vEdgeマルチキャストオーバーレイルーティン グの設定と確認

内容

<u>概要 前提条件</u> <u>要件</u> 使用するコンポーネント 背景説明 設定 ネットワーク図 設定 確認 トラブルシュート 結論

概要

このドキュメントでは、SD-WAN環境でマルチキャストを設定する方法について説明します。こ の方法はvEdgeルータ専用です。すべての設定は、Protocol Independent Multicast(PIM)Auto-Rendezvous Point(RP)に基づいています。 ネットワークシナリオ、設定、および検証出力の例を 示します。

前提条件

要件

このドキュメントに特有の要件はありません。ただし、マルチキャストに関する基本的な知識と SD-WANに関する実務知識が役立ちます。

使用するコンポーネント

このドキュメントは、特定のソフトウェアまたはハードウェアのバージョンに限定されるもので はありません。

このドキュメントの情報は、特定のラボ環境にあるデバイスに基づいて作成されました。このド キュメントで使用するすべてのデバイスは、初期(デフォルト)設定の状態から起動しています 。本稼働中のネットワークでは、各コマンドによって起こる可能性がある影響を十分確認してく ださい。

背景説明

この記事で使用されている略語のリストを参照できます。

- vEdge(VE)
- •ファーストホップルータ(FHR)
- ・ラストホップルータ(LHR)
- ランデブーポイント(RP)
- ・仮想プライベートネットワーク(VPN)
- ・オーバーレイ管理プロトコル(OMP)
- Transport Location(TLOC)
- インターネット グループ管理プロトコル(IGMP)
- ・クラウドサービスルータ(CSR)
- Protocol Independent Multicast (PIM)
- •マルチキャストルーティング情報ベース(MRIB)またはマルチキャストルーティングテーブル
- ・リバースパスフォワーディング(RPF)
- •存続可能時間(TTL)

SD-WAN用語の詳細については、『<u>Cisco SD-WAN用語</u>』を参照してください

設定

Cisco SD-WANマルチキャストの一般的な概要については、『マルチキャストオーバーレイルー ティ<u>ングの概要』を参照してください。</u>

ネットワーク図

注:このトポロジでは、BR1-VE-1とBR3-VE-1の両方に共通のGOLD TLOCがあります。実際のシナリオでは、サイトに同じTLOCまたは異なるTLOCを設定できます。

設定

BR1-VE-1には、デフォルトルートを使用したSD-WANオーバーレイ/アンダーレイの基本設定が

あります。これに加えて、ローカルマルチキャストレプリケータとPIMがGe0/0インターフェイス に設定されています。コマンドmulticast-replicator localは、VEルータをマルチキャストレプリケ ータとして設定します。

```
vpn 10
router
multicast-replicator local
pim
auto-rp
interface ge0/0
exit
!
interface ge0/0
ip address 192.168.1.1/24
no shutdown
```

BR3-VE-1には、デフォルトルートを使用したSD-WANオーバーレイ/アンダーレイの基本設定が あります。これに加えて、IGMPとPIMはGe0/0インターフェイスで設定されています。

vpn 10
router
pim
auto-rp
interface ge0/0
exit
!
igmp
interface ge0/0
exit
!
interface ge0/0
ip address 192.168.3.1/24
no shutdown

RPルータには、デフォルトルートを使用した基本的なアンダーレイ設定もあります。

注:非viptelaデバイスをRPとして使用する必要があります。この例では、Cisco IOS[®] XEソ フトウェアを実行するCSRを使用しています。

ip multicast-routing distributed
!
interface Loopback0 ip address 192.168.101.1 255.255.255.255 ip pim sparse-mode ! ! interface
GigabitEthernet2 ip address 192.168.1.3 255.255.255.0 ip pim sparse-mode ! ! ! ip pim send-rpannounce Loopback0 scope 20 ip pim send-rp-discovery Loopback0 scope 20

Auto-RPを使用すると、次のイベントが発生します。

1. RPマッピングエージェントは既知のグループアドレスCISCO-RP-ANNOUNCE(224.0.1.39)をリッスンし、RPアナウンスの候補を送信します。Auto-RPを使 用してグループとRPのマッピングを配布する場合、ip pim send-rp-announceコマンドを使 用すると、ルータは既知のグループCISCO-RP-ANNOUNCE(224.0.1.39)にAuto-RPアナウン スメッセージを送信します。

