Configuration de Packet Trace pour déboguer le trafic PBR sur les plates-formes XE

Contenu

Introduction Conditions préalables Conditions requises Components Used Configuration Vérification Dépannage Informations connexes

Introduction

Ce document décrit la procédure permettant d'activer le suivi des paquets sur la plate-forme IOS-XE pour capturer le trafic PBR (Policy-Based Routing) sur la plate-forme ISR 4000 de Cisco.

Contribué par Prathik Krishnappa, ingénieur TAC Cisco.

Conditions préalables

Conditions requises

Aucune spécification déterminée n'est requise pour ce document.

Components Used

Ce document n'est pas limité à des versions de matériel et de logiciel spécifiques.

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Configuration

Voici la configuration pour activer la commande packet-trace pour déboguer le trafic PBR :

Configurations PBR :

```
match ip address 102
set ip next-hop 192.168.1.18
ip access-list extended 102
permit ip 192.168.1.0 0.0.3.255 any
permit ip 192.168.2.0 0.0.0.255 any
interface GigabitEthernet0/0/1
ip address 192.168.2.10 255.255.255.248
no ip redirects
no ip unreachables
no ip proxy-arp
ip nat inside
ip policy route-map PBR
load-interval 30
negotiation auto
route-map PBR, permit, sequence 10
 Match clauses:
   ip address (access-lists):102
 Set clauses:
    ip next-hop 192.168.1.18
Policy routing matches: 500 packets, 400 bytes
```

Pour déboguer un sous-réseau particulier, créez une liste d'accès :

ip access-list ext 103 permit ip host 192.168.3.10 any

Appliquez la liste d'accès dans le PBR :

route-map PBR match ip address 103

Exécutez le débogage conditionnel sur l'interface sur laquelle PBR est appliqué :

debug platform condition interface gigabitethernet 0/0/1 ipv4 access-list 103 both

Activez ces débogages :

```
debug platform packet-trace packet 64
debug platform packet-trace packet 16 fia-trace
debug platform packet-trace enable
debug platform condition start
Lancez le trafic à partir du sous-réseau.
```

Note: Utilisez l'<u>Outil de recherche de commande (clients inscrits seulement) pour obtenir</u> plus d'informations sur les commandes utilisées dans cette section.

Vérification

Aucune procédure de vérification n'est disponible pour cette configuration.

Dépannage

Cette section fournit des informations que vous pouvez utiliser pour dépanner votre configuration.

```
Router #sh debugging
IOSXE Conditional Debug Configs:
Conditional Debug Global State: Start
Conditions Direction
_____
GigabitEthernet0/0/1 & IPV4 ACL [102] both
Feature Condition Type Value
Feature Type Submode Level
-----|------|
IOSXE Packet Tracing Configs:
debug platform packet-trace enable
debug platform packet-trace packet 16 fia-trace data-size 2048
Packet Infra debugs:
Ip Address Port
```

show platform packet-trace packet 0 montre le premier paquet suivi.

Le résumé indique que le paquet d'entrée t est reçu sur gig 0/0/1 et transféré sur l'interface de sortie gig 0/0/2 et que l'état est fwd.

Dans la trace de chemin, vous pouvez trouver l'adresse IP source et de destination.

Pour vérifier si le paquet est basé sur une stratégie, vérifiez : Champ IPV4_INPUT_PBR.

```
Feature: FIA_TRACE
   Entry : 0x10f81c00 - IPV4_INPUT_PBR
   Lapsed time: 23220 ns
Router#sh platform packet-trace packet 0
Packet: 0 CBUG ID: 458151
Summary
 Input
         : GigabitEthernet0/0/1
 Output : GigabitEthernet0/0/2
 State
          : FWD
 Timestamp
   Start : 355835562633335 ns (12/28/2016 08:11:52.433136 UTC)
   Stop : 355835562660187 ns (12/28/2016 08:11:52.433163 UTC)
Path Trace
 Feature: IPV4
   Source : 192.168.3.10
   Destination : 74.125.200.189
   Protocol : 17 (UDP)
     SrcPort : 56018
     DstPort : 443
 Feature: FIA_TRACE
   Entry
          : 0x10f82018 - DEBUG_COND_INPUT_PKT
   Lapsed time: 2060 ns
 Feature: FIA_TRACE
```

: 0x10f81c38 - IPV4_INPUT_SRC_LOOKUP_ISSUE Entry Lapsed time: 2160 ns Feature: FIA_TRACE Entry : 0x10f81c34 - IPV4_INPUT_DST_LOOKUP_CONSUME Lapsed time: 3080 ns Feature: FIA_TRACE : 0x10f81c2c - IPV4_INPUT_SRC_LOOKUP_CONSUME Entry Lapsed time: 700 ns Feature: FIA_TRACE : 0x10f82000 - IPV4_INPUT_FOR_US_MARTIAN Entry Lapsed time: 800 ns Feature: FIA_TRACE Entry : 0x10f81c14 - IPV4_INPUT_FNF_FIRST Lapsed time: 15280 ns Feature: FIA_TRACE : 0x10f81ff4 - IPV4_INPUT_VFR Entry Lapsed time: 620 ns Feature: FIA_TRACE : 0x10f81c00 - IPV4_INPUT_PBR Entry Lapsed time: 23220 ns Feature: FIA_TRACE Entry : 0x10f816f4 - IPV4_INPUT_TCP_ADJUST_MSS Lapsed time: 1500 ns Feature: FIA_TRACE Entry : 0x10f81e90 - IPV4_INPUT_LOOKUP_PROCESS Lapsed time: 5100 ns Feature: FIA_TRACE

Informations connexes

- Fonctionnalité IOS-XE Datapath Packet Trace
- Support et documentation techniques Cisco Systems