Configure UCS with VMware ESXi End-to-End Jumbo MTU

Contents

Introduction

Prerequisites

Requirements

Components Used

Configure

Network Diagram

Cisco UCS Configuration

Verify

N5k Configuration

Verify

VMware ESXi Configuration

Verify

Cisco IOS Configuration

Verify

N1kV Configuration

Verify

NetApp FAS 3240 Configuration

Verify

Introduction

This document describes how to configure jumbo Maximum Transition Unit (MTU) end-to-end across Cisco Data Center devices.

Prerequisites

Requirements

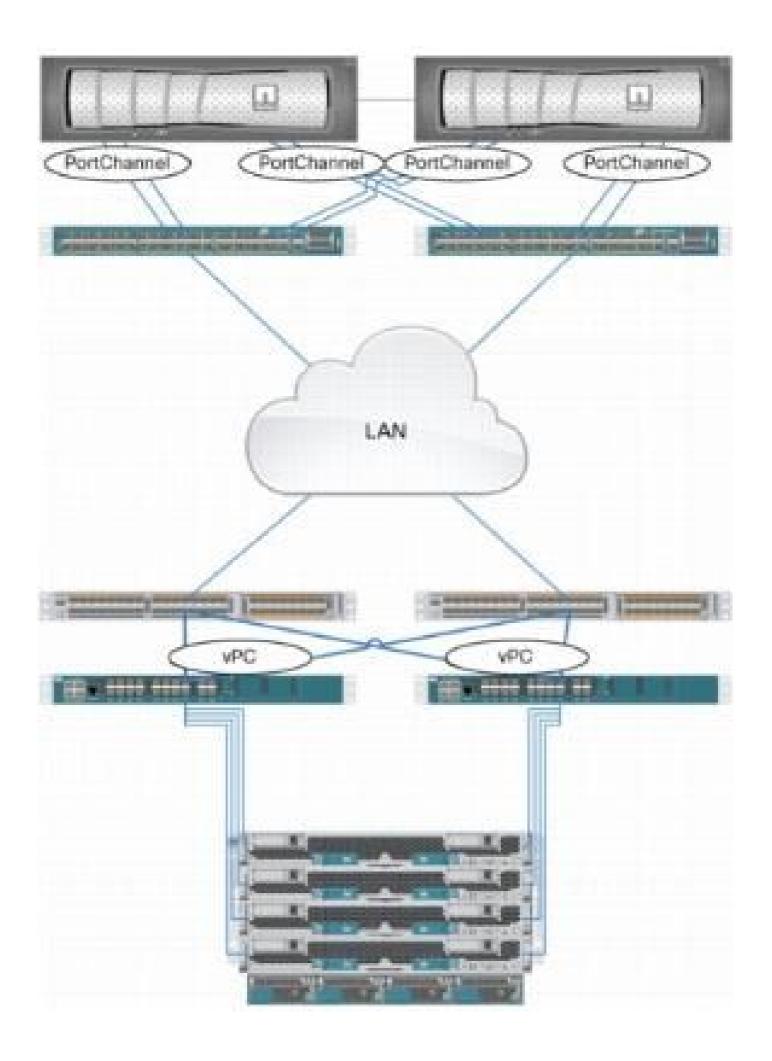
Cisco recommends that you have knowledge of these topics:

- VMware ESXi
- Cisco UCS
- Cisco N5k
- Cisco Internet Small Computer Systems Interface (iSCSI)