- 2. RPマッピングエージェントは、Auto-RPディスカバリメッセージのグループとRPのマッピ ングを既知のグループCISCO-RP-DISCOVERY(224.0.1.40)に送信します。 TTL値は、メッ セージが受け取ることができるホップ数を制限します。
- 3. PIMルータはこのグループをリッスンし、ディスカバリメッセージから学習したRPを使用し ます。

ソースルータは、Cisco IOS[®] -XEソフトウェアを実行するCSRです。このソフトウェアには、デ フォルトルートを使用した基本的なアンダーレイ設定も含まれています。トラフィックは、マル チキャストアドレスに対するpingコマンドを使用して生成されます。

ip multicast-routing distributed
!
interface GigabitEthernet5 ip address 192.168.100.2 255.255.255.0 ip pim sparse-mode

Receiverは、Cisco IOS[®] -XEソフトウェアを実行するCSRであり、ip igmp join-groupコマンドを 使用してIGMPレシーバとして設定されています。また、デフォルトルートと基本的なアンダーレ イの設定もあります。

ip multicast-routing distributed
!
interface GigabitEthernet2
ip address 192.168.3.2 255.255.255.0
ip igmp join-group 239.1.2.3

確認

このセクションでは、設定が正しく動作していることを確認できます。

ステップ1:レシーバがRPにIGMP joinメッセージを送信します。debug ip igmp 239.1.2.3の出力 はレシーバから出力されます。

ステップ2:LHRとして機能するBR3-VE-1。IGMP joinメッセージを受信し、この情報をRPに送信 します。これらのIGMP joinメッセージは、OMPアップデートのマルチキャストルートの一部と して伝送されます。

			Vl					
	IF		MEMBERS				Vl	
VPN	NAME	GROUP	PRESENT	STATE	UPTIME	EXPIRES	EXPIRES	EVENT
10	ge0/0	239.1.2.3	false	members-present	1:11:00:11	0:00:02:41	-	membership-
repoi	rt							

ステップ3:vSmartはOMP経由で(*,G)エントリを受信し、この情報をレプリケータに転送します。

vsmart# show omp multicast-routes Code: C -> chosen I -> installed Red -> redistributed Rej -> rejected L -> looped R -> resolved S -> stale Ext -> extranet Stg -> staged Inv -> invalid

ADDRESS SOURCE FAMILY TYPE VPN ORIGINATOR DESTINATION GROUP SOURCE FROM PEER RP STATUS -----ipv4 (*,G) 10 10.33.33.3 10.11.11.1 239.1.2.3 0.0.0.0 10.33.33.3 192.168.101.1 C,R

ステップ4:このトポロジでは、BR1-VE-1がレプリケータとして機能します。BR1-VE-1はこの情 報をRPに転送します。

BR1-VE-1# show omp multicast-routes Code: C -> chosen I -> installed Red -> redistributed Rej -> rejected L -> looped R -> resolved S -> stale Ext -> extranet Stg -> staged Inv -> invalid

ステップ5:RPに(*,G)エントリが作成されました。

FHR-RP#show ip mroute IP Multicast Routing Table Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected, L - Local, P - Pruned, R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet, X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement, U - URD, I - Received Source Specific Host Report, Z - Multicast Tunnel, z - MDT-data group sender, Y - Joined MDT-data group, y - Sending to MDT-data group, G - Received BGP C-Mroute, g - Sent BGP C-Mroute, N - Received BGP Shared-Tree Prune, n - BGP C-Mroute suppressed, Q - Received BGP S-A Route, q - Sent BGP S-A Route, V - RD & Vector, v - Vector, p - PIM Joins on route, x - VxLAN group Outgoing interface flags: H - Hardware switched, A - Assert winner, p - PIM Join Timers: Uptime/Expires Interface state: Interface, Next-Hop or VCD, State/Mode (*, 239.1.2.3), 1d12h/00:02:51, RP 192.168.101.1, flags: S Incoming interface: Null, RPF nbr 0.0.0.0 Outgoing interface list: GigabitEthernet2, Forward/Sparse, 1d12h/00:02:51

ステップ6:ここで、RPに登録する送信元の番です。この例では、マルチキャストトラフィック は、宛先としてマルチキャストアドレスを指定したpingコマンドを使用して生成されます。

Source#ping 239.1.2.3 repeat 10 Type escape sequence to abort. Sending 10, 100-byte ICMP Echos to 239.1.2.3, timeout is 2 seconds:

