

IPv6 Routing: Route Redistribution

IPv6 route redistribution supports redistributing routes into an IPv6 IS-IS routing process and redistributing IPv6 IS-IS routes between IS-IS levels.

- Finding Feature Information, on page 1
- Information About IPv6 Routing: Route Redistribution, on page 1
- How to Configure IPv6 Routing: Route Redistribution, on page 2
- Configuration Examples for IPv6 Routing: Route Redistribution, on page 5
- Additional References, on page 8
- Feature Information for IPv6 Routing: Route Redistribution, on page 9

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About IPv6 Routing: Route Redistribution

IS-IS Enhancements for IPv6

IS-IS in IPv6 functions the same and offers many of the same benefits as IS-IS in IPv4. IPv6 enhancements to IS-IS allow IS-IS to advertise IPv6 prefixes in addition to IPv4 and OSI routes. Extensions to the IS-IS command-line interface (CLI) allow configuration of IPv6-specific parameters. IPv6 IS-IS extends the address families supported by IS-IS to include IPv6, in addition to OSI and IPv4.

IS-IS in IPv6 supports either single-topology mode or multiple topology mode.

IPv6 IS-IS Route Redistribution

IS-IS for IPv6 supports redistributing routes into an IPv6 IS-IS routing process and redistributing IPv6 IS-IS routes between IS-IS levels.

How to Configure IPv6 Routing: Route Redistribution

Redistributing Routes into an IPv6 IS-IS Routing Process

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. router isis area-tag
- 4. address-family ipv6 [unicast]
- **5. redistribute** *source-protocol* [*process-id*] [**metric** *metric-value*] [**metric-type** *type-value*] [**route-map** *map-tag*]
- 6. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	router isis area-tag	Enables IS-IS for the specified IS-IS routing process, and
	Example:	enters router configuration mode.
	Device(config)# router isis area2	
Step 4	address-family ipv6 [unicast]	Specifies the IPv6 address family, and enters address family
	Example:	configuration mode.
	Device(config-router)# address-family ipv6	• unicast—(Optional) Specifies the unicast IPv6 unicast address family. This is the default option.
Step 5	redistribute source-protocol [process-id] [metric	Redistributes routes from the specified protocol into the
-	metric-value] [metric-type type-value] [route-map	IS-IS process.
	map-tag]	• source-protocol—Can be one of the following: bgp ,
	Example:	connected, isis, rip or static.
		• process-id—(Optional) Routing process name.

	Purpose
evice(config-router-af)# redistribute bgp 64500 etric 100 route-map isismap	• metric <i>metric-value</i> —Redistributes routes based on the metric value.
	• metric-type type-value—Specifies the link type, which can be the following: external to set an external ISIS metric type, internal to set an internal ISIS metric type, rib-metric-as-external to set metric type to external and use the RIB metric, and rib-metric-as-internal to set metric type to internal and use the RIB metric.
nd xample:	Exits address family configuration mode and returns to privileged EXEC mode.
n	nd

Redistributing IPv6 IS-IS Routes Between IS-IS Levels

Perform this task to redistribute IPv6 routes learned at one IS-IS level into a different level.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. router isis area-tag
- 4. address-family ipv6 [unicast]
- $\textbf{5.} \quad \textbf{redistribute} \quad \textbf{isis} \quad [process-id] \; \{\textbf{level-1} \mid \textbf{level-2}\} \; \textbf{into} \; \{\textbf{level-1} \mid \textbf{level-2}\} \; \textbf{distribute-list} \; \textit{list-name}$
- 6. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	router isis area-tag	Enables IS-IS for the specified IS-IS routing process, and
	Example:	enters router configuration mode.
	Device(config)# router isis area2	

