UCSブレード検出の問題のトラブルシューティ ング

内容

<u>概要</u>
<u>前提条件</u>
<u>要件</u>
<u>使用するコンポーネント</u>
<u>背景説明</u>
<u>問題</u>
<u>トラブルシュート</u>
関連情報

概要

このドキュメントでは、サーバの電源状態MCエラーが原因でブレードが検出できない問題をト ラブルシューティングする手順について説明します。

前提条件

要件

次のトピックに関する知識があることが推奨されます。

- Cisco Unified Computing System (UCS)
- Cisco Fabric Interconnect(FI)

使用するコンポーネント

このドキュメントの情報は、次のソフトウェアとハードウェアのバージョンに基づいています。

• UCS B420-M3

• UCS B440-M3

このドキュメントの情報は、特定のラボ環境にあるデバイスに基づいて作成されました。このド キュメントで使用するすべてのデバイスは、初期(デフォルト)設定の状態から起動しています 。本稼働中のネットワークでは、各コマンドによって起こる可能性がある影響を十分確認してく ださい。

背景説明

- ブレードのファームウェアをアップグレードすると、アップタイムポリシーのリブート後に サーバがダウンします。
- データセンターの一部の電源イベント。

上記が問題の原因である可能性があります。

問題

このエラーメッセージは、リブート時または検出時に表示されます。

「ブレードの電源状態を変更できません」

UCSMは、電源がオンにならないブレードに対してこのアラートを報告します

ファームウェアのアップグレードまたはその他のメンテナンスの一環としてブレードがリブート され、FSMで次のメッセージが表示されて/turn-upの検出に失敗します。

「Unable to change server power state-MC Error(-20):管理コントローラは要求の処理に失敗また は失敗しました(sam:dme:ComputePhysicalTurnup:Execute)"

SELログに次のようなエラーが表示されます。

CIMC |プラットフォームアラートPOWER_ON_FAIL #0xde |予測障害のデアサート |デアサート

CIMC |プラットフォームアラートPOWER_ON_FAIL #0xde |予測障害がアサートされました |アサート

トラブルシュート

UCSM CLIシェルから、ブレードのcimcに接続し、powerコマンドを使用してブレードの電源ステ ータスを**確認します**

- ssh FI-IP-ADDR
- •接続cimc X

Failure Scenario # 1

電力

OP:[status]		
Power-State:	[on]
VDD-Power-Good:	[inactive]
Power-On-Fail:	E	active]
Power-Ctrl-Lock:	[unlocked]
Power-System-Status:	[Good]
Front-Panel Power Button:	[Enabled]
Front-Panel Reset Button:	[Enabled]
OP-CCODE:[Success]		
Failure Scenario #2		
OP:[status]		
Power-State:	[off]
VDD-Power-Good: [inactive	Э]
Power-On-Fail:	[inactive]
Power-Ctrl-Lock: [permane	ən	t lock] <<<
Power-System-Status: [Bad	£] <<<
Front-Panel Power Button:	[Disabled]
Front-Panel Reset Button:	[Disabled]
OP-CCODE:[Success]		

[help]# power		
OP:[status]		
Power-State:	[on]
VDD-Power-Good:	[active]
Power-On-Fail:	[inactive]
Power-Ctrl-Lock:	[unlocked]
Power-System-Status:	[Good]
Front-Panel Power Button:	[Enabled]
Front-Panel Reset Button:	[Enabled]
OP-CCODE:[Success]		
[power]#		
セッション値の確認#		