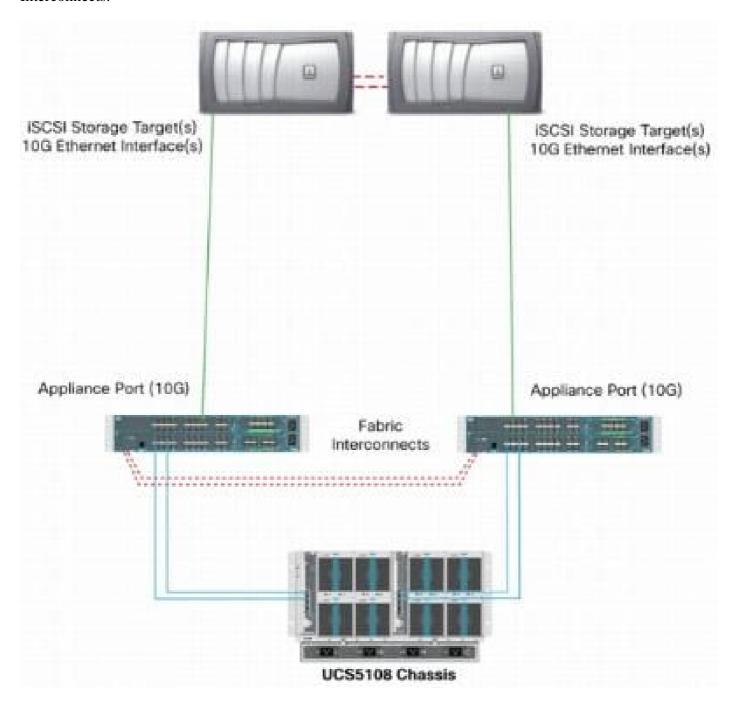
Components Used

This document describes how to configure jumbo Maximum Transition Unit (MTU) end-to-end across Cisco Data Center devices in a network that consists of a VMware ESXi host installed on the Cisco Unified Computing System (UCS), Cisco Nexus 1000V Series Switches (N1kV), Cisco Nexus 5000 Series Switches (N5k), and the Cisco NetApp controller.

The information in this document is based on these software and hardware versions:


- Cisco Nexus 5020 Series Switches Version 5.0(3)N2(2a)
- Cisco UCS Version 2.1(1d)
- Cisco UCS B200 M3 Blade Server with Cisco Virtual Interface Card (VIC) 1240
- vSphere 5.0 (ESXi and vCenter)
- Cisco N1kV Version 4.2(1)SV2(2.1a)
- NetApp FAS 3240

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, ensure that you understand the potential impact of any command.


Configure

Network Diagram

The typical iSCSI Storage Area Network (SAN) deployment uses the Cisco UCS with a Fabric Interconnect in Ethernet End Host mode and the storage target connected through an upstream switch or switched network.

Through the use of the Appliance ports on the UCS, Storage can be directly connected to the Fabric Interconnects.

Whether the upstream network is 1 GbE or 10 GbE, the use of jumbo frames (an MTU size of 9000, for example) improves performance because it reduces the number of individual frames that must be sent for a given amount of data and reduces the need to separate iSCSI data blocks into multiple Ethernet frames. They also lower the host and storage CPU utilization.

If jumbo frames are used, ensure that the UCS and storage target, as well as all of the network equipment between, are able and configured in order to support the larger frame size.

This means that the jumbo MTU must be configured end-to-end (initiator to target) in order for it to be effective across the domain.

Here is an overview of the procedure that is used in order to configure the jumbo MTU end-to-end:

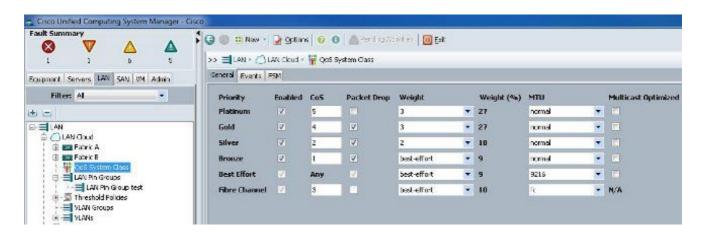
1. Create a UCS Quality of Service (QoS) System Class with an MTU of 9000, and then configure the

Virtual NIC (vNIC) with jumbo MTU.

