fas	stEt	hernet1	Activ	e:	None
Fas	stEt	hernet2	Activ	e:	None
Fas	stEt	hernet3	Activ	e:	None
Fas	stEt	hernet4	Activ	e:	None
Fas	stEt	hernet5	Activ	e:	None
Fas	stEt	hernet6	Activ	e:	None
Fas	stEt	hernet7	Activ	e:	None
Fas	stEt	hernet8	Activ	e:	None
Fas	stEt	hernet9	Activ	e:	None
Fas	stEt	hernet10) Acti	ve:	None
Fas	stEt	hernet11	. Acti	ve:	None

POS0

Active Alarms : None Demoted Alarms: None

POS1 VCG State: VCG_NORMAL VCAT Group Active Alarms : None Demoted Alarms: None

Member 0 Active Alarms : None Demoted Alarms: None

Member 1 Active Alarms : None Demoted Alarms: None

関連コマンド

show controller pos

show ons alarm defects

show ons alarm failures

show ons alarm defect eqpt

装置層の障害を表示するには、このコマンドを使用します。

シンタックスの説明 このコマンドには、引数またはキーワードはありません。

デフォルト

- **コマンドモード** イネーブル EXEC
- 使用上のガイドライン 装置層のアクティブな障害と、問題の可能性のある障害を表示するには、このコマンドを使用します。
- Ø
 router# show ons alarm defect eqpt

 Equipment Defects
 Active: CONTBUS-IO-B

 Reportable to TCC/CLI: CONTBUS-IO-A CONTBUS-IO-B CTNEQPT-PBWORK CTNEQPT-PBPROT EQPT

 RUNCFG-SAVENEED ERROR-CONFIG

関連コマンド show ons alarm failures

show ons alarm defect port

ポート層の障害を表示するには、このコマンドを使用します。

シンタックスの説明 このコマンドには、引数またはキーワードはありません。

デフォルト

- **コマンドモード** イネーブル EXEC
- 使用上のガイドライン リンク層のアクティブな障害と、問題の可能性のある障害を表示するには、このコマンドを使用し ます。TPTFAIL 障害は Packet-over-SONET/SDH (POS) ポート上でのみ発生し、CARLOSS 障害は イーサネット ポート上でのみ発生します。

router# show ons alarm defect port Port Defects POSO Active: TPTFAIL Reportable to TCC: CARLOSS TPTFAIL POS1 Active: TPTFAIL Reportable to TCC: CARLOSS TPTFAIL GigabitEthernet0 Active: None Reportable to TCC: CARLOSS TPTFAIL GigabitEthernet1 Active: None Reportable to TCC: CARLOSS TPTFAIL

関連コマンド

show interface

show ons alarm failures

show ons alarm defect pos interface-number

リンク層の障害を表示するには、このコマンドを使用します。

シンタックスの説明	パラメータ	
	interface-number	インターフェイスの番号(0~1)
デフォルト		
コマンド モード	イネーブル EXEC	
使用上のガイドライン	Packet-over-SONET/SI は、このコマンドを係	DH(POS)層のアクティブな障害と、問題の可能性のある障害を表示するに 使用します。
例	router# show ons al POSO Active Defects: Non Alarms reportable t	arm defect pos0 e o TCC/CLI: PAIS PRDI PLOP PUNEQ PPLM PTIM PPDI BER_SF_B3 BER_SD_B3
関連コマンド	show controller pos	
	show ons ararminanures	

show ons alarm failure eqpt

装置層の障害を表示するには、このコマンドを使用します。

シンタックスの説明 このコマンドには、引数またはキーワードはありません。

デフォルト

- **コマンドモード** イネーブル EXEC
- 使用上のガイドライン 装置層のアクティブな障害を表示するには、このコマンドを使用します。EQPT アラームが存在す る場合は、アラームの原因である Board Fail 障害が表示されます。
- Ø
 router# show ons alarm failure eqpt

 Equipment
 Active Alarms: None

関連コマンド show ons alarm defect

show ons alarm failure port

ポート層の障害を表示するには、このコマンドを使用します。

シンタックスの説明 このコマンドには、引数またはキーワードはありません。

デフォルト

コマンドモード イネーブル EXEC

使用上のガイドライン リンク層のアクティブな障害を表示するには、このコマンドを使用します。

例	router# show ons alarm failure port	E
	Port Alarms	
	POSO Active: TPTFAIL	
	POS1 Active: TPTFAIL	
	GigabitEthernet0 Active: None	
	GigabitEthernet1 Active: None	

関連コマンド show interface

show ons alarm defect

show ons alarm failure pos *interface-number*

リンク層の障害を表示するには、このコマンドを使用します。

シンタックスの説明	パラメータ	
	interface-number	インターフェイスの番号(0~1)
デフォルト		
コマンドモード	イネーブル EXEC	
使用上のガイドライン	Packet-over-SONET/SI には、このコマンドな たかどうかも表示され	DH(POS)層にある特定のインターフェイスのアクティブな障害を表示する を使用します。Telcordia GR-253 に規定されているようにアラームが降格され れます。
例	router# show ons al POSO Active Alarms : Nor Demoted Alarms: Nor	larm failure pos O ne ne
関連コマンド	show controller pos	

spr drpri-id $\{0 \mid 1\}$

Dual Resilient Packet Ring Interconnect(DRPRI; 二重復元パケット リング相互接続)保護機能用の ML シリーズ カード ペアを区別するために、0 または 1 の DRPRI 識別番号を作成します。

デフォルト

- コマンドモード Shared Packet Ring (SPR; 共有パケット リング) インターフェイス設定
- 使用上のガイドライン DRPRI ペアの 2 枚のカードは同じ SPR ステーション ID を共有するため、DRPRI 識別番号を使用 すると、DRPRI ペアの一方を簡単に特定できます。
- 例 次の例では、ゼロ(0)という DRPRI 識別番号を ML シリーズ カードの SPR インターフェイスに 割り当てます。