センサー値#

sensorsコマンドを実行し、電力センサーと電圧センサーの値を確認します。出力を、ブレードの 電源がオンになっている同じモデルと比較します。

[Reading]または[Status]列が特定のセンサーのNAである場合、常にハードウェア障害ではない可能性があります。

ログスニペット#

obf1##

ob i ci ii																
5:2019 Jan	9	06:42:34	GMT:3.1(20b)	:kernel:-:<	5>[se_pilot2_wake	eup_interr	upt]:2	563:USE	B HS:	VDD P	ower	= 0N				
5:2019 Jan	9	06:42:34	GMT:3.1(20b)	:IPMI:1686:	Pilot3SrvPower.	c:481: ->	Power	State	On:	LPC RE	SET i	S	IN	RESET;	power0nl	LPCOff[1]
5:2019 Jan	9	06:42:34	GMT:3.1(20b)	:IPMI:1686:	Pilot3SrvPower.	c:481: ->	Power	State	0n:	LPC RE	SET i	S	IN	RESET;	power0nl	LPCOff[2]
5:2019 Jan	9	06:42:34	GMT:3.1(20b)	:IPMI:1686:	Pilot3SrvPower.	c:481: ->	Power	State	0n:	LPC RE	SET i	S	IN	RESET;	power0nl	LPCOff[3]
5:2019 Jan	9	06:42:34	GMT:3.1(20b)	:IPMI:1686:	Pilot3SrvPower.	c:481: ->	Power	State	0n:	LPC RE	SET i	S	IN	RESET;	power0nl	LPCOff[4]
5:2019 Jan	9	06:42:34	GMT:3.1(20b)	:IPMI:1686:	Pilot3SrvPower.	c:481: ->	Power	State	0n:	LPC RE	SET i	S	IN	RESET;	power0nl	LPCOff[5]
5:2019 Jan	9	06:42:34	GMT:3.1(20b)	:IPMI:1686:	Pilot3SrvPower.	c:481: ->	Power	State	0n:	LPC RE	SET i	S	IN	RESET;	power0nl	LPCOff[6]
5:2019 Jan	9	06:42:34	GMT:3.1(20b)	:IPMI:1686:	Pilot3SrvPower.	c:481: ->	Power	State	0n:	LPC RE	SET i	S	IN	RESET;	power0nl	LPCOff[7]
5:2019 Jan	9	06:42:34	GMT:3.1(20b)	:IPMI:1686:	Pilot3SrvPower.	c:481: ->	Power	State	On:	LPC RE	SET i	S	IN	RESET;	power0nl	LPCOff[8]
5:2019 Jan	9	06:42:34	GMT:3.1(20b)	:IPMI:1686:	Pilot3SrvPower.	c:481: ->	Power	State	0n:	LPC RE	SET i	S	IN	RESET;	power0nl	LPCOff[9]
5:2019 Jan	9	06:42:34	GMT:3.1(20b)	:IPMI:1686:	Pilot3SrvPower.	c:481: ->	Power	State	0n:	LPC RE	SET i	S	IN	RESET;	power0nl	LPCOff[a]
5:2019 Jan	9	06:42:34	GMT:3.1(20b)	:IPMI:1686:	Pilot3SrvPower.	c:481: ->	Power	State	0n:	LPC RE	SET i	S	IN	RESET;	power0nl	LPCOff[b]
5:2019 Jan	9	06:42:34	GMT:3.1(20b)	:IPMI:1686:	Pilot3SrvPower.	c:481: ->	Power	State	0n:	LPC RE	SET i	S	IN	RESET;	power0nl	LPCOff[c]
5:2019 Jan	9	06:42:34	GMT:3.1(20b)	:IPMI:1686:	Pilot3SrvPower.	c:481: ->	Power	State	On:	LPC RE	SET i	S	IN	RESET;	power0nl	LPCOff[d]
C. 2010 1	0	00.40.04	CMT. 2 1/204	. TOMT. 1000.	D-1-+	- 401	Dation	Ctata	0	LDC DE	CET 4	-	TAL	DECET.		00044[-1

Sel.log#

CIMC |プラットフォームアラートPOWER_ON_FAIL #0xde |予測障害がアサートされました |アサート

power-on-fail.hist(tmp/techsupport_pidXXXX/CIMCX_TechSupport-nvram.tar.gz内)

power-on-fail.hist	t.log								
<failure>Tue Jan</failure>	8 20:19:48	3 2019 >>>:	>>>>>> fa	iled state					
Sensor Name	Reading	Unit	Status	LNR	LC	LNC	UNC	UC	UNR
	=========	===========	=== ========	============	========		========	=========	========
P3V_BAT_SCALED	2.973	Volts	OK	na	2.011	2.403	na	4.005	na
P5V_STBY	na	Volts	na	4.242	4.483	na	na	5.519	5.760
P3V3_STBY	na	Volts	na	2.797	2.955	na	na	3.634	3.808
P1V1_SSB_STBY	na	Volts	na	0.931	0.989	na	na	1.212	1.271
P1V8_STBY	na	Volts	na	1.523	1.610	na	na	1.988	2.076
P1V0_STBY	na	Volts	na	0.844	0.892	na	na	1.106	1.154
P1V5_STBY	na	Volts	na	1.271	1.348	na	na	1.659	1.727
P0V75_STBY	na	Volts	na	0.631	0.669	na	na	0.834	0.863
P12V	na	Volts	na	10.797	11.269	na	na	12.685	13.157
P5V	na	Volts	na	4.493	4.680	na	na	5.288	5.499
P3V3	na	Volts	na	2.964	3.089	na	na	3.494	3.619
P1V5_SSB	na	Volts	na	1.349	1.404	na	na	1.583	1.646
P1V1_SSB	na	Volts	na	0.983	1.030	na	na	1.162	1.209
P1V8_SAS	na	Volts	na	1.615	1.685	na	na	1.907	1.977
P1V5_SAS	na	Volts	na	1.349	1.404	na	na	1.583	1.646
P1V0_SAS	na	Volts	na	0.796	0.842	na	na	1.162	1.217
P1V0A_SAS	na	Volts	na	0.796	0.842	na	na	1.162	1.217
P3V3_SAS	na	Volts	na	2.964	3.089	na	na	3.494	3.619
P12V_SAS	na	Volts	na	10.797	11.269	na	na	12.685	13.157
P0V75_SAS	na	Volts	na	0.679	0.702	na	na	0.796	0.827
P1V05_VTT_P1	na	Volts	na	0.913	0.952	na	na	1.076	1.123
P1V05_VTT_P2	na	Volts	na	0.897	0.936	na	na	1.061	1.108