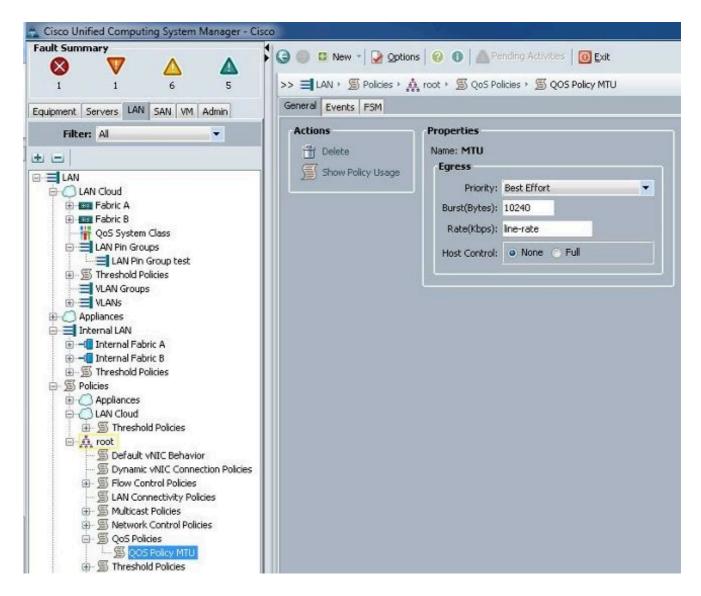
- 2. Enable jumbo frames (MTU 9000) on all of the switches between the initiator (UCS) and the iSCSI target.
- 3. Enable jumbo frames on the Operating System (OS) adapter (VMkernel port of the ESXi).
- 4. Enable jumbo frames on the NetApp interfaces.

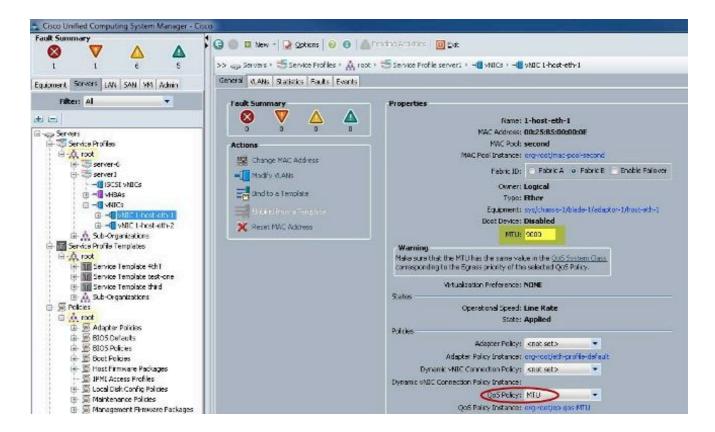
Note: Reference the Cisco Unified Computing System (UCS) Storage Connectivity Options and Best <u>Practices with NetApp Storage</u> Cisco article for additional information.

Cisco UCS Configuration


The MTU is set on a per-Class of Service (CoS) basis within the UCS. If you do not have a QoS policy defined for the vNIC that heads toward the vSwitch, then the traffic moves to the Best-Effort Class.

Complete these steps in order to enable jumbo frames:


- 1. From the UCS GUI, click the LAN tab.
- 2. Navigate to LAN > LAN Cloud > QoS System Class.
- 3. Click the **QoS System Class** and change the traffic class (that carries iSCSI traffic) MTU to **9216**.


Note: This example uses the Best Effort traffic class in order to illustrate this MTU update.

4. Create a QoS policy within the LAN tab and apply it to the vNIC that carries the storage traffic.

5. Navigate to the vNIC template or the actual vNIC under the Service Profiles and set the MTU value to **9000**.

Verify

Verify that the vNIC has the MTU configured as previously described.

```
Cisco-A#
Cisco-A# scope service-profile server 1/1
Cisco-A /org/service-profile # show vnic
VNIC:
                       Fabric ID Dynamic MAC Addr
                                                     Virtualization Preference
   Name
    1-host-eth-1
                       \mathbf{B}
                                 00:25:B5:00:00:0E NONE
    1-host-eth-2
                       A
                                 00:25:B5:00:00:0D NONE
Cisco-A /org/service-profile # show vnic 1-host-eth-1 detail
VNIC:
    Name: 1-host-eth-1
   Fabric ID: B
   Dynamic MAC Addr: 00:25:B5:00:00:0E
   Desired Order: 2
    Actual Order: 2
    Desired VCon Placement: Any
    Actual VCon Placement: 1
    Equipment: sys/chassis-1/blade-1/adaptor-1/host-eth-1
    Host Interface Ethernet MTU: 9000
    Template Name:
   Oper Nw Templ Name:
    Adapter Policy:
    Oper Adapter Policy: org-root/eth-profile-default
   MAC Pool: second
   Oper MAC Pool: org-root/mac-pool-second
    Pin Group:
    Qos Policy: MTU
    Oper QoS Policy: org-root/ep-qos-MTU
    Network Control Policy:
    Oper Network Control Policy: org-root/nwctrl-default
    Stats Policy: default
    Oper Stats Policy: org-root/thr-policy-default
    Virtualization Preference: NONE
    Parent vNIC DN:
   Current Task:
```