<SNIP>

送信元はRPに登録メッセージを送信します。

FHR-RP#show ip mroute IP Multicast Routing Table Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected, L - Local, P - Pruned, R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet, X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement, U - URD, I - Received Source Specific Host Report, Z - Multicast Tunnel, z - MDT-data group sender, Y - Joined MDT-data group, y - Sending to MDT-data group, G - Received BGP C-Mroute, g - Sent BGP C-Mroute, N - Received BGP Shared-Tree Prune, n - BGP C-Mroute suppressed, Q - Received BGP S-A Route, q - Sent BGP S-A Route, V - RD & Vector, v - Vector, p - PIM Joins on route, x - VxLAN group Outgoing interface flags: H - Hardware switched, A - Assert winner, p - PIM Join Timers: Uptime/Expires Interface state: Interface, Next-Hop or VCD, State/Mode (*, 239.1.2.3), 00:00:12/00:03:27, RP 192.168.101.1, flags: S Incoming interface: Null, RPF nbr 0.0.0.0 Outgoing interface list: GigabitEthernet2, Forward/Sparse, 00:00:02/00:03:27 (192.168.100.2, 239.1.2.3), 00:00:12/00:02:47, flags: T Incoming interface: GigabitEthernet4, RPF nbr 192.168.100.2

Outgoing interface list: GigabitEthernet2, Forward/Sparse, 00:00:02/00:03:29

<SNIP>

ステップ7:BR1-VE-1がPIM(S、G)参加メッセージをvSmartに転送します。IGMP joinと同様に、 PIM(S、G)joinメッセージはOMPアップデートのマルチキャストルータの一部として伝送されま す。vSmartでは、MRIBに(S,G)エントリが作成されました。(S,G)情報は、OMP経由でリプリケ ータおよびLHRに転送されます。

注:実際のシナリオでは、レプリケータは同じサイトに配置することも、設計の好みに応じ て異なるサイトに配置することもできます。

vsmart# show omp multicast-routes Code: C -> chosen I -> installed Red -> redistributed Rej -> rejected L -> looped R -> resolved S -> stale Ext -> extranet

Stg -> staged Inv -> invalid

```
BR1-VE-1# show omp multicast-routes
Code:
C -> chosen
I -> installed
Red -> redistributed
Rej -> rejected
L -> looped
R -> resolved
S -> stale
Ext -> extranet
Stg -> staged
Inv -> invalid
```

ステップ8:ラストホップルータに(S、G)エントリが追加されました。LHRは(S,G)参加を送信元 に送信します。

注:この出力では、(*,G)エントリと(S,G)エントリの発信者の両方が10.33.33.3と表示され、宛先がグループの10.11.11.1であることがわかります。これは、LHR BR3-VE-1が(*,G)エントリの作成および(S,G)参加を担当し、マルチキャストコントロールプレーンを構築するためです。

BR3-VE-1# show omp multicast-routes Code: C -> chosen I -> installed Red -> redistributed Rej -> rejected L -> looped R -> resolved S -> stale Ext -> extranet Stg -> staged Inv -> invalid

データプレーンの検証:

最適なトラフィックフローは、次の範囲(from、to)である必要があります。

- 1. FHR-RPの送信元
- 2. FHR-RPからVEへ
- 3. VEからReplicatorへ
- 4. ReplicatorからLHR
- 5. レシーバへのLHR

注:このドキュメントでは、PIM RPTおよびSPTスイッチオーバーの詳細については説明し ません。

この例では、トラフィックフローは次のようになります。

1. 送信元からFHR-RPへ

- 2. FHR-RPからBR1-VE-1へ
- 3. BR1-VE-1からBR3-VE-1へのIPSecデータプレーントンネル経由
- 4. レシーバへのBR3-VE-1

注:BR1-VE-1とBR3-VE-1の間のマルチキャストトラフィックフローは、データプレーン IPsecトンネルを介して行われます。vSmartコントローラは実際のトラフィック転送に参加 しません。

このトポロジでは、BR1-VE-1はレプリケータとして設定され、ソースの近くに配置されます。レ プリケータがソースとは異なるサイトに配置されている場合があります。いずれの場合も、デー タプレーンのトンネルが、replicatorが存在する特定のサイトとサイトの間でアップしていること を確認します。

BR1-VE-1# show multicast topology Flags: S: SPT switchover OIF-Flags: A: Assert winner