Router(config)# interface spr 1 Router(config-if)# spr drpri-id 0

関連コマンド interface spr 1

spr-intf-id

spr station-id

spr wrap

spr-intf-id shared-packet-ring-number

POS インターフェイスを SPR インターフェイスに割り当てます。

シンタックスの説明	パラメータ	説明
	shared-packet-ring-number	有効な SPR 番号は 1 のみです。
デフォルト		
コマンド モード	POS インターフェイス設定	
使用上のガイドライン	 SPR 番号は必ず1に設定 同じです。 SPR インターフェイスの2 SPR インターフェイスは れます。メンバーの定義に てください。さらに、port- フェイスを設定します。 	します。これは、SPR インターフェイスに割り当てられた SPR 番号と メンバーは、POS インターフェイスであることが必要です。 に、EtherChannel(ポートチャネル)インターフェイスと同様に設定さ こは、 channel-group コマンドではなく、 spr-intf-ID コマンドを使用し -channel と同じように、POS インターフェイスではなく SPR インター
例	次の例では、SPR グ番号が10 イスを 割り当てます。 Router(config)# interface ; Router(config-if)# spr-int	の SPR インターフェイスに ML シリーズ カードの POS インターフェ pos 0 f-id 1
関連コマンド	interface spr 1 spr drpri-id spr station-id spr wrap	

[no] spr load-balance { auto | port-based }

ユニキャスト パケットに対して Resilient Packet Ring (RPR; 復元パケット リング) ロード バランシ ング方式を指定します。

シンタックスの説明	バラメータ	説明
	auto	デフォルトの auto オプションは、MAC(メディア アクセス制御)アド
		レスまたはIPハケットの送信元アトレスと宛先アトレスに基プいて負荷を分散します。
	port-based	port-based ロード バランシング オプションは、偶数のポートを POS 0 イ ンターフェイスに、奇数のポートを POS 1 インターフェイスにマップし ます。
デフォルト	デフォルトの設定は auto	o ट्रे.
コマンド モード	Shared Packet Ring (SPR	; 共有パケット リング) インターフェイス設定
例	次の例では、port-based ロ	コード バランシングを使用するように SPR インターフェイスを設定します。
	Router(config)# inter Router(config-if)# sp	face spr 1 r load-balance port-based
関連コマンド	interface spr 1	

spr station-id *station-id-number*

spr wrap

ステーション ID を設定します。

シンタックスの説明	パラメータ	説明
	staion-id-number	Resilient Packet Ring(RPR; 復元パケット リング)に接続した Shared Packet
		Ring(SPR; 共有パケット リング)インターフェイスごとに異なる番号を
		設定する必要があります。有効なステーション ID 番号の範囲は、1 ~ 254 です。
デフォルト		
コマンドモード	Shared Packet Ring (SPR	:; 共有パケット リング) インターフェイス設定
使用上のガイドライン	RPR に接続している複数 号 spr1 を持っています。	数の ML シリーズ カードはすべて同じインターフェイス タイプであり、番 、ステーション ID は、SPR インターフェイスの区別に便利です。
例	次の例では、ML シリー	·ズ カードの SPR ステーション ID を 100 に設定します。
	Router(config)# inter Router(config-if)# sp	face spr 1 or station-id 100
関連コマンド	interface spr 1	
	spr drpri-id	
	spr-intf-id	

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド

spr wrap { immediate | delayed }

Resilient Packet Ring (RPR; 復元パケット リング) ラップ モードを、リンク ステートの変化を検出 したらただちにトラフィックをラップするように設定するか、または障害を登録してリンクのダウ ンを宣言するための SONET 保護時間を設ける搬送波遅延後にトラフィックをラップするように設 定します。

シンタックスの説明	パラメータ	
	immediate	リンク ステートの変化を検出したらただちに RPR トラフィックをラッ
		プします。
	delayed	搬送波遅延時間が経過してから RPR トラフィックをラップします。
デフォルト	デフォルトの設定	はimmediate です。
コマンド モード	Shared Packet Ring	(SPR; 共有パケット リング) インターフェイス設定
使用上のガイドライン	RPR が非保護 SON SONET 保護回路 Unidirectional Path (Subnetwork Conne Protection Ring [M 要があります。	NET/SDH 回線を実行している場合は、immediate を使用する必要があります。 (Bidirectional Line Switch Ring [BLSR; 双方向ライン スイッチ型リング]や Switch Ring [UPSR; 単方向パス スイッチ型リング])または SDH 保護回路 ction Protection [SNCP; サブネットワーク接続保護]や Multiplex Section-Shared S-SPRing; 多重化セクション共有保護リング])の場合は、delayed を使用する必
例	次の例では、MLシ	ィリーズ カードを delayed に設定しています。
	Router(config)# : Router(config-if)	interface spr 1)# spr wrap delayed
関連コマンド	interface spr 1	
	spr drpri-id	
	spr-intf-id	
	spr station-id	

xconnect

Ethernet over Multiprotocol Label Switching (EoMPLS)を使用してレイヤ2パケットを指定されたポ イントツーポイント Virtual Circuit (VC; 仮想回線)にルーティングするには、Customer-Edge (CE; カスタマーエッジ)または Service Provider-edge Customer-located Equipment (PE-CLE)入力および 出力イーサネット ポートまたは宛先および Virtual Connection Identifier (VC ID; 仮想接続 ID)のあ る dot1Q VLAN (仮想 LAN)サブインターフェイスで、xconnect インターフェイス コンフィギュ レーション コマンドを使用します。VC を削除するには、このコマンドの no 形式を両方のエッジ 装置で使用します。

xconnect destination vc-id encapsulation mpls

no xconnect

このコマンドは、mpls l2transport route インターフェイス コンフィギュレーション コマンドを置き換えたものです。

vc-id	2 つのピア PE 装置間の仮想接続用に VC ID を割り当てます。指定でき
encapsulation mpls	る範囲は1~4294967295 です。 MPLS データ カプセル化方式を指定します。
	<i>vc-id</i> encapsulation mpls

pw-class キーワードは、コマンドラインのヘルプ ストリングには表示されていますが、サポート されていません。

- デフォルト ポイントツーポイント接続は設定されていません。
- **コマンドモード** インターフェイス コンフィギュレーション

使用上のガイドライン サービス プロバイダー ネットワークの各エッジにある 2 つの PE-CLE 装置上のイーサネット イン ターフェイスを接続するために、MPLS クラウドで MPLS VC が稼働します。サービス プロバイダー ネットワークの各エッジにある PE 装置でこのコマンドを入力して、双方向仮想接続を確立する必要 があります。この接続は、2 つの単一方向 Label Switched Path (LSP; ラベル スイッチド パス)で構 成されています。両端で VC が適切に設定されていない場合は、VC が確立されません。

> *destination* パラメータの場合、もう一方の PE-CLE 装置の LDP IP アドレスを指定します。コマンド を入力している装置の IP アドレスを入力しないでください。