Verify that the uplink ports have jumbo MTU enabled.

```
Cisco-A(nxos)# show port-channel sum
                         P - Up in port-channel (members)
        D - Down
        I - Individual
                        H - Hot-standby (LACP only)
                        r - Module-removed
        s - Suspended
        S - Switched
                         R - Routed
            Up (port-channel)
Group Port-
                  Type
                            Protocol
                                      Member Ports
      Channel
      Pol(SU)
                  Eth
                            LACP
                                      Eth1/31(P)
                                                    Eth1/32(P)
      Po1025(SU)
                                      Eth1/1(P)
1025
                  Eth
                            NONE
                                                    Eth1/2(P)
                                                                  Eth1/3(P)
                                      Eth1/4(P)
Cisco-A(nxos)# show queuing interface ethernet 1/31
Ethernet1/31 queuing information:
  TX Queuing
               sched-type oper-bandwidth
    qos-group
        0
                                  9
                WRR
                                 10
        1
                WRR
        2
                                 27
                WRR
        3
                WRR
                                 27
                                 18
        4
                WRR
        5
                WRR
  RX Queuing
    qos-group 0
    q-size: 94400, HW MTU: 9216 (9216 configured)
    drop-type: drop, xon: 0,
                              xoii:
    Statistics:
```

N5k Configuration

With the N5k, jumbo MTU is enabled at the system level.

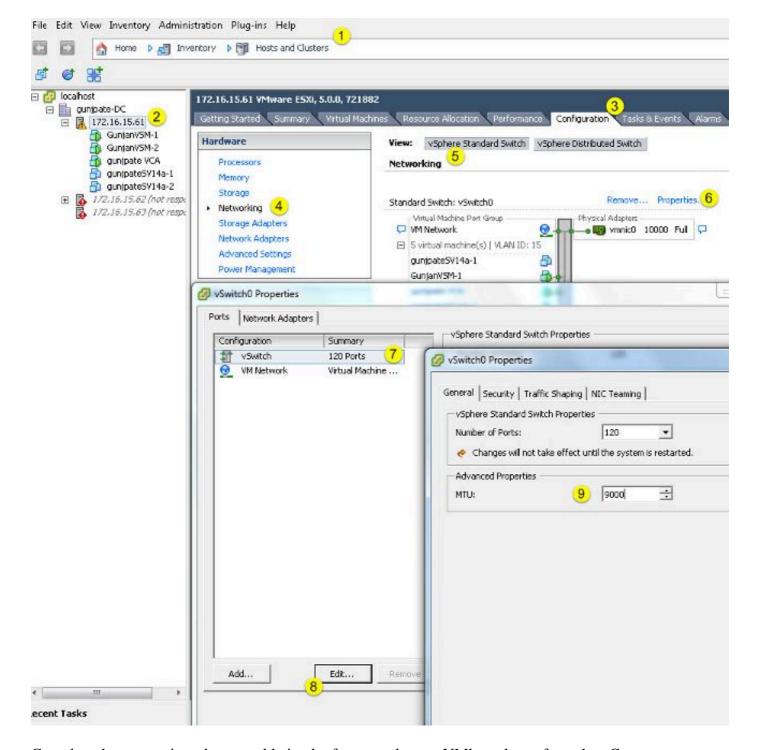
Open a command prompt and enter these commands in order to configure the system for jumbo MTU:

```
switch(config)#policy-map type network-qos jumbo
switch(config-pmap-nq)#class type network-qos class-default
switch(config-pmap-c-nq)#mtu 9216
switch(config-pmap-c-nq)#exit
switch(config-pmap-nq)#exit
switch(config)#system qos
switch(config-sys-qos)#service-policy type network-qos jumbo
```

Verify

Enter the **show queuing interface Ethernet x/y** command in order to verify that jumbo MTU is enabled:

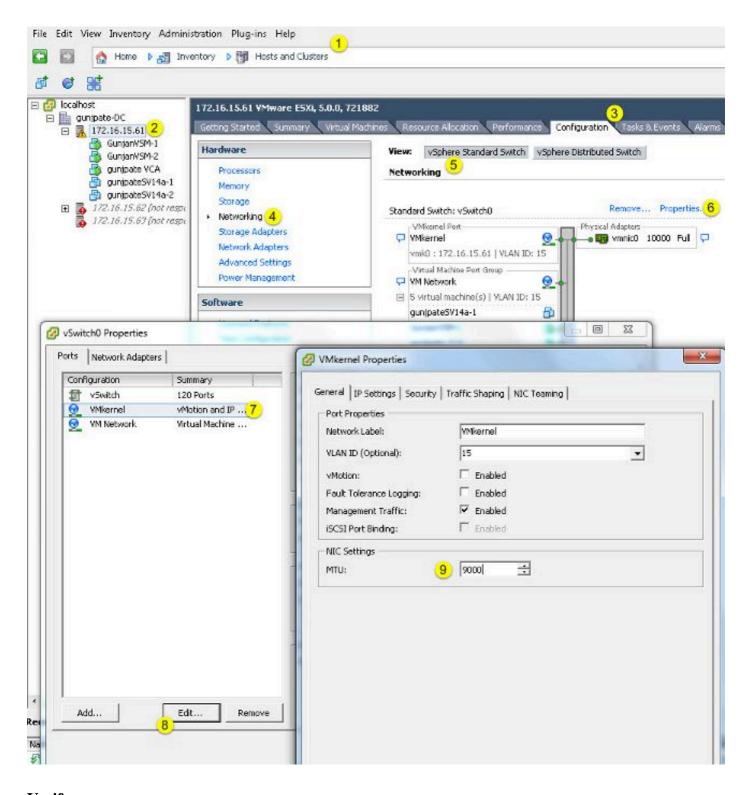
```
5k-Rack17-1# sh queuing interface e1/1
Ethernet1/1 queuing information:
 TX Queuing
   qos-group
               sched-type oper-bandwidth
       0
                WRR
       1
                WRR
                                50
 RX Queuing
   qos-group 0
   q-size: 243200, HW MTU: 9280 (9216 configured)
   drop-type: drop, xon: 0, xoff: 243200
   Statistics:
       Pkts received over the port
                                                 : 2649650
       Ucast pkts sent to the cross-bar
                                                 : 34869
       Mcast pkts sent to the cross-bar
                                                 : 2614781
       Ucast pkts received from the cross-bar
                                                : 22283
       Pkts sent to the port
                                                  32686923
       Pkts discarded on ingress
       Per-priority-pause status
                                                 : Rx (Inactive), Tx (Inactive)
```



Note: The show interface Ethernet x/y command shows an MTU of 1500, but that is incorrect.

VMware ESXi Configuration

You can configure the MTU value of a vSwitch so that all of the port-groups and ports use jumbo frames.

Complete these steps in order to enable jumbo frames on a host vSwitch:


- 1. Navigate to **Home** > **Inventory** > **Hosts and Clusters** from the vSphere client.
- 2. Select the host.
- 3. Click the **Configuration** tab.
- 4. Select **Networking** in the Hardware menu.
- 5. Choose **vSphere Standard Switch** in the View field.
- 6. Click **Properties**.
- 7. Select **vSwitch** on the Ports tab of the Properties pop-up window.
- 8. Click Edit.
- 9. On the General tab of the pop-up window, change the MTU (under Advanced Properties) from the default value (1500) to 9000. This enables jumbo frames on all of the port-groups and ports of the vSwitch.

Complete these steps in order to enable jumbo frames only on a VMkernel port from the vCenter server:

- 1. From the vSphere client, navigate to **Home** > **Inventory** > **Hosts and Clusters**.
- 2. Select the host.
- 3. Click the **Configuration** tab.
- 4. Select **Networking** in the Hardware menu.
- 5. Choose **vSphere Standard Switch** in the View field.
- 6. Click Properties.

- 7. Select **VMkernel** on the Ports tab of the Properties pop-up window.
- 8. Click Edit.
- 9. On the General tab of the pop-up window, change the MTU (under NIC Settings) from the default value (1500) to **9000**. This enables jumbo frames on only a VMkernel port of the vSwitch.