Command or Action	Purpose
address-family ipv6 [unicast] Example: Device(config-router) # address-family ipv6	Specifies the IPv6 address family, and enters address family configuration mode. • unicast—(Optional) Specifies the unicast IPv6 unicast address family. This is the default option.
redistribute isis [process-id] {level-1 level-2} into {level-1 level-2} distribute-list list-name	Redistributes IPv6 routes from one IS-IS level into another IS-IS level.
Example: Device (config-router-af) # redistribute isis level-1 into level-2	Note The <i>protocol</i> argument must be isis in this configuration of the redistribute command.
	Only the arguments and keywords relevant to this task are specified here.
end	Exits address family configuration mode and returns to
<pre>Example: Device(config-router-af)# end</pre>	privileged EXEC mode.
	address-family ipv6 [unicast] Example: Device (config-router) # address-family ipv6 redistribute isis [process-id] {level-1 level-2} into {level-1 level-2} distribute-list list-name Example: Device (config-router-af) # redistribute isis level-1 into level-2 end Example:

Verifying IPv6 IS-IS Configuration and Operation

SUMMARY STEPS

- 1. enable
- 2. show ipv6 protocols [summary]
- 3. show isis [process-tag] [ipv6 | *] topology
- **4. show clns** [process-tag] **neighbors** interface-type interface-number] [area] [detail]
- 5. show clns area-tag is-neighbors [type number] [detail]
- 6. show isis [process-tag] database [level-1] [level-2] [l1] [l2] [detail] [lspid]
- 7. show isis ipv6 rib [ipv6-prefix]

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2 show ipv6 protocols [summary] Displays the pa	Displays the parameters and current state of the active IPv6	
	Example: routing processes.	routing processes.
	Device# show ipv6 protocols	

	Command or Action	Purpose
Step 3	<pre>show isis [process-tag] [ipv6 *] topology Example: Device# show isis topology</pre>	Displays a list of all connected routers running IS-IS in all areas.
Step 4	<pre>show clns [process-tag] neighbors interface-type interface-number] [area] [detail] Example: Device# show clns neighbors detail</pre>	Displays end system (ES), intermediate system (IS), and multitopology IS-IS (M-ISIS) neighbors.
Step 5	show clns area-tag is-neighbors [type number] [detail] Example: Device# show clns is-neighbors detail	Displays IS-IS adjacency information for IS-IS neighbors. • Use the detail keyword to display the IPv6 link-local addresses of the neighbors.
Step 6	show isis [process-tag] database [level-1] [level-2] [11] [12] [detail] [lspid] Example: Device# show isis database detail	Displays the IS-IS link-state database. • In this example, the contents of each LSP are displayed using the detail keyword.
Step 7	show isis ipv6 rib [ipv6-prefix] Example: Device# show isis ipv6 rib	Displays the IPv6 local RIB.

Configuration Examples for IPv6 Routing: Route Redistribution

Example: Redistributing Routes into an IPv6 IS-IS Routing Process

The following example redistributes IPv6 BGP routes into the IPv6 IS-IS Level 2 routing process:

```
router isis
address-family ipv6
redistribute bgp 64500 metric 100 route-map isismap
exit.
```

Example: Redistributing IPv6 IS-IS Routes Between IS-IS Levels

The following example redistributes IPv6 IS-IS Level 1 routes into the IPv6 IS-IS Level 2 routing process:

```
router isis
address-family ipv6
redistribute isis level-1 into level-2
```

Example: Configuring IS-IS for IPv6

In the following example, output information about the parameters and current state of that active IPv6 routing processes is displayed using the **show ipv6 protocols**command:

```
Device# show ipv6 protocols
IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "static"
IPv6 Routing Protocol is "isis"
 Interfaces:
   GigabitEthernet0/0/3
   GigabitEthernet0/0/1
   Serial1/0/1
   Loopback1 (Passive)
   Loopback2 (Passive)
    Loopback3 (Passive)
   Loopback4 (Passive)
   Loopback5 (Passive)
  Redistribution:
   Redistributing protocol static at level 1
  Address Summarization:
   L2: 2001:DB8:33::/16 advertised with metric 0
   L2: 2001:DB8:44::/16 advertised with metric 20
   L2: 2001:DB8:66::/16 advertised with metric 10
   L2: 2001:DB8:77::/16 advertised with metric 10
```

In the following example, output information about all connected routers running IS-IS in all areas is displayed using the **show isis topology**command:

Device# show isis topology IS-IS paths to level-1 routers System Id Metric Next-Hop Interface SNPA 0000.0000.0000 *HDLC* 0050.e2e5.d01d *HDT.C* 0000.0000.000D 20 0000.0000.00AA Se1/0/1 0000.0000.000D 20 0000.0000.00AA Sel/0/1 0000.0000.000F 10 0000.0000.000F GE0/0/1 0000.0000.00AA 10 0000.0000.00AA Sel/0/1 IS-IS paths to level-2 routers System Id Metric Next-Hop Interface SNPA 0000.0000.0000 10 0000.0000 GE0/0/3 0010 0010.f68d.f063 0000.0000.000B 20 0000.0000.000A GE0/0/3 0010.f68d.f063 0000.0000.000C --0000.0000.000D 30 0000.0000.000A GE0/0/3 0000.0000.000E 30 0000.0000.000A GE0/0/3 0010.f68d.f063 0010.f68d.f063

In the following example, output information to confirm that the local router has formed all the necessary IS-IS adjacencies with other IS-IS neighbors is displayed using the **show clns is-neighbors**command. To display the IPv6 link-local addresses of the neighbors, specify the **detail** keyword.

```
Device# show clns is-neighbors detail
System Id Interface State Type Priority Circuit Id
                                                           Format
0000.0000.00AA Se1/0/1
                       Up L1 0
                                           00
                                                             Phase V
 Area Address(es): 49.0001
 IPv6 Address(es): FE80::YYYY:D37C:C854:5
 Uptime: 17:21:38
0000.0000.000F Et0/0/1
                           L1 64
                                           0000.0000.000C.02 Phase V
 Area Address(es): 49.0001
 IPv6 Address(es): FE80::XXXX:E2FF:FEE5:D01D
 Uptime: 17:21:41
0000.0000.000A Et0/0/3 Up L2 64
                                           0000.0000.000C.01 Phase V
```

```
Area Address(es): 49.000b

IPv6 Address(es): FE80::ZZZZ:F6FF:FE8D:F063

Uptime: 17:22:06
```

In the following example, detailed output information that displays both end system (ES) and intermediate system (IS) neighbors is displayed using the **show clns neighbors** command with the **detail** keyword.

Device# show clns neighbors detail System Id Interface SNPA State Holdtime Type Protocol GE3/3 aa00.0400.6408 UP 26 0000.0000.0007 L1 IS-IS Area Address(es): 20 IP Address(es): 172.16.0.42* Uptime: 00:21:49 GE3/2 0000.0C00.0C35 0000.0c00.0c36 Up 91 T.1 TS-TS Area Address(es): 20 IP Address(es): 192.168.0.42* Uptime: 00:21:52 0800.2B16.24EA GE3/3 aa00.0400.2d05 Up 27 L1 M-ISIS Area Address(es): 20 IP Address(es): 192.168.0.42* IPv6 Address(es): FE80::2B0:8EFF:FE31:EC57 Uptime: 00:00:27 0800.2B14.060E GE3/2 aa00.0400.9205 Up 8 T.1 TS-TS Area Address(es): 20 IP Address(es): 192.168.0.30* Uptime: 00:21:52