> *vc-id* は、PE 装置の各ペアに対して一意でなければなりません。したがって、大規模なネットワー クでは、1 つの VC ID が複数回設定されていないことを確認するために、VC ID を追跡する必要が あります。

例

この例では、インターフェイス PE1 VLAN3 とインターフェイス PE 2 VLAN 4 間の EoMPLS トンネ ルの確立方法を示しています。PE1 には PE2 がルーティングを通じて検出した IP アドレス 10.0.0.1/32 があり、PE2 には PE1 がルーティングを通じて検出した IP アドレス 20.0.0.1/32 がありま す。

インターフェイス PE1 での入力

Switch(config)# interface vlan 3
Switch(config-if)# xconnect 20.0.0.1 123 encapsulation mpls

インターフェイス PE2 での入力

Switch(config)# interface vlan 4
Switch(config-if)# xconnect 10.0.0.1 123 encapsulation mpls

関連コマンド show mpls l2transport route

サポートされていない CLI コマンド

この付録では、テストされていないかまたはハードウェアの制限があるかのいずれかの理由でこの リリースではサポートされていない CLI(コマンドライン インターフェイス)コマンドについて説 明します。サポートされないコマンドは、CLI プロンプトで疑問符(?)を入力すると表示されま す。このリストは完全ではありません。サポートされていないコマンドは、コマンド モードで表示 されます。

サポートされていないイネーブル EXEC コマンド

clear ip accounting show ip accounting show ip cache clear ip tcp header-compression show ip mcache show ip mpacket show controller pos pm show controller pos [*variable*] pm

サポートされていないグローバル コンフィギュレーション コマンド

access-list aaa <1100-1199> access-list aaa <200-299> access-list aaa <700-799> async-bootp boot bridge <num> acquire bridge <num> address bridge cmf bridge <num> bitswap-layer3-addresses bridge <num> circuit-group bridge <num> domain bridge <num> lat-service-filtering bridge <num> protocol dec bridge <num> protocol ibm bridge <num> protocol vlan-bridge chat-script class-map match access-group class-map match class-map class-map match destination-address class-map match mpls class-map match protocol class-map match qos-group class-map match source-address clns define dialer dialer-list downward-compatible-config file ip access-list log-update ip access-list logging ip address-pool ip alias

ip bootp

ip gdp

ip local

ip reflexive-list

ip security

ip source-route

ip tcp

ipc

map-class

map-list

multilink

netbios

partition

policy-map class queue-limit

priority-list

queue-list

iso-igrpiso-igrp

router mobile

service compress-config

service disable-ip-fast-frag

service exec-callback

service nagle

service old-slip-prompts

service pad

service slave-log

set privilege level

subscriber-policy

サポートされていない POS インターフェイス コンフィギュレーション コマンド

access-expression

autodetect

bridge-group x circuit-group

bridge-group x input-*

bridge-group x lat-compression

bridge-group x output-*

bridge-group x subscriber-loop-control

clock

clns

custom-queue-list

down-when-looped

fair-queue

flowcontrol

full-duplex

half-duplex

hold-queue

ip accounting

ip broadcast-address

ip load-sharing per-packet

ip route-cache

ip security

ip tcp

ip verify

iso-igrp

loopback

multilink-group

netbios

pos flag c2

pos mode gfp

priority-group

pulse-time

random-detect

rate-limit

serial

service-policy history

source

timeout

transmit-interface

tx-ring-limit

サポートされていないファースト イーサネットまたはギガビット イー サネット インターフェイス コンフィギュレーション コマンド

access-expression

clns

custom-queue-list

fair-queue

hold-queue

ip accounting

ip broadcast-address

ip load-sharing per-packet

ip route-cache

ip security

ip tcp

ip verify

iso-igrp

keepalive

loopback

max-reserved-bandwidth

multilink-group

netbios

priority-group

random-detect

rate-limit

service-policy history

timeout

transmit-interface

tx-ring-limit

サポートされていない Port-Channel インターフェイス コンフィギュ レーション コマンド

access-expression

carrier-delay

cdp

clns

custom-queue-list

duplex

down-when-looped

encapsulation

fair-queue

flowcontrol

full-duplex

half-duplex

hold-queue

iso-igrp

keepalive

max-reserved-bandwidth

multilink-group

negotiation

netbios

ppp

priority-group

rate-limit

random-detect

timeout

tx-ring-limit

サポートされていない BVI インターフェイス コンフィギュレーション コマンド

access-expression

carrier-delay

cdp

clns

flowcontrol

hold-queue

iso-igrp

keepalive

l2protocol-tunnel

load-interval

max-reserved-bandwidth

mode

multilink-group

netbios

ntp

mtu

rate-limit

timeout

transmit-interface

tx-ring-limit

テクニカル サポートの利用方法

この付録では、MLシリーズカードに関する問題の解決方法について説明します。

この付録の内容は次のとおりです。

- インターネットワーク情報の収集 (p.C-2)
- ML シリーズ カードからのデータの取得 (p.C-3)
- テクニカル サポート担当者へのデータの提供 (p.C-3)

問題の解決に役立てるため、ご連絡の前に、「インターネットワーク情報の収集」(p.C-2)をご使用のネットワークの関連情報を収集する際の注意事項として利用してください。

(注)

解決できない問題がある場合は、Cisco Technical Assistance Center (TAC) にご連絡ください。詳細は、「テクニカル サポート」(p.xxvii)を参照してください。

インターネットワーク情報の収集

特定のデータを収集する前に、インターネットワークに関してすでにレポートされているすべての 症状の情報(接続切断やホスト応答の遅延など)をまとめます。

次に、特定の情報を収集します。インターネットワーキングの問題をトラブルシューティングする のに必要な標準的な情報は、一般的に2つに分類されます。つまり、あらゆる状況に必要な情報と、 トポロジー、テクノロジー、プロトコルに特有の情報です。

テクニカル サポート担当者に必ず提供する必要のある情報は次のとおりです。

- データ ネットワークのネットワーク トポロジー マップ、および SONET/SDH トポロジーとプ ロビジョニング
- ホストとサーバの一覧(ホストとサーバのタイプ、ネットワーク番号、およびホストにインストールされているオペレーティングシステムの説明を含む)
- 関連するすべてのスイッチ ルータとスイッチの設定一覧
- 関連するすべてのスイッチ ルータとスイッチの全仕様
- 関連するすべてのスイッチ ルータとスイッチのソフトウェア バージョン番号(show version コ マンドで取得)とフラッシュ コード (show controllers コマンドで取得)
- ネットワーク層プロトコル、バージョン、およびベンダーの一覧
- SONET/SDH トポロジーの全ノードのアラームと状態の一覧
- ノード装置と構成(クロスコネクト カードのタイプ、ML シリーズ カードのスロット番号、 OC-N カード、および TCC2/TCC2P カードを含む)