Verify

Enter the **vmkping -d -s 8972 <storage appliance ip address>** command in order to test the network connectivity and verify that the VMkernel port can ping with jumbo MTU.

☐ Tip: Reference the Testing VMkernel network connectivity with the vmkping command VMware article for more information about this command.

Note: The largest true packet size is 8972, which sends a 9000-byte packet when you add the IP and ICMP header bytes.

At the ESXi host level, verify that the MTU settings are configured properly:

Cisco IOS Configuration

With Cisco IOS® switches, there is no concept of global MTU at the switch level. Instead, MTU is configured at the interface/ether-channel level.

Enter these commands in order to configure jumbo MTU:

7609(config)#int gigabitEthernet 1/1 7609(config-if)#mtu? <1500-9216> MTU size in bytes 7609(config-if)#mtu 9216

Verify

Enter the **show interfaces gigabitEthernet 1/1** command in order to verify that the configuration is correct:

```
7609#show interfaces gigabitEthernet 1/1
```

```
GigabitEthernet1/1 is up, line protocol is up (connected)
 Hardware is C6k 1000Mb 802.3, address is 0007.0d0e.640a (bia 0007.0d0e.640a)
 MTU 9216 bytes, BW 1000000 Kbit, DLY 10 usec,
  reliability 255/255, txload 1/255, rxload 1/255
```

N1kV Configuration

With the N1kV, the jumbo MTU can only be configured on the Ethernet port-profiles for uplink; MTU cannot be configured at the vEthernet interface.

Verify

Enter the **show run port-profile UPLINK** command in order to verify that the configuration is correct:

```
GunjanVSM# show run port-profile UPLINK
|Command: show running-config port-profile UPLINK
!Time: Sat Feb 22 22:25:12 2014
version 4.2(1)SV2(2.1a)
port-profile type ethernet UPLINK
  vmware port-group
  switchport mode trunk
  switchport trunk allowed vlan 1,15
 mtu 9000
  channel-group auto mode on mac-pinning
  no shutdown
  system vlan 15
  state enabled
GunjanVSM#
Gunjan∀SM#
GunjanVSM# show port-ch sum
Flags: D - Down
                  P - Up in port-channel (members)
       I - Individual H - Hot-standby (LACP only)
       s - Suspended r - Module-removed
       S - Switched R - Routed
       U - Up (port-channel)
Group Port-
                           Protocol Member Ports
                 Type
      Channel
      Pol(SU)
                 Eth
                           NONE
                                     Eth3/2(P)
GunjanVSM# sh int pol
port-channell is up
 Hardware: Port-Channel, address: 0050.5650.000e (bia 0050.5650.000e)
 MTU 9000 bytes, BW 10000000 Kbit, DLY 10 usec,
    reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation ARPA
  Port mode is trunk
  full-duplex, 10 Gb/s
 Beacon is turned off
  Input flow-control is off, output flow-control is off
  Switchport monitor is off
 Members in this channel: Eth3/2
  Last clearing of "show interface" counters never
```

NetApp FAS 3240 Configuration

On the storage controller, the network ports that are connected to the Fabric Interconnect or to the Layer 2 (L2) switch must have jumbo MTU configured. Here is an example configuration:

```
FAS3240-A> vlan create ela 100
Ethernet ela: Link being reconfigured.
vlan: ela-100 has been created
Ethernet ela: Link up.

FAS3240-A> vlan create elb 100
Ethernet elb: Link being reconfigured.
vlan: elb-100 has been created
Ethernet elb: Link up.

FAS3240-A> ifconfig ela-100 192.168.101.105 netmask 255.255.255.0 mtusize 9000
```

partner ela-100

FAS3240-A> if config e1b-100 192.168.102.105 netmask 255.255.255.0 mtu size 9000 partner e1b-100

Verify

Use this section in order to verify that the configuration is correct.

FAS3240-A> ifconfig -a

e1a: flags=0x80f0c867<BROADCAST,RUNNING,MULTICAST,TCPCKSUM,VLAN> mtu 9000

ether 00:c0:dd:11:40:2c (auto-10g_twinax-fd-up) flowcontrol full

ether 00:c0:dd:11:40:2e (auto-10g_twinax-fd-up) flowcontrol full