		JOIN			UPSTREAM	UPSTREAM
UPSTREAM			OIF	OIF		
VPN GROUP	SOURCE	TYPE I	FLAGS	RP ADDRESS REPLICATOR	NEIGHBOR	STATE
INTERFACE	UP TIME EXPIRES	INDEX	NAME	FLAGS OIF TUNNEL		
10 224.0	1.39 192.168.101.1	Auto-RP	-		192.168.1.3	joined
ge0/0	0:00:41:29 0:00:02	:33 513	-	- 10.33.33.3		
10 224.0	.1.40 192.168.101.1	Auto-RP	-		192.168.1.3	joined
ge0/0	0:00:41:26 0:00:02	:17 513	-	- 10.33.33.3		
10 239.1	.2.3 0.0.0.0	(*,G) ·	-	192.168.101.1 -	192.168.1.3	joined
ge0/0	0:00:03:47 0:00:00	:53 513	-	- 10.33.33.3		
10 239.1	.2.3 192.168.100.2	(S,G) ·	-		192.168.1.3	joined
ge0/0	0:00:00:10 0:00:00	:52 513	-	- 10.33.33.3		

BR1-VE-1# show	bfd ses	sions syst	tem-ip	10.33	.33.3						
				SOURCE	E TLOC		REMOTE	TLOC			
DST PUBLIC			DST PI	UBLIC		DETH	ECT	ТХ			
SYSTEM IP	SITE	ID STATE		COLOR			COLOR		SOURCI	E IP	
IP			PORT		ENCAP	MULT	FIPLIER	INTERVAL	(msec)	UPTIME	
TRANSITIONS											
10.33.33.3	30	an		qold			qold		172.1	6.1.6	
172.16.1.14			12406	5	ipsec	7	9	1000		3:21:24:02	0
10.33.33.3	30	up		gold	-		lte		172.1	6.1.6	
172.19.1.6			12426		ipsec	7		1000		3:21:24:02	0
10.33.33.3	30	up		biz-ir	nternet		gold		172.1	7.1.6	
172.16.1.14			12406		ipsec	7		1000		3:21:24:59	0
10.33.33.3	30	up		biz-ir	nternet		lte		172.1	7.1.6	
172.19.1.6			12426		ipsec	7		1000		3:21:24:59	0

BR1-VE-1# show multicast topology vpn 10 239.1.2.3 topology-oil Flags: S: SPT switchover

OIF-Flags:

A: Assert winner

			JOIN		OIF	OIF	
VPN	GROUP	SOURCE	TYPE	INDEX	NAME	FLAGS	OIF TUNNEL

 	-											

10	239.1.2.3	0.0.0.0	(*,G)	513	-	-	10.33.33.3
10	239.1.2.3	192.168.100.2	(S,G)	513	-	-	10.33.33.3

R3-VE-1# show bfd sessions system-ip 10.11.11.1 SOURCE TLOC REMOTE TLOC												
DST PUBLIC			DST PU	JBLIC		DETI	ECT	TX				
SYSTEM IP	SITE ID	STATE		COLOR			COLOR		SOURCE	IP		
IP			PORT		ENCAP	MUL	FIPLIER	INTERVAL	(msec)	UPTIME		
TRANSITIONS												
10.11.11.1	10	up		gold			gold		172.16	.1.14		
172.16.1.6			12406		ipsec	7		1000		3:21:25:16	0	
10.11.11.1	10	up		gold			biz-int	ternet	172.16	.1.14		
172.17.1.6			12406		ipsec	7		1000		3:21:26:13	0	
10.11.11.1	10	up		lte			gold		172.19	.1.6		
172.16.1.6			12406		ipsec	7		1000		3:21:25:16	0	
10.11.11.1	10	up		lte			biz-int	ternet	172.19	.1.6		
172.17.1.6			12406		ipsec	7		1000		3:21:26:13	0	

ステップ9:レシーバがトラフィックを受信しています。

Receiver#show ip mroute IP Multicast Routing Table Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected, L - Local, P - Pruned, R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet, X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement, U - URD, I - Received Source Specific Host Report, Z - Multicast Tunnel, z - MDT-data group sender, Y - Joined MDT-data group, y - Sending to MDT-data group, G - Received BGP C-Mroute, g - Sent BGP C-Mroute, N - Received BGP Shared-Tree Prune, n - BGP C-Mroute suppressed, Q - Received BGP S-A Route, q - Sent BGP S-A Route, V - RD & Vector, v - Vector, p - PIM Joins on route, x - VxLAN group Outgoing interface flags: H - Hardware switched, A - Assert winner, p - PIM Join Timers: Uptime/Expires Interface state: Interface, Next-Hop or VCD, State/Mode (*, 239.1.2.3), 1d13h/stopped, RP 192.168.101.1, flags: SJPCL Incoming interface: GigabitEthernet2, RPF nbr 192.168.3.1 Outgoing interface list: Null (192.168.100.2, 239.1.2.3), 00:01:08/00:01:51, flags: PLTX Incoming interface: GigabitEthernet2, RPF nbr 192.168.3.1 Outgoing interface list: Null Receiver#show ip mroute count Use "show ip mfib count" to get better response time for a large number of mroutes. IP Multicast Statistics 6 routes using 3668 bytes of memory 3 groups, 1.00 average sources per group Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kilobits per second