In the following example, detailed output information about LSPs received from other routers and the IPv6 prefixes they are advertising is displayed using the **show isis database**command with the **detail** keyword specified:

```
Device# show isis database detail
IS-IS Level-1 Link State Database
                   LSP Seg Num LSP Checksum LSP Holdtime ATT/P/OL
0000.0C00.0C35.00-00 0x0000000C 0x5696 325
                                                       0/0/0
 Area Address: 47.0004.004D.0001
 Area Address: 39.0001
 Metric: 10 IS 0000.0C00.62E6.03
 Metric: 0 ES 0000.0C00.0C35
 --More--
0000.0C00.40AF.00-00* 0x00000009 0x8452
                                          608
                                                      1/0/0
 Area Address: 47.0004.004D.0001
 Topology: IPv4 (0x0) IPv6 (0x2)
 NLPID: 0xCC 0x8E
 IP Address: 172.16.21.49
 Metric: 10 IS 0800.2B16.24EA.01
 Metric: 10 IS 0000.0C00.62E6.03
 Metric: 0
            ES 0000.0C00.40AF
 IPv6 Address: 2001:DB8::/32
 Metric: 10 IPv6 (MT-IPv6) 2001:DB8::/64
 Metric: 5 IS-Extended cisco.03
 Metric: 10 IS-Extended ciscol.03
 Metric: 10 IS (MT-IPv6) cisco.03
IS-IS Level-2 Link State Database:
                   LSP Seq Num LSP Checksum LSP Holdtime
                                                          ATT/P/OL
0000.0000.000A.00-00 0x00000059 0x378A
                                           949
                                                           0/0/0
 Area Address: 49.000b
 NLPID: 0x8E
 IPv6 Address: 2001:DB8:1:1:1:1:1:
 Metric: 10
                 IPv6 2001:DB8:3:YYYY::/64
```

```
Metric: 10
                    IPv6 2001:DB8:2:YYYY::/64
 Metric: 10
                    IS-Extended 0000.0000.000A.01
 Metric: 10
                   TS-Extended 0000.0000.000B.00
 Metric: 10
                  IS-Extended 0000.0000.000C.01
 Metric: 0
                   IPv6 11:1:YYYY:1:1:1:1:1/128
 Metric: 0
                    IPv6 11:2:YYYY:1:1:1:1:1/128
 Metric: 0
                    IPv6 11:3:YYYY:1:1:1:1:1/128
                   IPv6 11:4:YYYY:1:1:1:1:1/128
 Metric: 0
 Metric: 0
                  IPv6 11:5:YYYY:1:1:1:1:1/128
0000.0000.000A.01-00 0x00000050 0xB0AF
                                                                0/0/0
                                               491
 Metric: 0
                   IS-Extended 0000.0000.000A.00
 Metric: 0
                    IS-Extended 0000.0000.000B.00
```

The following example shows output from the **show isis ipv6 rib** command. An asterisk (*) indicates prefixes that have been installed in the master IPv6 RIB as IS-IS routes. Following each prefix is a list of all paths in order of preference, with optimal paths listed first and suboptimal paths listed after optimal paths.

Device# show isis ipv6 rib

```
IS-IS IPv6 process "", local RIB
   2001:DB8:88:1::/64
    via FE80::210:7BFF:FEC2:ACC9/GigabitEthernet2/0/0, type L2 metric 20 LSP [3/7]
   via FE80::210:7BFF:FEC2:ACCC/GigabitEthernet2/1/0, type L2 metric 20 LSP [3/7]
* 2001:DB8:1357:1::/64
   via FE80::220:7DFF:FE1A:9471/GigabitEthernet2/1/0, type L2 metric 10 LSP [4/9]
* 2001:DB8:45A::/64
   via FE80::210:7BFF:FEC2:ACC9/GigabitEthernet2/0/0, type L1 metric 20 LSP [C/6]
   via FE80::210:7BFF:FEC2:ACC9/GigabitEthernet2/1/0, type L1 metric 20 LSP [C/6]
   via FE80::210:7BFF:FEC2:ACC9/GigabitEthernet2/0/0, type L2 metric 20 LSP [3/7]
   via FE80::210:7BFF:FEC2:ACCC9/GigabitEthernet2/1/0, type L2 metric 20 LSP [3/7]
```

Additional References

Related Documents

Related Topic	Document Title
IS-IS commands: complete command syntax, command mode, defaults, command history, usage guidelines, and examples	Cisco IOS IP Routing: ISIS Command Reference
Overview of Cisco IS-IS conceptual information with links to all the individual IS-IS modules	"Integrated IS-IS Routing Protocol Overview" module
ISO CLNS commands	Cisco IOS ISO CLNS Command Reference
Command Lookup Tool	http://tools.cisco.com/Support/CLILookup

Standards

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	

MIBs

MIBs	MIBs Link
No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.	To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs

RFCs

RFCs	Title
No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.	

Technical Assistance

Description	Link
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.	

Feature Information for IPv6 Routing: Route Redistribution

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Feature Information for IPv6 Routing: Route Redistribution

Feature Name	Releases	Feature Information
IPv6 Routing: Route Redistribution		IS-IS for IPv6 supports redistributing routes into an IPv6 IS-IS routing process and redistributing IPv6 IS-IS routes between IS-IS levels. The following commands were introduced or modified: address-family ipv6, redistribute isis (IPv6).