必要なデータの収集に役立てるために、show tech-support EXEC コマンドが Cisco IOS Release 11.1(4) 以降に追加されました。このコマンドは、テクニカル サポート担当者に障害を報告する際 に必要となる、スイッチ ルータに関する一般的な情報を表示します。

show tech-support コマンドは、show version、show running-config、show controllers、show stacks、show interfaces、show buffers、show process memory、および show process の各 EXEC コマンドを 使用した場合と同じ情報を出力します。

テクニカル サポートで必要とされる特定情報の要件は、状況によって異なります。次のような情報 が必要となります。

- 次の一般的な show コマンドの出力
 - show interfaces
 - show controllers

show processes {cpu | mem}

- show buffer
- show mem summary
- 次のプロトコル固有の show コマンドの出力
 - show protocol route show protocol traffic show protocol interfaces

show protocol arp

- プロビジョニング show コマンドの出力
- 関連する debug イネーブル EXEC コマンドの出力
- プロトコル固有の ping の出力と trace コマンドによる診断テストの結果(必要な場合)
- ネットワーク アナライザのトレース結果(必要な場合)
- exception dump コマンド、またはシステムが動作可能な場合は write core コマンドで取得した コアダンプ(必要な場合)

ML シリーズ カードからのデータの取得

ML シリーズ カードから情報を取得するときには、取得に使用するシステムに適した取得方法を選 択する必要があります。さまざまなプラットフォームでのヒントを次に示します。

- PC と Macintosh の場合 PC または Macintosh を ML シリーズ カードのコンソール ポートに接続し、出力内容をすべてディスク ファイルに記録します(端末エミュレーション プログラムを使用)。具体的な手順は、システムで使用する通信パッケージによって異なります。
- コンソールポートに接続された端末またはリモート端末の場合 コンソールポートに接続された端末またはリモート端末を使用して情報を取得するには、プリンタを端末のAUXポート(存在する場合)に接続し、すべての画面出力をプリンタに出力するしかありません。データをファイルに保存する方法がないため、端末の使用は好ましくありません。
- UNIX ワークステーションの場合 UNIX のプロンプトで、コマンド script filename を入力し、 Telnet を使用して ML シリーズ カードに接続します。UNIX の script コマンドは、指定したファ イルにすべての画面出力を保存します。出力の保存を中止してファイルを閉じるには、UNIX システムのファイル終了文字(通常は Ctrl-D)を入力します。

特定のエラー メッセージまたは動作情報を UNIX の Syslog サーバに自動的に記録させるには、 logging internet-address コマンドを入力します。logging コマンドの使用方法と Syslog サーバの設定 方法の詳細については、Cisco IOS のコンフィギュレーション ガイドとコマンド リファレンスを参 照してください。

テクニカル サポート担当者へのデータの提供

テクニカル サポート担当者に情報を提供する場合は、できるだけ電子データでお送りください。テ クニカル サポート担当者から開発スタッフへの情報の転送が、電子データにより非常に容易になり ます。一般的な電子形式には、電子メールで送信するデータと FTP (ファイル転送プロトコル)で 送信するファイルがあります。

テクニカル サポート担当者にデータを提供する場合、次のリスト(望ましい順に列挙)に従って適切な提供方法を決定します。

- 最も望ましい情報の提供方法は、インターネット経由の FTP サービスによる送信です。FTP を 使用できる場合は、ホスト Cisco.com の受信ディレクトリにファイルをコピーします。
- 次に望ましい方法は、データを電子メールで送信する方法です。この方法を使用するときには、 事前にテクニカル サポート担当者にご連絡ください。特に、バイナリのコア ダンプや他のサ イズの大きなファイルを送信する場合には必ずご連絡ください。
- Kermit などの PC ベースの通信プロトコルを使用してファイルを Cisco.com にアップロードします。この場合も、転送を開始する前にテクニカル サポート担当者にご連絡ください。
- ディスクまたはテープなどのメディアでデータを送付します。
- 最も望ましくない方法は、ファックスまたは郵送によるハードコピーの送付です。

電子メールを使用する場合は、binhex や zip などの符号化方式は使用しないでください。MIME 準拠のメールだけを使用してください。

Numerics

802.1D STP を参照 IEEE 802.1D STP を参照

А

ABR 11-10 Access Control List ACL を参照 access-list コマンド 22-9 ACL ACL の適用 16-5 概要 16-2 作成 IP ACL 16-3 拡張 IP ACL 16-3 名前付き IP ACL 16-3 名前付き拡張 IP ACL 16-5 名前付き標準 IP ACL 16-4 番号付き標準 IP ACL 16-3 設定時の注意事項 IP ACL 16-3 名前付き IP ACL 16-3 ASBR 11-10 Auto-MDIX 4-7

В

bandwidth コマンド、トラフィック クラス 14-15, 18-5 BGP、概要 11-28 BPDU RSTP の形式 7-14 bridge irb コマンド 12-3 bridge protocol コマンド 18-10 bridge-group virtual interface BVI を参照 bridge-group コマンド 4-6, 4-8, 4-9, 4-10, 18-10 BVI 情報の表示 12-7 設定 12-3 説明 12-2 ルーティングのイネーブル化 12-3 bvi コマンド 12-3

С

CDP、レイヤ2プロトコルトンネリング 9-13 CE-1000-4 FPGA バッファリング 25-3 GFP-F フレーミング 25-9 25-9 HDLC IS, AINS 25-5 J1 パス トレース 25-9 LEX カプセル化 25-9 POS ポート 25-7 RMON および SNMP のサポート 25-6 SW-LCAS 25-7 VCAT 特性 25-7 イーサネット機能 25-3 オーバーサブスクライブ 25-3 回線のルーティングおよび保護 25 - 8概要 25-2 拡張状態モデル(ESM) 25-6 自動ネゴシエーション 25-3 遅延差補償 25-8 統計情報およびカウンタ 25-6 フレーム バッファリング 25-3 フロー制御 25-3 フロー制御の基準のプロビジョニング 25-4リンク完全性 25-5 ループバック 25-9

