

MQC Based on Transport Hierarchy

The MQC Based on Transport Hierarchy(TPH) feature enables the use of TPH to apply policies according to a specific underlying protocol, instead of only according to the final classified protocol, for example, an email application over HTTP. A new MQC filter configured within a class-map matches all traffic which has this protocol in the hierarchy.

- Finding Feature Information, on page 1
- Restrictions for MQC Based on Transport Hierarchy, on page 1
- Information About MQC Based on Transport Hierarchy, on page 2
- How to Configure MQC Based on Transport Hierarchy, on page 2
- Configuration Examples for MQC Based on Transport Hierarchy, on page 4
- Additional References, on page 5
- Feature Information for MQC Based on Transport Hierarchy, on page 6

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to https://cfnng.cisco.com/. An account on Cisco.com is not required.

Restrictions for MQC Based on Transport Hierarchy

- The MQC Based on Transport Hierarchy feature is supported only for DNS, HTTP, RTP, and SSL.
- Does not allow adding the match of the protocol and in-app-hierarchy to the same class-map.
- Match protocol http in-app-hierarchy and match protocol rtp in-app-hierarchy are not supported while match protocol attribute tunnel is configured, even on a different class-map.

Information About MQC Based on Transport Hierarchy

MQC Based on Transport Hierarchy Overview

The MQC based on transport hierarchy(TPH) feature enables NBAR to use TPH to apply policies according to a specific underlying protocol, instead of only according to the final classified protocol. The TPH of a particular application is the stack of protocols on which the application is delivered. For example, an application is being transported over HTTP and HTTP runs over TCP.

Prior to the configuration of the MQC based on transport hierarchy(TPH) feature, it is only possible to apply a class-map filter on the final classified protocol using the **match protocol** *protocol-id* class-map filter. However, to apply QoS policies on all the traffic of HTTP, then include all the protocols which run over HTTP into the class-map makes the configuration of such use-cases considerably difficult. A solution for this problem is an in-app-hierarchy class-map filter which uses TPH to apply policies according to a specific underlying protocol, instead of only according to the final classified protocol. For example, the rule **match protocol** *http* **in-app-hierarchy** matches if HTTP is present in the hierarchy.

How to Configure MQC Based on Transport Hierarchy

Configuring MQC Based on Transport Hierarchy

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. class-map [match-all | match-any] class-map-name
- 4. match protocol protocol-name in-app-hierarchy
- **5**. end
- 6. configure terminal
- **7. policy-map** *policy-map-name*
- **8. class** { *class-name* | **class-default** }
- 9. end
- 10. configure terminal
- **11. interface** *type number*
- **12. service-policy** { **input** | **output** } *policy-map-name*

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	

	Command or Action	Purpose
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	class-map [match-all match-any] class-map-name	Creates a class map to be used for matching packets to a
	Example:	specified class and enters QoS class-map mode.
	Device(config)# class-map match-all C1	• Enter the name of the class map.
Step 4	match protocol protocol-name in-app-hierarchy	Configures the match criterion for a class map on the basis
•	Example:	of the specified protocol. The keyword in-app-hierarchy
	Device(config-cmap) # match protocol http	matches if the protocol is present in the transport hierarchy.
	in-app-hierarchy	Possible values for <i>protocol-name</i> : DNS, HTTP, RTP, SSL
Step 5	end	Exits class-map mode and returns to privileged EXEC
	Example:	mode.
	Device(config-cmap)# end	
Step 6	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 7	policy-map policy-map-name	Specifies the name of the policy map and enters policy-map
	Example:	configuration mode.
	Device(config) # policy-map P1	
Step 8	class { class-name class-default }	Specifies the name of the class whose policy you want to
•	Example:	create and enters policy-map class configuration mode.
	Device(config-pmap)# class C1	
Step 9	end	Exits class-map mode and returns to privileged EXEC
	Example:	mode.
	Device(config-cmap)# end	
Step 10	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 11	interface type number	Configures an interface type and enters interface
	Example:	configuration mode.
	Device(config)# interface GigabitEthernet 0/0/1	
Step 12	service-policy { input output } policy-map-name	Specifies the name of the policy map to be attached to the
-	Example:	input or output direction of the interface.

Command or Action	Purpose
Device(config-if)# service-policy input P1	

Verifying MQC Based on Transport Hierarchy

To verify the MQC Based on Transport Hierarchy feature perform the following steps:

SUMMARY STEPS

- 1. enable
- 2. show policy-map interface type number
- 3. exi

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	(Optional) Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device# enable	
Step 2	show policy-map interface type number	Displays the packet statistics of all classes that are
	Example:	configured for allservice policies either on the specified interface
	Device# show policy-map interface GigabitEthernet0/0/1	Enter the interface type and the interface number.
Step 3	exit	(Optional) Exits privileged EXEC mode.
	Example:	
	Device# exit	

Configuration Examples for MQC Based on Transport Hierarchy

Example: Configuring MQC Based on Transport Hierarchy

The following is an example of the configuring MQC based on Transport Hierarchy feature:

```
Device> enable

Device# configure terminal

Device(config)# class-map match-all C1

Device(config-cmap)# match protocol http in-app-hierarchy

Device(config-cmap)# match protocol youtube

Device(config-cmap)# end

Device# configure terminal

Device(config)# policy-map P1

Device(config-pmap)# class C1
```

```
Device(config-cmap)# end
Device# configure terminal
Device(config)# interface GigabitEthernet 0/0/1
Device(config-if)# service-policy input P1
```

A traffic policy called P1 is configured. P1 contains a class called C1 for which QoS bandwidth limitation is configured as an example. All traffic that has final classification of Youtube with HTTP as a transport will be placed in the C1 class. Other possible transports for Youtube, such as DNS, SSL or RTSP, will not be matched by this class-map

Example: Verifying the MQC Based on Transport Hierarchy configuration

The following is a sample output from the **show policy-map interface** command:

Additional References

Related Documents

Related Topic	Document Title
Cisco IOS commands	Cisco IOS Master Commands List, All Releases
QoS commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples	

Technical Assistance

Description	Link
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.	

Feature Information for MQC Based on Transport Hierarchy

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Feature Information for MQC Based on Transport Hierarchy

Feature Name	Releases	Feature Information
MQC Based on Transport Hierarchy		The MQC Based on Transport Hierarchy feature enables the use of Transport Hierarchy to apply policies according to a specific underlying protocol, instead of only according to the final classified protocol. A new MQC filter is introduced which can be configured within a class-map. The following command was
		modified: match protocol
Transport Hierarchy support for DNS	Cisco IOS XE Denali 16.3	The match protocol CLI can match according to the following protocol types: DNS, HTTP, SSL, and RTP. Example: match protocol dns in-app-hierarchy