上記の手順で問題が解決しない場合は、次の手順でUCSMとChassis techsupportのログバンドル を収集します。

問題の詳細な調査に役立ちます。

前述の症状を使用して、次の手順を試して問題を回復してください。

ステップ1:ブレードのFSMステータスが「Failed」で、説明が「state-MC Error(-20)」であることを確認します。

[Equipment] > [Chassis X] > [Server Y] > [FSM]に移動します

Equipment / Chassis / Ch	assis 1 / Servers	/ Server 1									_		
General Inventory	Virtual Machines	Installed Firmware	CIMC Sessions	SEL Logo	VIF Paths	Health	Diagnostice	Faults	Events	FSM	Statistics	Temperatures	Pov
FSM Status	Fail												
Description	\$3												
Current FSM Name	Discover												
Completed at													
Progress Status	1				13%								
Remote Invocation Result	End Point Pro	tocol Error											
Remote Invocation Error Code	1002												
Remote Invocation Descriptio	n Unable to cha	nge server power sta	te-MC Error(-20): I	Management	controller can	not or faile	d in processing	request					

ステップ2:影響を受けるブレードのシリアル番号をメモし、ブレードを使用停止します。

<u><< IMP:問題のあるブレードのシリアル番号は、[General]タブからメモしてから使用停止します</u> <u>。これは、ステップ4 >>>の後段階で必要になります</u>

[Equipment] > [Chassis X] > [Server Y] > [General] > [Server Maintenance] > [Decommission] > [Ok]に移動します。

ステップ3:FI-A/B# reset slot x/y

たとえば、#Chassis2-Server 1が影響を受けます。

FI-A# reset slot 2/1

上記のコマンドを実行してから30~40秒間待ちます

ステップ4:廃止されたブレードを再稼働します。

[Equipment] > [Decommissioned] > [Servers] > [Find the server that we decommissioned <u>(Find</u> <u>correct blade with Serial number with the Step-2 before decommissioning)</u>] > [Check Recommission Tick box against correct Blade <u>(Validate with Serial number)</u>] > [Save Changes]]

Equipment								
Main Topology View Fat	bric Interconnects Servers	Thermal	Decommissioned	Firmware Management	Policies	Faults Dia	gnostics	
+ - Ty Advanced Filter	수 Export 🖷 Print							₽
Name	Recommission	D	Vendor	PID		Model	Serial	
Chassis								
FEX								
Rack-Mounts								
Blade Server UCSB-B4	420-M3	N/A	Cisco Sy	stems Inc UCSB-B	420-M3	Cisco UCS B42	20 M3	
	Step-2: Check the tick-box to recommission the Blade	<u> </u>			-		Step-1: Find the Blade with Serial Number that was decommissioned	
			🕀 Add 🖻 Delete	Info				
				Step-3: Save Changes	>	Save Cl	hanges Reset Valu	les

ステップ5:スロットを解決します(確認された場合)。

[Equipment] > [Chassis X] > [Server Y]に移動します。

推奨するブレードの[スロット問題の解決]ポップアップが表示された場合は、シリアル番号を確認し、[**ここ]をクリックしてスロット内のサーバを受け入**れます。

ブレードの検出を開始します。

サーバ検出が完了するまで待ちます。[Server FSM]タブで進行状況を監視します。

ステップ6:ステップ1 ~ 5でヘルプが表示されず、FSMに再び障害が発生した場合**は、ブレード** を取り外し、物理的に取り付け直してみます。

それでもサーバがCisco TACへのアクセスを検出できない場合は、これがハードウェアの問題で す。 ${\tt NOTE:}~$ If you have B200 M4 blade and notice failure scenario #2 , please refer following bug and Contact TAC

<u>CSCuv90289</u>

B200 M4 fails to power on due to POWER_SYS_FLT

シャーシの検出手順

<u>UCSMサーバ管理ガイド</u>