CE-100T-8 IEEE 802.1Q 24-5 LCAS 24-14 MTU 24-3 STS/VT 割り当てタブ 24-12 イーサネット機能 24-2 概要 24-1 最大帯域幅 24-12 統計情報およびカウンタ 24 - 7プール 24-12 フレーム バッファリング 24-3 フロー制御 24-3 優先キューイング(ToS および CoS) 24-5 容量制限 24-12 リンク完全性 24-4 channel-group コマンド 10-4, 10-6 Cisco HDLC 20-6 Cisco IOS 1 レベル上に戻る 3-18 イネーブル EXEC モード 3-16 イメージのアップグレード 1-6 インターフェイス コンフィギュレーション モード 3-16 グローバル コンフィギュレーション モード 3-16 コマンド モード 3-16 3-18 コマンドの表示 3-18 スタートアップ コンフィギュレーション ファイル 3-11 ソフトウェアの基礎 3-16 ユーザ EXEC モード 3-16 ライン コンフィギュレーション モード 3-17 ログイン強化 19-2 Cisco IOS ソフトウェア イメージ 3-3 CiscoWorks 22-5 clear bridge コマンド 6-5 cos commit コマンド 14-18 CoSベースQoS 14-18 CoS ベースパケットの統計情報 14-28 CRC 5-4 CRC エラー SNMP トラップの設定 21-16 SNMP を通じたアクセス 21-16 手動による検証 21-20 スレッシュホールドの設定の注意事項 21-16 モニタリング 21-16

CTC CTC での Cisco IOS 3-3 POS ポートのプロビジョニング情報 2-4 POS 統計情報 2-2 SONET 回線の設定 2-7 SONET アラーム 2-5 イーサネット ポートのプロビジョニング情報 2-3

D

Diffusing Update Algorithm (DUAL) 11-21 DRPRI 概要 1-6, 17-34 設定 17-36 特性 17-35 モニタリングと確認 17-42 例 17-37 DUAL 有限状態マシン、EIGRP 11-22

Е

E シリーズ カード EtherSwitch **シングルカード** 23-16 マルチカード 23-15 IEEE 802.1Q 23-20 IEEE 802.3z フロー制御 23-18 0 タギング 23-20 RMON アラームスレッシュホールド 23-30 VLAN カウンタ 23-19 VLAN サポート 23-19 アプリケーション 23-15 回線保護 23-26 共有パケット リング 23-28 手動クロスコネクト 23-29 シングルカード EtherSwitch 23-16 スパニングツリー(STP) 23-23 専用カプセル化 20-6 ハブアンドスポーク構成のイーサネット回線 23 - 28フロー制御 23-18 ポイントツーポイント回線 23-27 ポートマップ 23-17 マルチカード EtherSwitch 23-15 優先キューイング 23-21

リニアマッパー 23-17 レイヤ2スイッチング 23-15 EIGRP インターフェイス パラメータ、設定 11-25 コンポーネント 11-22 設定 11-24 説明 11-21 デフォルト設定 11-22 認証 11-26 モニタリング 11-27 Enhanced IGRP EIGRP を参照 EoMPLS 18-1 EtherChannel カプセル化の設定 10-9 サポートされるポート チャネル 10-2 Ethernet Wire Service (EWS) 9-8

F

FEC カプセル化の設定 10-9 サポートされるポート チャネル 10-2 設定 10-3 注意 10-2 FPGA 2-6 FPGA バージョン 2-6

G

```
G シリーズ カード
  Gigabit EtherChannel (GEC)
                      23-5
  STS-24c/VC4-8c の制限
                   23-8
  アプリケーション
                23-1
  回線
        23-8
  回線の制限
            23-8
  個別の自動ネゴシエーションおよびフロー制御
        23-4
  自動ネゴシエーション
                   23-4
  手動クロスコネクト
                 23-9
  トランスポンダ モード
                   23 - 10
  フレーム バッファリング
                     23-4
  フロー制御の基準のプロビジョニング
                             23-4
  ポイントツーポイントイーサネット回線
                              23 - 8
  リンク完全性
             23-6
G シリーズに対するトランスポンダ モード
                             23-10
```

GEC カプセル化の設定 10-9 設定 10-3, 10-6 get-bulk-request 動作 22-4 get-next-request 動作 22-4, 22-5 get-request 動作 22-4, 22-5 get-response 動作 22-4 GFP-F フレーミング 1-6, 20-7, 25-9 GFP-F フレーミングの設定 5-6

Н

HDLC 25-9 HDLC フレーミングでの CRC の設定 5-6 hostname コマンド 3-10

I

IEEE 802.1Q トンネリング 説明 9-2 他の機能との互換性 9-5 デフォルト 9-5 IEEE 802.3x フロー制御を参照 IGMP 11-36 IGP 11-10 Interior Gateway Protocol IGP を参照 Internet Group Membership Protocol IGMP を参照 IOS Cisco IOS を参照 IOS コマンド A-1 IP Access Control List ACL を参照 ip multicast-routing コマンド 11-37 ip pim コマンド 11-37 ip radius nas-ip-address 19-19, A-5 IP マルチキャスト ルーティング IGMP 11-36 PIM 11-36 説明 11-36 IP ユニキャスト ルーティング IGP 11-10 管理距離 11-33 スタティック ルートの設定 11-33 IP ルーティング プロトコル、設定作業 11-2 IP ルート、モニタリング 11-35 IRB BVI 12 - 2情報の表示 12-7 設定 12-3 設定についての考慮事項 12 - 2説明 12-2 モニタリングと確認 12 - 7IS. AINS 25-5

J

J1 バイト 2-7, 25-9

Κ

keepalive コマンド 5-7 Kermit プロトコル C-3

L

LCAS 24-14 LEX カプセル化 20-5, 25-9 line vty コマンド 3-10 logging コマンド C-3 LSA 11-16

Μ

MACアドレス 4-2 match any コマンド 14-13 match cos コマンド 14-14 match ip dscp コマンド 14-14 14-14 MIB SNMP によるアクセス 22-5 概要 22-2 ML シリーズのソフト リセット 3-3 ML シリーズのハード リセット 3-3 ML-100T-8 カード SDM の設定 15-1 rmon collection history コマンド 21-5 MPLS VC A-29