Other counts: Total/RPF failed/Other drops(OIF-null, rate-limit etc)

Group: 239.1.2.3, Source count: 1, Packets forwarded: 0, Packets received: 16
 RP-tree: Forwarding: 0/0/0/0, Other: 7/0/7
 Source: 192.168.100.2/32, Forwarding: 0/0/0/0, Other: 9/0/9

Source#ping 239.1.2.3 repeat 10 Type escape sequence to abort. Sending 10, 100-byte ICMP Echos to 239.1.2.3, timeout is 2 seconds: Reply to request 0 from 192.168.3.2, 221 ms Reply to request 1 from 192.168.3.2, 238 ms Reply to request 2 from 192.168.3.2, 135 ms Reply to request 3 from 192.168.3.2, 229 ms Reply to request 4 from 192.168.3.2, 327 ms Reply to request 5 from 192.168.3.2, 530 ms <SNIP>

トラブルシュート

ここでは、設定のトラブルシューティングに使用できる情報を示します。

1. (*、G)および(S、G)がRPにあることを確認します。

2.データプレーントンネルがあり、VEと**show bfd sessionsコマンドを使用して**replicatorが設定されたサイトの間でBFDセッションが稼働していることを確認しま**す**。

3. BR3-VE-1がBR1-VE-1のリプリケータについて学習したことを確認します。

BR3-VE-1# show multicast replicator

	REPLICATOR	REPLICATOR	LOAD
VPN	ADDRESS	STATUS	PERCENT

10 10.11.11.1 UP

4.マルチキャストトンネルがBR3-VE-1と確立されていることを確認します。

BR3-VE-1# show multicast tunnel

TUNNEL TUNNEL VPN ADDRESS STATUS REPLICATOR

10 10.11.11.1 UP yes

5.グループとRPのマッピングが分散され、正しいことを確認します。

BR3-VE-1#show pim rp-mapping

6.マルチキャストルート(*、G)および(S、G)がvEdge、Replicatorルータ、およびvSmartに正しく 伝搬されることを確認します。show multicast topologyコマンドとshow omp multicast-routesコマ ンドを使用します。

7. LHRのRPFテーブルを確認します。

BR3-VE-1# show multicast rpf | tab

VPN	RPF ADDRESS	RPF STATUS	NEXTHOP COUNT	INDEX	RPF NBR ADDR	RPF IF NAME	RPF TUNNEL	RPF TUNNEL COLOR	RPF TUNNEL ENCAP
10	192.168.101.1	resolved	2	0	10.11.11.1	-	10.11.11.1	biz-internet	ipsec
				1	10.11.11.1	-	10.11.11.1	gold	ipsec
10	192.168.100.2	resolved	2	0	10.11.11.1	-	10.11.11.1	biz-internet	ipsec
				1	10.11.11.1	-	10.11.11.1	gold	ipsec

- 8. LHRが**show ip mfib summaryコマンド**を使用して、Auto-RPおよびデータマルチキャストグル ープに関する必要な情報をすべて学習したことを確認しま**す**。
- 9. LHRの**show ip mfib oilコマンドの出力**に、受信側ルータを指す出力インターフェイスが含まれ ていることを確認します。
- 10. show ip mfib statsコマンドを使用して、トラフィックフローを確認します。

その他の便利なdebugコマンド:

- debug pim auto-rp level high:auto-rpデバッグを有効にします。
- debug pim events level high vpn <vpn number>:PIMイベントのデバッグを有効にします。
- debug ftm mcast:マルチキャストプログラミングのデバッグを有効にします。

結論

これらのシナリオは、このトポロジで正常にテストされています。

- マルチキャストソースは同じサイトのRPに直接接続され、受信側はリモートサイトに配置されます(テストシナリオ)。
- マルチキャスト受信側は同じサイトのRPに直接接続され、送信元はリモートサイトに接続されます。
- マルチキャストソースはVEに直接接続され、レシーバとRPはリモートサイトにあります。