設定 18-1 MSTP トンネリング 9-14 MSTP、IEEE 802.1D との相互運用性 7-15 MTU 5-6

Ν

Not-So-Stubby Area (準スタブエリア) NSSA を参照 NSSA、OSPF 11-16

0

OSPF LSA グループ ペーシング 11-19 network area コマンド 11-3 インターフェイス パラメータ、設定 11-14 エリアパラメータ、設定 11-16 仮想リンク 11-18 経路集約 11-18 設定 11-3, 11-12 説明 11-10 デフォルト設定 設定 11-11 メトリック 11-18 ルート 11-18 プロセス ID 11-3 モニタリング 11-21, 11-34 ルータ ID 11-20

Ρ

PC、スイッチへの接続 3-7 Per-VLAN Spanning Tree+ 7-8 PIM 設定 11-37 モード 11-36 ランデブー ポイント 11-36 port-channel コマンド 10-2 POS GFP-F フレーミング 1-6, 20-7 LEX 20-5 ML シリーズの一般的な設定 5-13 SONET アラーム 5-7, 5-8 インターフェイスの設定 5-4

概要 20-2 カプセル化タイプ 20-5説明 5-2 相互運用性 20 - 3フレーミング 20-7pos report コマンド 5-8 pos scramble-spe コマンド 5-10 5-9 POS チャネル インターフェイス 設定 10-6 注意 10-6 PPP/BCP 20-5Protocol Independent Multicast PIM を参照 PVST+ Per-VLAN Spanning Tree+ を参照

Q

QinQ 9-2 QoS ポリシング機能 14-16

R

RADIUS AAA サーバ グループの定義 19-15 概要 19-9 サーバの特定 19-10 設定 アカウンティング 19-18 許可 19-17 サーバ、通信 19-10 通信、グローバル 19-20 認証 19-13 複数の UDP ポート 19-10 設定の表示 19-23 属性 ベンダー固有 19-20, 19-22 デフォルト設定 19-10 ユーザのアクセスしたサービスの追跡 19-18 ユーザへのサービスの制限 19-17 RADIUS を使用したアカウンティング 19-18 RADIUS を使用した許可 19-17 RADIUS を使用したログイン認証 19-13 Remote Network Monitoring RMON を参照

RFC 1058, RIP 11-5 1157, SNMPv1 22-3 1253, OSPF 11-10 1493, Bridge-MIB 22-6 1573、IF-MIB 22-6 1587, NSSA 11-10 RIP アドバタイズ 11-5 サマリー アドレス 11-9 スプリット ホライズン 11-9 設定 11-6 説明 11 - 5デフォルト設定 11-5 認証 11-8 ホップ カウント 11-5 RIP のアドバタイズ 11-5 RJ-11 と RJ-45 のピンの対応関係 3-6 RJ-11/RJ-45 コンソール ケーブル アダプタ 3-6 RJ-45 コネクタ、コンソール ポート 3-7 RMON CRC エラーのモニタリング 21-16 アラームおよびイベントの設定 21 - 3概要 21-2 ステータスの表示 21-21 デフォルト設定 21-3 統計情報 グループ イーサネットの収集 21-6 グループ履歴の収集 21-5 トラップの設定 21 - 17rmon alarm コマンド 21-4 rmon collection stats コマンド 21-6 rmon event コマンド 21-3 router bgp コマンド 11-4 router eigrp コマンド 11-3 router isis コマンド 11-31 11-36 RPF RPR CoS ベース QoS 14-18 Link Fault Propagation (LFP) 概要 17-30 設定 17-32 モニタリングおよび確認 17-33 例 17-30 MAC アドレスと VLAN サポート 17-6QoS 14-11, 17-6

概要 1-7, 17-2 設定 17-7 デュアル RPR 相互接続 DRPRI を参照 パケット処理動作 17-2フレーミング プロセス 17-5 モニタリングおよび確認 17-19 リング ラッピング 17-3 例 17-8.17-17 RSTP BPDU 形式 7-14 処理 7-14 IEEE 802.1D との相互運用性 説明 7-15 トポロジーの変更 7-15 アクティブトポロジー、決定 7-11 概要 7-10 高速コンバージェンス ポイントツーポイント リンク 7-11 ルート ポート 7-11 指定スイッチ、定義 7-10 指定ポート、定義 7-10 提案合意ハンドシェイク プロセス 7-11 ポートの役割 説明 7-10 同期化 7-13 ルート ポート、定義 7-10

S

script コマンド C-3 SDHアラーム 5-7 **SDM** TCAM も参照 設定 サイズ 15 - 3領域 15-2 sdm access-list コマンド 15-3 service-policy input コマンド 14-18 service-policy output コマンド 14-18 service-policy コマンド、トラフィック ポリシー 14-18 set cos コマンド 14-17 set-request 動作 22-5 show bridge verbose コマンド 6-5

show bridge コマンド 6-5 12-712-710 - 12show ip mroute $\exists \forall \forall \forall \forall$ 11-37 show policy-map コマンド 14-19 show rmon alarms コマンド 21-21 21-21 show rmon history コマンド 21-21 show rmon statistics コマンド 21-21 show rmon コマンド 21-21 show sdm size コマンド 15-4 show snmp group コマンド 22-16 22-16 show snmp sessions コマンド 22-16 show snmp user コマンド 22-16 show snmp コマンド 22-16 C-2 show vlans コマンド 8-6 **SNMP** MIB 変数へのアクセス 22-5 TFTP サーバによるアクセスの制限 22-14 インフォーム イネーブル化 22-13 説明 22-6 トラップ キーワード 22-11 トラップとの差 22-6 エージェント 説明 22-4 ディセーブル化 22 - 822-2.22-5 概要 グループ 22-7.22-10 コミュニティ ストリング 概要 22-5 設定 22-8 サポートするバージョン 22 - 3システム コンタクトおよびロケーション 22-14 ステータス、表示 22-16 22-7 設定の注意事項 設定例 22-15 通知 22-6 デフォルト設定 22-7 トラップ ifIndex 番号、判別 21-18 イネーブル化 22-11 インフォームとの差 22-6

I

概要 22-3.22-5 設定 21-16 説明 22-2.22-6 タイプ 22-11 トラップマネージャ、設定 22-11 ホスト 22-7 マネージャの機能 22-4ユーザ 22-7, 22-10 snmp-server community コマンド 22-9 snmp-server contact コマンド 22-14 snmp-server enable traps コマンド 22-13 snmp-server engineID コマンド 22-10 snmp-server group コマンド 22-10 22-12 snmp-server host コマンド snmp-server location コマンド 22-14 snmp-server queue-length コマンド 22-13 snmp-server tftp-server-list コマンド 22-14 snmp-server trap-source コマンド 22-13 snmp-server trap-timeout コマンド 22-13 snmp-server user コマンド 22-11 SNMPv2C 22-4 SONET アラーム 5-7 SSH 設定 19-3 STP BPDU メッセージ交換 7-3 IEEE 802.1Q トランクの限界 7-8 インターフェイスのステート 概要 7-6 ディセーブル 7-8 フォワーディング 7-7,7-8 ブロッキング 7-7 ラーニング 7-7 リスニング 7-7 下位 BPDU 7-3 概要 7-2 拡張システム ID 概要 7-4 予期しない動作 7-17 サポートされているスパニングツリー インスタン スの数 7-3.7-10 指定スイッチ、定義 7-3 指定ポート、定義 7-3 冗長接続 7-8 ステータスの表示 7-22

設定 Hello **タイム** 7-20 スイッチ プライオリティ 7-19 転送遅延時間 7-21 パスコスト 7-18 ポート プライオリティ 7-18 ルート スイッチ 7-17 タイマー、説明 7-5 ディセーブル化 7-17 デフォルト設定 7-16 転送遅延タイマー 7-7 マルチキャスト アドレス、影響 7-8 優位 BPDU 7-3 ルート スイッチ 拡張システム ID の影響 7-4 選出 7-4 予期しない動作 7-17 ルート ポート、定義 7-3 レイヤ2プロトコルトンネリング 9-13 STP のパス コスト 7-18 SW-LCAS 5-4.25-7 Syslog サーバ C-3

Т

```
TCAM
SDM も参照
アプリケーション領域 15-2
スイッチング情報 15-2
スペース 15-2
Ternary Content Addressable Memory
TCAM も参照
TFTP
サーバによるアクセスの制限 22-14
```

۷

VC4/VC LO 割り当て 24-12 VCAT VCAT グループ (VCG) 25-7 固定 VCG 25-7.25-8 特性 25-7 フレキシブル VCG 25 - 7VC、インターフェイスの割り当て A-29 VLAN IEEE 802.10 の設定 8-3

STP と IEEE 802.10 トランク 7-8 エージング ダイナミック アドレス 7-9 サービスプロバイダー ネットワークのカスタマー 番号 9-4 システムごとの数 8-2 トランク ポート 8-2 VLAN 固有サービス 9-8 VRF Lite 概要 13-2 設定 13-3 モニタリングと確認 13-9 例 13-4 VTP レイヤ 2 プロトコル トンネリング 9-13 vty 3-5

Х

xconnect コマンド A-29

あ

アダプタケーブル 3-6 アドレス ダイナミック 加速されたエージング 7-9 デフォルトのエージング 7-9 マルチキャスト、STP アドレス管理 7-8 アラーム 5-7 アラーム、RMON 21-3

1 1

イーサネット オーバーサブスクライブ 25-3 クロッキング 20-12 自動ネゴシエーション 25-3 **フレーム** バッファリング 24-3, 25-3 フロー制御 25-3 イーサネットの設定作業 4-6 イネーブル EXEC モード 3-16 イネーブル シークレット パスワード 3-9 イネーブル パスワード 3-9 イネーブル モード 3-16 イベント、RMON 21-3 インターネット プロトコル マルチキャスト IP マルチキャスト ルーティングを参照

インターフェイス コンフィギュレーション モード 3-16 インターフェイス パラメータ、設定 EtherChannel 10-3 概要 4-2, 4-4 インターフェイス ポート ID 4-3

I

え

エージング タイム、STP 用に加速 7-9 エラー メッセージ、記録 C-3 エリア境界ルータ ABR を参照

お

オーバーサブスクライブ 25-3

か

カードの説明 1-2 回線定義 23-9 拡張システム ID、STP 7-4 25-6 拡張状態モデル (ESM) 拡張パフォーマンス モニタリング 14-28 確認 IP マルチキャストの動作 11-37 VLAN の動作 8-6 仮想 LAN VLAN を参照 カプセル化 5-4 EtherChannel の設定 10-9 IEEE 802.1Q VLAN の設定 8-3 監査証跡 19-2 管理オプション SNMP 22-2 管理距離 OSPF 11-18 ルーティング プロトコルのデフォルト 11-33 管理ポート コンソール ポートも参照

設定 3-9

き

ギガビットイーサネット
インターフェイスの設定 4-8, 4-9
自動ネゴシエーションの設定 4-8, 4-9
機能一覧 1-3
キューイング 24-5
近接ルータ検出 / 回復、EIGRP 11-22

<

グローバル コンフィギュレーション モード 3-16 クロッキング許容値 20-12

け

経路集約、OSPF 11-18 ケーブル、RJ-11/RJ-45 アダプタ 3-6

こ

高信頼性転送プロトコル、EIGRP 11-22 コマンド access-list 22-9 bridge irb 12 - 3bridge priority 6-3 bridge protocol drpri-rstp A-2 channel-group 10-4, 10-6 clear bridge 6-5 hostname 3-10 interface bvi 12-3 interface spr 1 A-4 ip multicast-routing 11-37 ip pim 11-37 ip radius nas-ip-address A-5 3-10 line vty microcode fail system-reload A-6 rmon collection history 21-5 network area 11-3 rmon collection stats 21-6 rmon event 21 - 3rmon アラーム 21-4 11-4 router bgp 11-3 router eigrp show bridge 6-5 show bridge verbose 6-5

show interfaces byi 12-7 show interfaces irb 12-7 show interfaces port-channel 10-12 show ip mroute 11-37 show rmon 21-21 show rmon alarms 21-21 show rmon events 21-21 show rmon history 21-21 show rmon statistics 21-21 show sdm size 15 - 422-16 show snmp show snmp group 22-16 show snmp pending 22-16 show snmp sessions 22-16 show snmp user 22-16 C-2 show tech-support show vlan 8-6 snmp-server community 22-9 22-14 snmp-server contact snmp-server enable traps 22-13 snmp-server engineID 22-10 snmp-server group 22-10 snmp-server host 22-12 snmp-server location 22-14 snmp-server queue-length 22-13 snmp-server tftp-server-list 22-14 snmp-server trap-source 22-13 snmp-server trap-timeout 22-13 snmp-server user 22-11 spr drpri-id A-24 spr station-id A-27 spr wrap A-28 spr-intf-id A-25 表示 3-18 ブリッジ グループ 4-6, 4-8, 4-9, 4-10, 6-3, 18-10 ブリッジ プロトコル 6-3, 18-10 リファレンスの章 A-1 コマンドの短縮 3-18 コミュニティ ストリング 概要 22-5 設定 22-8 コンソール ポートのディセーブル化 19-2 コンソール ポートへの接続 3-6 コンソール ポート、接続 3-6 コンフィギュレーション ファイル TFTP サーバのアクセス制限 22-14

システム コンタクトおよびロケーションの情報 22-14 コンフィギュレーション モード グローバル 3-16 ライン 3-17

さ

```
サービスプロバイダー ネットワーク
IEEE 802.1Q トンネリング 9-2
カスタマー VLAN 9-3
レイヤ 2 プロトコル 9-13
サポート、テクニカル
テクニカル サポートを参照
```

し

システム MTU IEEE 802.1Q トンネリング 9-5 自動ネゴシエーション 25-3 出力プライオリティ マーキング 14-8 受動インターフェイス OSPF 11-18 自律システム境界ルータ ASBR を参照

す

スタートアップ コンフィギュレーション ファイル 3-11 スタートアップ コンフィギュレーション ファイルの復 元 3-13 スタティック ルート、設定 11-33 スタブ エリア、OSPF 11-16

せ

接続手順 3-6 3-8 設定 BVI 12-3 EtherChannel カプセル化 10-9 IP 11-1 IP マルチキャスト 11-36 VLAN 8-2 インターフェイス、概要 4-2 管理ポート 3-9 統合ルーティングとブリッジング IRBを参照 ホスト名 3-10
設定の注意事項 SNMP 22-7
設定例 RPR 17-8, 17-17 SNMP 22-15

そ

送信元 23-9 属性、RADIUS ベンダー固有 19-20, 19-22 ソフトリセット 24-2, 25-2 疎モード、PIM 11-36

た

 帯域幅コマンドトラフィッククラス 18-5
 ダイナミックアドレス アドレスを参照
 タグ付きパケット、レイヤ2プロトコル 9-13
 端末
 スイッチへの接続 3-7
 端末エミュレーションソフトウェア 3-6
 ルータ出力の記録 C-3

τ

データベースの復元 3-13 テクニカル サポート FTP サービス C-3 show tech-support コマンド C-2 データの収集 C-2 データの提供 C-3 ルータ出力の記録 C-3 手順、接続 3-6 3-8 デフォルト設定 EIGRP 11-22 OSPF 11-11 RADIUS 19-10 RIP 11-5 RMON 21-3 SNMP 22-7

Cisco ONS 15454/15454 SDH/15327 イーサネット カード ソフトウェア フィーチャ コンフィギュレーション ガイド
STP 7-16 レイヤ 2 プロトコル トンネリング 9-14 デフォルトのマルチキャスト QoS 14-26 電子メール、テクニカル サポート C-3

と

I

統計情報 RMON グループ イーサネット 21-6RMON グループ履歴 21-5 SNMP 入出力 22-16 統計情報、OSPF 11-21, 11-34 統合ルーティングとブリッジング IRB を参照 トラップ イネーブル化 22-11 概要 22-3, 22-5 通知**タイプ** 22-11 定義 22-4 マネージャの設定 22-11 トラフィック クラス 14-13 トラフィック ポリシー インターフェイス、適用 14-18 作成 14-14 トランク ポート 8-2 ドロップ 説明 23-9 トンネリング IEEE 802.10 9-2 定義 9-1 レイヤ2プロトコル 9-13 トンネル ポート IEEE 802.1Q、設定 9-5, 9-15, 9-16 説明 9-2 他の機能との非互換性 9-5

に

二重タグ付きパケット IEEE 802.1Q トンネリング 9-3 レイヤ 2 プロトコル トンネリング 9-14 入力プライオリティ マーキング 14-9 認証 RADIUS 鍵 19-11 ログイン 19-13

ね

ネットワーキング プロトコル、IP マルチキャスト ルー ティング 11-36 ネットワーク管理 RMON 21-1 SNMP 22-1 ネットワーク要素のデフォルト 24-3, 25-3

は

バーチャル コンカチネーション VCAT を参照 パスワード 3-9

ï٦

ファスト イーサネット インターフェイスの設定 4-6 プライオリティ マルチキャスト OoS 14-25 ブリッジ 機能一覧 1-3 設定 6-4 トランスペアレント bridge CRB $\Xi - F$ 6-8 bridge IRB モード 6-10 IP routing モード 6-6 no IP routing $\mathbf{E} - \mathbf{k}$ 6-8 概要 6-6 モニタリングと確認 6-5 ブリッジ グループ、ルーティング 12-2 フレーミングモード 5-4 フレーム バッファリング 25-3 フロー制御 24-3, 25-3 プロトコル依存型モジュール、EIGRP 11-22

ほ

ボーダー ゲートウェイ プロトコル BGP を参照 ポート ID 4-3 ポート チャネル 10-2 ポート プライオリティ、STP 7-18

ま

マルチキャスト QoS 14-25 マルチキャスト プライオリティ キューイング 14-25 マルチキャスト、IP IP マルチキャスト ルーティングを参照

み

密モード、PIM 11-36

め

メッセージの記録 C-3 メディア アクセス制御アドレス MAC アドレスを参照 メトロ タグ 9-3

も

モジュラ QoS コマンドライン インターフェイス 設定 14-13
設定、確認 14-19
設定(例) 14-20
モニタリング
EIGRP 11-27
IEEE 802.1Q トンネリング 9-16
IP ルート 11-35
OSPF 11-21, 11-34
トラフィック フロー 21-2
トンネリング 9-16
レイヤ 2 プロトコル トンネリング 9-16

Þ

ユーザ EXEC モード 3-16 優先キューイング 24-5

5

ランデブーポイント 11-36

IJ

リモート端末、ルータ出力の記録 C-3 リンク完全性 24-4, 25-5

る

ルータ ID、OSPF 11-20 ルータ出力の記録 C-3 ルーティング プロトコルの管理距離 11-33 ルート計算タイマー、OSPF 11-18

れ

レイヤ2の機能一覧 1-3 レイヤ2プロトコルトンネリング 9-14 設定 9-14 注意事項 9-14 定義 9-13 デフォルト設定 9-14 レイヤ3の機能一覧 1-5

3

ログイン強化 19-2